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Today’s question
• How do we order events in a distributed system?

• physical clocks 

• logical clocks 

• snapshots 

• (break) 

• application: state machine replication  
(Chain Replication / Lab 2)



Why do we need to 
order events?



Distributed Make
• Central file server holds source and object files 

• Clients specify modification time on uploaded files 

• Use timestamps to decide what needs to be rebuilt  
    if object O depends on source S,  
    and O.time < S.time, rebuild O  

• What goes wrong?



Another example: Facebook

• Remove boss as friend 

• Post “My boss is the worst, I need a new job!” 

• Don’t want to get these in the wrong order!



Why would we get these in 
the wrong order?

• Data is not stored on one server - actually 100K+ 

• Privacy settings stored separately from post 

• Lots of copies of data: replicas, caches in the data 
center, cross-datacenter replication, edge caches 

• How do we update all these things consistently? 

• Can we just use wall clocks?



Physical clocks

• Quartz crystal can be distorted using piezoelectric 
effect, then snaps back  
=> results in an oscillation at resonant frequency 

• affected by crystal variations, temperature, age, etc



• Crystal oscillator (~1¢) 
5 min / yr 

• Oven-controlled XO (~$50-100) 
1 sec / yr 

• Rubidium atomic clock (~$1k) 
<1 ms / yr 

• Cesium atomic clock ($∞) 
100 ns / yr



How well are clocks 
synchronized in practice?
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How well are clocks 
synchronized in practice?

• Within a datacenter: ~20-50 microseconds 

• Across datacenters: ~50-250 milliseconds 

• for comparison: can process a RPC in ~3us  
200ms is a user-perceptible difference



Two approaches

• Synchronize physical clocks 

• Logical clocks



Strawman approach
• Designate one server as the master  

(How do we know the master’s time is correct?) 

• Master periodically broadcasts time 

• Clients receive broadcast, set their clock to the 
value in the message 

• Is this a good approach?



• Have to assume asynchronous network: 
latency can be unpredictable and unbounded 

Network latency



Slightly better approach
• Designate one server as the master  

(How do we know the master’s time is correct?) 

• Master periodically broadcasts time 

• Clients receive broadcast, set their clock to the 
value in the message + minimum delay 

• Can we say anything about the accuracy?



Slightly better approach
• Designate one server as the master  

(How do we know the master’s time is correct?) 

• Master periodically broadcasts time 

• Clients receive broadcast, set their clock to the 
value in the message + minimum delay 

• Can we say anything about the accuracy?

only that error ranges from 0 to (max-min)



Can we do better?
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Interrogation-Based Protocol



How accurate is this?

• No reliable way to tell where T1 lies between T0 and T2 

• Best option is to assume the midpoint, set client’s clock 
to T1 + (T2-T0)/2 

• What is the maximum error?



How accurate is this?

• No reliable way to tell where T1 lies between T0 and T2 

• Best option is to assume the midpoint, set client’s clock 
to T1 + (T2-T0)/2 

• What is the maximum error?

If we know the minimum latency:  (T2-T0)/2 - min



Improving on this
• NTP uses an interrogation-based approach, plus: 

• taking multiple samples to eliminate ones not close 
to min RTT 

• averaging among multiple masters 

• taking into account clock rate skew 

• PTP adds hardware timestamping support to track 
latency introduced in network



Are physical clocks enough?



Alternative: logical clocks

• another way to keep track of time 

• based on the idea of causal relationships between 
events 

• doesn’t require any physical clocks



Definitions

• What is a process? 

• What is an event? 

• What is a message?



Happens-before relationship

• Captures logical (causal) dependencies between 
events 

• Within a thread, P1 before P2 means P1 -> P2 

• if a = send(M) and b = recv(M), a -> b 

• transitivity: if a -> b and b -> c then a -> c





What does -> mean?



What does -> mean?
• a -> b means “b could have been influenced by a”



What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?



What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?

• What does it mean, then? Events are concurrent



What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?

• What does it mean, then? Events are concurrent

• What does it mean for events to be concurrent?



What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?

• What does it mean, then? Events are concurrent

• What does it mean for events to be concurrent?

• Key insight: no one can tell whether a or b 
happened first!



Abstract logical clocks
• Goal: if a -> b, then C(a) < C(b) 

• Clock conditions: 

• if a and b are on the same process i,  
Ci(a) < Ci(b) 

• if a = process i sends M, and  
b = process j receives m 
Ci(a) < Cj(b)



(One) Algorithm

• Each process i increments counter Ci between two 
local events 

• When i sends a message m, it includes a 
timestamp Tm = (Ci at the time message was sent) 

• On receiving m, process j updates its clock:  
Cj = max(Cj, Tm + 1) + 1
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What does this mean?
• If a -> b, then C(a) < C(b)

• Is the converse true: if C(a) < C(b) then a -> b?

• no, they could also be concurrent

• if we were to use the Lamport clock as a global 
order, we would induce some unnecessary 
ordering constraints



Could we build a better 
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Could we build a better 
logical clock?

• One where the converse is true,  
C(a) < C(b) => a -> b

• Note that there must still be concurrent events:  
sometimes neither C(a) < C(b) or C(b) < C(a)

• Strawman: keep a dependency list,  
i.e. a list of all previous events

• Better answer: vector clocks (later!)



Snapshots



Motivating Example: 
PageRank

• Long-running computation on thousands of servers 

• each server holds some subset of webpages 

• each page starts out with some reputation 

• each iteration: transfer some of a page’s 
reputation to the pages it links to 

• What do we do if a server crashes?



