
Paxos and Replication

Dan Ports, CSEP 552

Today: achieving consensus with
Paxos 
 
and how to use this to build a
replicated system

Last week

Scaling a web service  
using front-end caching
 
 
…but what about the  
 database?

Instead:
How do we replicate  
the database?

How do we make 
sure that all replicas  
have the same state? 
 
…even when some  
replicas aren’t available?

Two weeks ago  
(and ongoing!)

• Two related answers:
• Chain Replication
• Lab 2 - Primary/backup replication

• Limitations of this approach
• Lab 2 - can only tolerate one replica failure 

(sometimes not even that!)
• Both: need to have a fault-tolerant view service
• How would we make that fault-tolerant?

Last week: Consensus

• The consensus problem:

• multiple processes start w/ an input value

• processes run a consensus protocol,  
then output chosen value

• all non-faulty processes choose the same value

Paxos
• Algorithm for solving consensus in an

asynchronous network

• Can be used to implement a state machine  
(VR, Lab 3, upcoming readings!)

• Guarantees safety w/ any number of replica failures

• Makes progrèss when a majority of replicas online  
and can communicate long enough to run protocol

Paxos History
1989
1990

1998

2014

~2005

2010s

Paxos – Leslie Lamport, “The Part-Time Parliament”

Paxos paper published

First practical deployments

Lamport wins Turing Award
Widespread use!

Viewstamped Replication – Liskov & Oki

Why such a long gap?
• Before its time?

• Paxos is just hard?

• Original paper is intentionally obscure:

• “Recent archaeological discoveries on the island of
Paxos reveal that the parliament functioned despite the
peripatetic propensity of its part-time legislators. The
legislators maintained consistent copies of the
parliamentary record, despite their frequent forays from
the chamber and the forgetfulness of their messengers.”

Meanwhile, at MIT
• Barbara Liskov & group develop  

Viewstamped Replication: essentially same protocol

• Original paper entangled with distributed transaction
system & language

• VR Revisited paper tries to separate out replication  
(similar: RAFT project at Stanford)

• Liskov: 2008 Turing Award, for programming w/
abstract data types, i.e. object-oriented programming

Paxos History
1989
1990

1998

2014

~2005

2010s

Paxos – Leslie Lamport, “The Part-Time Parliament”

Paxos paper published

First practical deployments

Lamport wins Turing Award
Widespread use!

The ABCDs of Paxos [2001]  
Paxos Made Simple [2001] 
Paxos Made Practical [2007] 
Paxos Made Live [2007] 
Paxos Made Moderately Complex [2011]

Viewstamped Replication – Liskov & Oki

Three challenges about Paxos

• How does it work?

• Why does it work?

• How do we use it to build a real system?

• (these are in increasing order of difficulty!)

Why is replication hard?
• Split brain problem: 

Primary and backup unable to communicate w/ each
other, but clients can communicate w/ them

• Should backup consider primary failed and start
processing requests?

• What if the primary considers the backup is failed
and keeps processing requests?

• How does Lab 2 (and Chain Replication) deal with this?

Using consensus for  
state machine replication

• 3 replicas, no designated primary, no view server

• Replicas maintain log of operations

• Clients send requests to some replica

• Replica proposes client’s request as next entry in
log, runs consensus

• Once consensus completes:  
execute next op in log and return to client

1: PUT X=2
2: PUT Y=5

1: PUT X=2
2: PUT Y=5

1: PUT X=2
2: PUT Y=5

GET X

3: GET X3: GET X

3: GET X 3: GET X

X=2

Two ways to use Paxos
• Basic approach (Lab 3)

• run a completely separate instance of Paxos 
for each entry in the log

• Leader-based approach (Multi-Paxos, VR)
• use Paxos to elect a primary (aka leader) 

and replace it if it fails
• primary assigns order during its reign

• Most (but not all) real systems use leader-based Paxos

Paxos-per-operation
• Each replica maintains a log of ops

• Clients send RPC to any replica

• Replica starts Paxos proposal for latest log number
• completely separate from all earlier Paxos runs
• note: agreement might choose a different op!

• Once agreement reached: execute log entries &
reply to client

Terminology
• Proposers propose a value

• Acceptors collectively choose one of the proposed
values

• Learners find out which value has been chosen

• In lab3 (and pretty much everywhere!),  
every node plays all three roles!

Paxos Interface

• Start(seq, v): propose v as value for instance seq

• fate, v := Status(seq):  
 find the agreed value for instance seq

• Correctness: if agreement reached,  
all agreeing servers will agree on same value  
(once agreement reached, can’t change mind!)

How does an individual  
Paxos instance work?

Note: all of the following is in the context of deciding
on the value for one particular instance,  
i.e., what operation should be in log entry 4?

Why is agreement hard?
• Server 1 receives Put(x)=1 for op 2, 

Server 2 receives Put(x)=3 for op 2

• Each one must do something with the first operation it
receives

• …yet clearly one must later change its decision

• So: multiple-round protocol; tentative results?

