# Designing Distributed Systems using Approximate Synchrony in Data Center Networks

Dan R. K. Ports

Jialin Li Vincent Liu

Naveen Kr. Sharma Arvind Krishnamurthy

**University of Washington CSE** 

# Today's most popular applications are distributed systems in the data center



# Today's most popular applications are distributed systems in the data center













Data center networks are different!



#### Data Center Networks Are Different

Data center networks are more *predictable* 

known topology, routes, predictable latencies

Data center networks are more *reliable* 

#### Data center networks are extensible

- single administrative domain makes changes possible
- software-defined networking exposes sophisticated line-rate processing capability

#### Data Center Networks Are Different

#### Data center networks are more *predictable*

known topology, routes, predictable latencies

# We should co-design distributed systems and data center networks!

#### Data center networks are extensione

- single administrative domain makes changes possible
- software-defined networking exposes sophisticated line-rate processing capability

# Co-Designing Networks and Distributed Systems

Design the *data center network* to support *distributed applications* 

Design *distributed applications* around the properties of the *data center network* 

#### This Talk

A concrete instantiation:

improving replication performance using Speculative Paxos and Mostly-Ordered Multicast

#### This Talk

A concrete instantiation:

improving replication performance using Speculative Paxos and Mostly-Ordered Multicast

new replication protocol

new network primitive

#### This Talk

A concrete instantiation:

improving replication performance using Speculative Paxos and Mostly-Ordered Multicast

new replication protocol

new network primitive

3x throughput and 40% lower latency than conventional approach

#### Outline

- Co-designing Distributed Systems and Data Center Networks
- 2. Background:
  State Machine Replication & Paxos
- 3. Mostly-Ordered Multicast and Speculative Paxos
- 4. Evaluation

### State Machine Replication

Used to tolerate failures in datacenter applications

- keep critical management services online (e.g., Google's Chubby, Zookeeper)
- persistent storage in distributed databases (e.g., Spanner, H-Store)

Strongly consistent (linearizable) replication, i.e., all replicas execute same operations in same order ... even when up to half replicas fail ... even when messages are lost

















latency: 4 message delays

#### Outline

- Co-designing Distributed Systems and Data Center Networks
- 2. Background: State Machine Replication & Paxos
- 3. Mostly-Ordered Multicast and Speculative Paxos
- 4. Evaluation

#### Improving Paxos Performance

Paxos requires a leader replica to order requests

Can we use the network instead?

#### Improving Paxos Performance

Paxos requires a leader replica to order requests

Can we use the network instead?

Engineer the network to provide Mostly-Ordered Multicast (MOM)

- best-effort ordering of multicasts

New replication protocol: Speculative Paxos

- commits most operations in a single round trip

Concurrent messages are ordered:

If any node receives message A then B, then all other receivers process them *in the same order* 

best effort — not guaranteed

#### Practical to implement

- can be violated in event of network failure
- but not satisfied by existing multicast protocols!













Different path lengths, congestion cause reordering

#### MOM approach:

Route multicast messages to a root switch equidistant from receivers



Different path lengths, congestion cause reordering

#### MOM approach:

Route multicast messages to a root switch equidistant from receivers

### MOM Design Options

less network support



## MOM Design Options

less network support



1. Topology-Aware Multicast route packets to a randomly-chosen root switch

# MOM Design Options

less network support



- 1. Topology-Aware Multicast route packets to a randomly-chosen root switch
- 2. High-Priority Multicast use higher QoS priority to avoid link congestion

# MOM Design Options

less network support



- 1. Topology-Aware Multicast route packets to a randomly-chosen root switch
- 2. High-Priority Multicast use higher QoS priority to avoid link congestion
- Network Serialization route packets through a single root switch

New state machine replication protocol Relies on MOM to order requests in the normal case

But not required:

remains correct even with reorderings:
 safety + liveness under usual conditions





replicas immediately speculatively execute request & reply!



replicas immediately speculatively execute request & reply! client checks for matching responses from 3/4 superquorum



replicas immediately speculatively execute request & reply! client checks for matching responses from 3/4 superquorum



replicas immediately speculatively execute request & reply! client checks for matching responses from 3/4 superquorum



## Speculative Execution

Replicas execute requests speculatively

might have to roll back operations

Clients know their requests succeeded

- they check for matching hashes in replies
- means clients don't need to speculate

Similar to Zyzzyva [SOSP'07]

### Handling Ordering Violations

What if replicas don't execute requests in the same order?

Replicas periodically run synchronization protocol

If divergence detected: reconciliation

- replicas pause execution, select leader, send logs
- leader decides ordering for operations and notifies replicas
- replicas rollback and re-execute requests in proper order

### Handling Ordering Violations

What if replicas don't execute requests in the same order?

Replicas periodically run synchronization protocol

If divergence detected: *reconciliation* 

- replicas pause execution, select leader, send logs
- leader decides ordering for operations and notifies replicas
- replicas rollback and re-execute requests in proper order

Note: 3/4 superquorum requirement ensures new leader can always be sure which requests succeeded even if 1/2 fail. [cf. Fast Paxos]

### Outline

- Co-designing Distributed Systems and Data Center Networks
- 2. Background: State Machine Replication & Paxos
- 3. Mostly-Ordered Multicast and Speculative Paxos
- 4. Evaluation

### **Evaluation Setup**

12-switch fat tree testbed1 Gb / 10 Gb ethernet3 replicas (2.27 GHz Xeon L5640)



MOM scalability experiments:

2560-host simulated fat tree data center network background traffic from Microsoft data center measurements

(emulated datacenter network with MOMs)

better 1

latency (us)

throughput (ops / second)

better →









### MOMs Provide Necessary Support



### MOM Ordering Effectiveness

#### **Ordering Violation Rates**

|                          | Testbed<br>(12 switches) | Simulation<br>(119 switches,<br>2560 hosts) |
|--------------------------|--------------------------|---------------------------------------------|
| Regular Multicast        | 1-10%                    | 1-2%                                        |
| Topology-Aware<br>MOM    | 0.001%-0.05%             | 0.01%-0.1%                                  |
| Network<br>Serialization | ~0%                      | ~0%                                         |

### **Application Performance**

Transactional key-value store (2PC + OCC)
Synthetic workload based on Retwis Twitter clone

< 250 LOC required to implement rollback

Measured transactions/sec that meet 10 ms SLO



## Summary

New approach to building distributed systems based on co-designing with the data center network

Dramatic performance improvement for replication by combining

- MOM network primitive for best-effort ordering
- Speculative Paxos: efficient replication protocol

This is only the first step for co-designing distributed systems and data center networks!