Suppose we want to take a snapshot 
for fault tolerance.  

How often would we need to snapshot 
each machine?



Consistent Snapshots
• We want processes to record their snapshots at “about the 

same time” 

• If a process’s checkpoint reflects receiving message m, then 
the sending process’s checkpoint should reflect sending it 

• or if a channel’s checkpoint contains a message 

• If a process’s checkpoint reflects sending a message, the 
message needs to be reflected in the receiver’s or channel’s 
checkpoint 

• i.e., can’t lose messages



Put another way:

• Process checkpoints are logically concurrent

• i.e., no process checkpoint happens-before 
another! 

• alternatively:  
if a -> b, and b is in some checkpoint, so is a



Chandy-Lamport algorithm
• Assumptions 

• finite set of processes and channels 
• strongly connected graph between processes 
• channels are infinite buffers, 

error-free,  
in-order delivery,  
finite delay 

• processes are deterministic 

• Why do we need each of these?



The Algorithm
• Start: some process sends itself a “take snapshot” token 

• When i receives a token from j: 
• i checkpoints its process state 
• i sends token on all outgoing channels 
• i records that channel from j is empty 
• i starts recording messages on other channels  

until receiving a token on that channel 

• Done when every process has received a token  
on every channel



Why does this work?



Why does this work?

• Tokens separate logical time into  
“before the snapshot” from “after the snapshot” 

• if process i records state that includes receiving a 
message from j 
then j’s state includes sending that message



Discussion

• Is this the best way to snapshot systems? 

• Can we use this technique for other purposes?



State Machine Replication 

(Chain Replication & Lab 2)



How do we build a system 
that tolerates server failures?
• Replication!

• Goal: tolerate up to f server failures  
by using (at least) f+1 copies 

• Goal: look just like one copy to the client 

• Challenge: coordinating operations so they are 
applied to all replicas with the same result



State Machine Replication
• Incredibly powerful abstraction 

• Idea: model the system as a state machine 

• service maintains some amount of state 

• transition function: (input, state) -> new state 

• output function: (input, state) -> output 

• i.e., system state/output entirely determined by input 
sequence



Key idea: 
If the system is a state machine, 

keeping the replicas consistent means 
agreeing on the order of operations



Are all real systems  
state machines?



Are all real systems  
state machines?

• Needs to be deterministic 

• what about clocks? randomness? 

• parallel execution within a single machine 
(multicore) 

• Need to be careful to capture all inputs?



Ordering operations
• Goal: achieve a consistent order of operations  

on all replicas 

• What does “consistent” mean here? 

• Single-copy serializability: it appears to all clients as though 
operations were executed sequentially on a single machine 

• i.e, total order of operations doesn’t change 

• Strict serializability (linearizability): adds real time req:  
if a finishes before b starts, a is ordered before b



State machine replication

• Many ways to achieve this: 

• Primary copy approaches 

• chain replication is one example 

• Lab 2 is a simplified version 

• Quorum approaches, e.g. Paxos (two weeks)



Primary Copy Replication
• Key idea: have a designated primary that  

assigns order to requests 

• All replicas execute requests in primary’s order 

• Client sees results consistent with that order 

• Client doesn’t see results until executed by “enough” 
replicas (here, all f+1) 

• When primary fails, replace it — but make sure the new 
primary respects the order of all successful operations 
(this is the hard part!)



Chain Replication Assumptions



Chain Replication Assumptions

• f+1 nodes to tolerate f failures 

• nodes fail only by crashing, and crashes are 
detected 

• fault-tolerant master service keeps track of system 
membership 

• operations are read or write



Chain Replication



Normal Case Processing

• Updates sent to head, propagated down chain, 
response comes from tail 

• Key invariant: each node has seen a superset of 
operations seen by all following nodes in the chain 

• What is the commit point of an operation?



Failures in the Chain
• What happens if the tail fails? 

• What happens if the head fails? 

• What happens if a node in the middle fails? 

• What happens if we add a node? 

• What happens if the master fails?



Performance
• Alternative: primary sends to all other replicas in 

parallel, waits for responses 

• could use f+1 replicas and wait for responses from all,  
or 2f+1 and wait for responses from majority 

• Throughput: chain replication best (2 msgs per node) 

• Latency: chain replication worst  
- need to execute at every replica in sequence  
- need to wait for slowest replica



Lab 2

• Simplified version of chain replication:  
chain always two nodes (primary & backup) 

• Part A: implement the view service (master) 

• Part B: implement a primary/backup  
key-value store 



View Service Behavior
• What state does the master need? 

• list of alive replicas, last ping time 
• view number, primary and backup for that view 

• View transitions 
• initial state -> make some node primary in view 1 
• primary, no backup -> add a backup 
• primary, backup -> backup fails 
• primary, backup -> primary fails, replace with backup



View Service Behavior

• Servers periodically ping master 
• n missed pings => server dead 
• 1 successful ping => server alive 
• primary dead => promote backup 
• no backup, some live server => add it as backup



Primary/Backup
• Need to ensure that the new primary has up-to-date 

state 

• Only promote previous backup (not an idle server) 

• What if the previous backup didn’t have time to get 
the state from the old master? 
• primary must acknowledge new view to view server 
• if it doesn’t, can’t move to a new view  

even if the primary fails!



Multiple Primaries
• Can more than one replica think it’s the primary? 

• How do we keep other replicas from acting as the 
primary? 

• Operations need to be forwarded to the backup to 
succeed 

• Backup will always be the primary in the next view, 
so it rejects forwarded ops from the old primary


