
Caches, Coherence,  
and Consistency
(and Consensus)

Dan Ports, CSEP 552

Caching
• Simple idea: keep a duplicate copy of data

somewhere faster

• Challenge: how do we keep the cached copy
consistent with the master?

• What does it even mean to do that?

• ideally, user/app couldn’t tell the cache was even there

• Today will be about answering those questions

Why do we want caching?
• Reduce load on a bottleneck service  

(exploit locality)

• Better latency  
(cache is more conveniently located & hopefully
faster)

• High-level view:  
caching: move data to where we want to use it  
vs RPC: move computation to where the data is

Web Service Architecture
stateless server

all data stored
here

Adding a Cache

cache on FE
machine
(in RAM)

Idea: store recent DB results  
in the cache so we can reuse them

Cache details
• What do we do with writes?

• update the cache first, then update the database

• synchronously (write-through): safe but slow

• asynchronously (write-back): fast but not crash-safe

• What do we do if the cache runs out of space?

• throw data away (e.g., least-recently-used)

Cache semantics

• Does this cache behave the way we’d like it to?

• i.e., can an application tell that the cache is there?

Terminology
• Coherence: the value returned by a read operation

is always the value most recently written to that
object

• Unfortunately the terminology is inconsistent
• Coherence: properties about the behavior of

multiple reads/writes to same object
• Consistency: properties about behavior of

multiple reads/writes to different object

Cache coherence

Is this cache coherent?

Yes!  
All writes go to cache first &

all reads check there first
=> always see latest write

Scaling up
Multiple front-end servers 
each with its own cache

Suppose we use the same 
protocol as before:
- update local cache  

- then update DB  
 synchronously

Is the cache coherent now?

What are other systems that
uses caches?

• Just about everything…

• web browsers

• NFS

• DNS

• processors!  
(lots of terminology comes from here)

How could we fix this?

Idea: invalidations

• Protocol: on a write, update the DB and  
send invalidations to other caches

• Which order should we do these in?

• Does that provide coherence?

Idea: add locking
• When A writes X:

• A notifies all caches and DB not to allow access
to X, waits for acknowledgments

• A updates DB, updates caches, waits for acks
• A releases the lock

• Does this provide coherence?

• Is this efficient?

Better idea: exclusive ownership
• Basic idea: at most one cache is allowed to have a

dirty (modified) copy at any time

• Each entry on each cache is in one of three states:

• invalid (no cached data)

• shared (read/only)

• exclusive (read/write)

• X has exclusive access => all other caches invalid

Better idea: exclusive ownership

State transitions
• How does one cache transition to exclusive state?

• send write-miss RPC to everyone else, 
wait for responses

• upon receiving write-miss: 
if holding shared, go to invalid  
if holding exclusive, write back and go to invalid

• Does this protocol work?

• need to be careful about two caches concurrently 
trying to get exclusive state (locking)

Performance
• Single node can now repeatedly write object w/o

coordination

• Contention: concurrent reads/writes to same object

• cached item bounces back and forth  
between caches

• Need to keep track of which caches have  
shared/exclusive copies (distributed state)

• Performance costs are fundamental to  
providing coherence!

What if we wanted
something cheaper?

• Maybe OK to see an old value as long as it’s not
more than 15 seconds out of date?

• Maybe OK to see an old value, as long as it’s not
before our last update?

• Maybe OK to see an old value if the last update
was logically concurrent?

• Infinite possibilities for defining weak consistency/
coherence models!

Coherence in NFS
• Design choice: don’t want server to keep track of

which clients have cached data

• Client periodically checks if cached copy is up to
date

• Only real guarantees:  
dirty cache blocks flushed on close(),  
open() invalidates any old cached blocks  
(“close-to-open consistency”)

Coherence vs Consistency

• Coherence: properties about the behavior of
multiple reads/writes to same object

• Consistency: properties about behavior of multiple
reads/writes to different object

• When weakening our semantics, consistency
properties start to matter a lot…

Consistency Example
 node0:
 v0 = f0();
 done0 = true;

 node1:
 while(done0 == false)
 ;
 v1 = f1(v0);
 done1 = true;

 node2:
 while(done1 == false)
 ;
 v2 = f2(v0, v1);

intent:  
node2 executes f2  
w/ results from  
node0 and node1

node2 waits for node1, 
so should wait for 
node0 too

Is this guaranteed?

Memory Model
• Behavior of this code depends on memory model

• linearizable: behaves like a single system

• serializable / sequentially consistent: 
behaves like a single system to programs running on it

• eventually consistent: if no more updates, all nodes
eventually have the same state. Before that… ?

• weakly consistent:  
doesn’t behave like a single system

Linearizability

• Strongest model

• A memory system is linearizable if: 
every processor sees updates in the same order
that they actually happened in real time

• i.e., every read sees the result of the most recent
write that finished before the read started

Is this linearizable?

P1: W(x)1
P2: R(x)0 R(x)1

Is this linearizable?

P1: W(x)1
P2: R(x)2 R(x)2
P3: W(x)2

Is this linearizable?

P1: W(x)1
P2: R(x)1 R(x)1
P3: W(x)2

Linearizability is restrictive
• Need to make sure that caches are invalidated

before operation completes

• Even though this might not have been necessary

• P2 needed to see effects of P3’s update, even
though no explicit communication between them  
(even if logically concurrent!)

• Why is this restriction useful?

Serializability  
(Sequential Consistency)

• Appears as though all operations from all
processors were executed in a sequential order;  
reads see result of previous write in that order

• Operations by each individual processor appear in
that sequence in program order  
(i.e., in the order executed on that processor)

• Slightly less strong than linearizability:  
no real time constraint

Is this serializable?