• Challenge: how do we know when a result is  
tentative vs permanent?

Why is agreement hard?
• S1 and S2 want to select Put(x)=1 as op 2,  

S3 and S4 don’t respond

• Want to be able to complete agreement w/ failed
servers — so are S3 and S4 failed?

• or are they just partitioned, and trying to  
accept a different value for the same slot?

• How do we solve the split brain problem?

Key ideas in Paxos

• Need multiple protocol rounds that  
converge on same value

• Rely on majority quorums for agreement  
to prevent the split brain problem

Majority Quorums
• Why do we need 2f+1 replicas to tolerate f failures?

• Every operation needs to talk w/ a majority (f+1)

• Why? 
 
 
 
 
 
 
 

request

OK

• Have to be able to  
proceed w/  
n-f responses

• f of those might fail

• need one left

• (n-f)-f ≥ 1 => n ≥ 2f+1X

Another reason for quorums
• Majority quorums solve the split brain problem

• Suppose request N talks to a majority

• All previous requests also talked to a majority

• Key property: any two majority quorums intersect at at
least one replica!

• So request N is guaranteed to see all previous operations

• What if the system is partitioned & no one can get a
majority?

The mysterious f

• f is the number of failures we can tolerate

• For Paxos, need 2f+1 replicas  
(Chain Replication was f+1; some protocols need 3f+1)

• How do we choose f?

• Can we have more than 2f+1 replicas?

Paxos protocol overview
• Proposers select a value

• Proposers submit proposal to acceptors,  
try to assemble a majority of responses

• might be concurrent proposers,  
e.g., multiple clients submitting different ops

• acceptors must choose which requests they
accept to ensure that algorithm converges

Strawman
• Proposer sends propose(v) to all acceptors

• Acceptor accepts first proposal it hears

• Proposer declares success if its value is  
accepted by a majority of acceptors

• What can go wrong here?

Strawman
• What if no request gets a majority?  
 
 
 
 
 
 
 

1: PUT X=2 1: PUT Y=4 1: GET X

Strawman
• What if there’s a failure after a majority quorum?  
 
 
 
 
 
 
 

• How do we know which request succeeded?

1: PUT X=2 1: PUT Y=4 1: PUT X=2

1: PUT X=21: PUT Y=41: PUT X=2
X

Basic Paxos exchange
Proposer Acceptors

propose(n)

propose_ok(n, na, va)

accept(n, v’)

accept_ok(n)

decided(v’)

Definitions
• n is an id for a given proposal attempt 

not an instance — this is still all within one instance! 
e.g., n = <time, server_id>

• v is the value the proposer wants accepted

• server S accepts n, v 
=> S sent accept_ok to accept(n, v)

• n, v is chosen => a majority of servers accepted n,v

Key safety property
• Once a value is chosen, no other value can be

chosen!

• This is the safety property we need to respond to a
client: algorithm can’t change its mind!

• Trick: another proposal can still succeed,  
but it has to have the same value!

• Hard part: “chosen” is a systemwide property:  
no replica can tell locally that a value is chosen

Paxos protocol idea
• proposer sends propose(n) w/ proposal ID, 

but doesn’t pick a value yet

• acceptors respond w/ any value already accepted 
and promise not to accept proposal w/ lower ID

• When proposer gets a majority of responses

• if there was a value already accepted, 
propose that value

• otherwise, propose whatever value it wanted

Paxos acceptor
• np = highest propose seen  
na, va = highest accept seen & value

• On propose(n)  
if n > np  
 np = n  
 reply propose_ok(n, na, va)  
else reply propose_reject

• On accept(n, v)  
if n ≥ np  
 np = n  
 na = n  
 va = v  
 reply accept_ok(n)  
else reply accept_reject

Example: Common Case
Proposer Acceptor Acceptor Acceptor

propose(1)
propose_ok(1, nil, nil)

propose_ok(1, nil, nil)
propose_ok(1, nil, nil)

accept(1, V)
accept_ok(1)

accept_ok(1)
accept_ok(1)

decided(V)

What is the commit point?

• i.e., the point at which, regardless of what failures
happen, the algorithm will always proceed to
choose the same value?

• once a majority of acceptors send accept_ok(n)!

• why not when a majority of proposers send
propose_ok(n)?

Acceptor Acceptor Acceptor

propose_ok(10) propose_ok(10)

propose_ok(11)propose_ok(11)

accept_ok(11, Y)

propose_ok(10)

accept_ok(10, X)

• Has a value been chosen?

• Could either X or Y be chosen?

• What happens if #2 gets accept(10, X)?

• What happens if #1 gets accept(11, Y)?

• Why does the proposer need to choose the value va
with highest na?

• Guaranteed to see any value that has already obtained a
majority of acceptors

• can’t change this value, so we need to use it!