P1: W(x)1
P2: R(x)0 R(x)1

Is this serializable?

P1: W(x)1
P2: R(x)1 R(x)1
P3: W(x)2

Yes - valid order:
W(x)1 R(x)1 R(x)1 W(x)2  

Implementing sequential consistency

• Requirement 1: Program order requirement

• each process must ensure that its previous memory op is
complete before starting the next in program order

• cache systems: write must invalidate all cached copies

• Requirement 2: Write atomicity

• Writes to the same location must be serialized, i.e., become
visible to all processors in same order

• value of write can’t be returned by any read  
until write completes

Causal consistency

• A read returns a causally consistent version of the
data

• if A receives message M from B, reads will return
all updates that B made before sending M

• i.e., will see all writes that happens-before your read

Causal vs  
 sequential consistency

• Is causal consistency weaker than  
sequential consistency?
• Yes - don’t need to decide an order for causally

unrelated writes! 

• Why is this useful?
• can build a system that doesn’t coordinate on causally

unrelated writes — fast!
• if two nodes are unable to communicate with each other, 

can still ensure causal consistency but not sequential

Is this causally consistent?

P1: W(x)1 R(y)0
P2: R(y)2 R(x)0
P3: W(y)2

Is this causally consistent?

P1: W(x)1
P2: R(y)2 R(x)0
P3: R(x)1 W(y)2

Weaker consistency levels
• Weak consistency: anything goes

• Eventual consistency: if all writes stop, system
eventually converges to a consistent state where
read(x) will always return same value

• until then… anything goes

• Eventual consistency is popular:  
NoSQL databases (Redis, Cassandra, etc). Why?

Ivy DSM
• Goal: distributed shared memory

• a runtime environment where many machines
share memory

• make a distributed system look like a giant
multiprocessor machine

• Why would we want this?

Ivy approach
• Use hardware virtual memory / protection to make DSM

transparent to application

• Recall virtual memory:

• OS installs mappings:  
virtual address -> {physical addr, permissions}
(permissions = read/write, read-only, none)

• App violates permissions => trap to OS

• Here, exploit this to fetch pages remotely  
& run cache coherence protocol

Ivy protocol

Granularity of coherence

• In hardware shared memory:  
usually one cache line (~64 bytes)

• What does Ivy use?

• Why the difference?

• What are the tradeoffs involved?

Ivy semantics

• What memory model does Ivy provide?

• Coherence of individual memory locations?

• What about consistency?  
Is it sequentially consistent?

Implementing sequential consistency

• Requirement 1: Program order requirement

• each process must ensure that its previous memory op is
complete before starting the next in program order

• cache systems: write must invalidate all cached copies

• Requirement 2: Write atomicity

• Writes to the same location must be serialized, i.e., become
visible to all processors in same order

• value of write can’t be returned by any read  
until write completes

Design options

Performance

• What performance gain would we hope for?  
N nodes => N * single node throughput

• Why wouldn’t we achieve this?

Performance

Performance

Discussion

• Should we use DSM instead of message passing?

• Does DSM scale?

• Would it make sense to provide weaker
consistency in DSM?

Intro to Consensus
• Fundamental problem in distributed systems:  

get a group of nodes to agree on a value  
even though some of them might fail

• Lots of problems ultimately boil down to consensus

• Lab 3 uses consensus for a reliable replicated
state machine

• Next week: consensus algorithms -  
Paxos & Viewstamped Replication

Consensus Problem
• Multiple processes, each starting with an input

• Processes run a consensus protocol,  
then output a chosen value once it’s complete

• Safety requirement:
• consistency: all non-faulty processes output the same

value
• validity: that value was proposed by some node  

(i.e., can’t just choose 0!)

• Termination:  
eventually all non-faulty processes output a value

System model
• Assumptions about the world:
• Asynchronous network

• messages can be delayed indefinitely
• but messages that are repeatedly sent  

will eventually be received
• Some processes can crash

• just stop executing the protocol

FLP Result

• No deterministic consensus protocol
guarantees both safety and termination 
in an asynchronous network where  
one process can crash!

Warning:  
handwaving imminent!

FLP Intuition
• Suppose process A sends a message to process B

but hasn’t gotten a reply back (e.g., after retrying)

• Problem: is B crashed, or is the network just slow?

• Should A wait for B before deciding?

• if yes: maybe B is crashed, so it’ll wait forever!

• if no: maybe B is just slow, and will decide
something else

A bit more formal

• Consider executions of a distributed system:  
the sequence in which the network delivers
messages to their recipients

• Bivalent state: a state where the network could
affect which value the processes choose

FLP proof sketch
• All fault-tolerant algorithms have bivalent starting conditions

• For any bivalent state, there’s some sequence of message
deliveries that leads to another bivalent state

• Intuition: suppose there’s some message m that causes
the system to go from bivalent to 0-valent. What if we
delay it?

• Tricky part: in fact, we could delay it until delivering m
keeps the system bivalent

• Can repeat indefinitely, causing algorithm to take forever

So what?
• We still need consensus algorithms!

• But they must somehow avoid the FLP limitation

• always safe but don’t always terminate
• randomized; terminates w/ high probability
• bound on message delivery time
• assume loosely synchronized clocks
• …

• Next week: Paxos 
not guaranteed to terminate in all cases

Why stick to an
asynchronous model?

• In practice, we could come up with a decent bound
on network latency & use this as a timeout

• But it would be have to be pretty high

• Resulting algorithm would have that timeout
hardcoded

• Asynchronous algorithms are self-tuning