• Will also see any value that could subsequently obtain a
majority of acceptors

• because the proposal prevents any lower-numbered
proposal from being accepted

What about FLP?
• No determinstic algorithm for solving consensus in

an asynchronous network is both safe (correct) and
live (terminates eventually)

• Paxos is an algorithm for solving consensus…

• Paxos must not be guaranteed to be live

• How can it get stuck?

Worst-case for Paxos
Proposer Acceptor Acceptor Acceptor Proposer

propose(1)
prop_ok(1) prop_ok(1) prop_ok(1)

propose(2)
prop_ok(2) prop_ok(2) prop_ok(2)

accept(1)
accept_rej(1) accept_rej(1) accept_rej(1)

propose(3) prop_ok(3) prop_ok(3) prop_ok(3)
accept(2)

accept_rej(2) accept_rej(2) accept_rej(2)

What can we do about this?

• don’t retry immediately; wait random time then retry

• designate one replica as leader (aka distinguished
proposer), have it make all the proposals

• what if that replica fails?

• just an optimization, other replicas can still make
proposals if they think it failed

Multi-Paxos
• All of the above was about a single instance, 

i.e., agreeing on the value for one log entry

• In reality: series of Paxos instances

• Optimization: if we have a leader,  
have it run the first phase for multiple instances at once

• propose(n): acceptor sets np = n for this instance and
all future instances

• Then the proposer can jump to the accept phase

Replica

Multi-Paxos

Client

Leader  
Replica

Replica

request accept acceptok reply

decideexec

Viewstamped Replication

• A Paxos-like protocol presented in terms of  
state machine replication

• i.e, a system-builder’s view of Paxos

• see also RAFT from Stanford

Viewstamped Replication is
exactly Multi-Paxos!

Starting point

• 2f+1 replicas, one of them is the primary

• each one maintains a numbered log of operations  
either PREPARED or COMMITTED

• clients send all requests to primary

• primary runs a two-phase commit over replicas

Replica

2-phase commit

Client

Leader  
Replica

Replica

request prepare prepare-ok reply

commitexec

Beyond 2PC
• 2PC does not remain available with failures

• So let’s try requiring a majority quorum:  
f+1 PREPARE-OKs, including the primary

• can tolerate f backup failures (no primary failure)

• Minor detail: what if backup receives op n+1
without seeing op n

• need state transfer mechanism

The hard part
• need to detect that the primary has failed (timeout?)

• need to replace it with a new primary

• need to make sure that the new primary knows
about all operations committed by the primary

• need to keep the old primary from completing new
operations

• need to make sure that there are no race conditions!

Replacing the primary
• Each replica maintains a view number,  

view number determines the primary,  
process PREPARE-OK only if view number matches

• When primary suspected faulty: send  
<START-VIEW-CHANGE, new v> to all

• On receiving START-VIEW-CHANGE: 
increment view number, stop processing reqs 
send <DO-VIEW-CHANGE, v, log> to new primary

• When primary receives DO-VIEW-CHANGE from majority: 
take log with highest seen (not necessarily committed) op 
install that log, send <START-VIEW, v, log> to all

Why is this correct?

Why is this correct?
• New primary sees every operation that could

possibly have completed in old view

• every completed operation was processed by
majority of replicas, and we have DO-VIEW-
CHANGE logs from a majority

• Can the old primary commit new operations?

• no - once a replica sends DO-VIEW-CHANGE  
it stops listening to the old primary!

Why is this correct?
• Because it’s Paxos!

• View change = propose a new primary

• a two-phase protocol involving majorities

• other replicas promise not to accept ops in old
view

• and proposer finds out all ops accepted in old
view and must propose them in new view

VR = (Multi-)Paxos
• view number = proposal number

• start-view-change(v) = propose(v)

• do-view-change(v) = propose_ok(v)

• start-view(v, log) = accept(v, op) for appropriate instance

• prepare(v, opnum, op) = accept(v, op) for instance opnum

• prepare_ok(v, opnum) = accept_ok(v, op) for instance opnum

• commit(opnum, op) = decided(opnum, op)

Paxos performance

• What determines Paxos performance?

• We’ll consider Multi-Paxos / VR  
since it’s the most common way to use Paxos

Replica

Multi-Paxos

latency: 4 message delays

Client

Leader  
Replica

Replica

request prepare prepareok reply

commitexec

throughput:
bottleneck replica processes 2n

msgs

Batching
• Have leader accumulate requests from many

clients

• Run one round of Paxos in parallel to add them all
to the log

• Much higher throughput

• Potentially higher latency (can get it about even)

Partitioning
• One idea: run multiple Paxos groups

• each replica will be a leader in some,  
follower in others - spreads load around

• very common in practice

• Separate idea: partition instances, different leaders for
each instance

• some protocols do this for higher throughput

• more complicated, easy to get wrong

