
Time, Clocks, and  
State Machine Replication

Dan Ports, CSEP 552

Today’s question
• How do we order events in a distributed system?

• physical clocks

• logical clocks

• snapshots

• (break)

• application: state machine replication  
(Chain Replication / Lab 2)

Why do we need to
order events?

Distributed Make
• Central file server holds source and object files

• Clients specify modification time on uploaded files

• Use timestamps to decide what needs to be rebuilt  
 if object O depends on source S,  
 and O.time < S.time, rebuild O  

• What goes wrong?

Another example: Facebook

• Remove boss as friend

• Post “My boss is the worst, I need a new job!”

• Don’t want to get these in the wrong order!

Why would we get these in
the wrong order?

• Data is not stored on one server - actually 100K+

• Privacy settings stored separately from post

• Lots of copies of data: replicas, caches in the data
center, cross-datacenter replication, edge caches

• How do we update all these things consistently?

• Can we just use wall clocks?

Physical clocks

• Quartz crystal can be distorted using piezoelectric
effect, then snaps back  
=> results in an oscillation at resonant frequency

• affected by crystal variations, temperature, age, etc

• Crystal oscillator (~1¢) 
5 min / yr 

• Oven-controlled XO (~$50-100) 
1 sec / yr 

• Rubidium atomic clock (~$1k) 
<1 ms / yr 

• Cesium atomic clock ($∞) 
100 ns / yr

How well are clocks
synchronized in practice?

(measurements from Amazon EC2)

How well are clocks
synchronized in practice?

(measurements from Amazon EC2)

How well are clocks
synchronized in practice?

• Within a datacenter: ~20-50 microseconds

• Across datacenters: ~50-250 milliseconds

• for comparison: can process a RPC in ~3us  
200ms is a user-perceptible difference

Two approaches

• Synchronize physical clocks

• Logical clocks

Strawman approach
• Designate one server as the master  

(How do we know the master’s time is correct?)

• Master periodically broadcasts time

• Clients receive broadcast, set their clock to the
value in the message

• Is this a good approach?

• Have to assume asynchronous network: 
latency can be unpredictable and unbounded

Network latency

Slightly better approach
• Designate one server as the master  

(How do we know the master’s time is correct?)

• Master periodically broadcasts time

• Clients receive broadcast, set their clock to the
value in the message + minimum delay

• Can we say anything about the accuracy?

Slightly better approach
• Designate one server as the master  

(How do we know the master’s time is correct?)

• Master periodically broadcasts time

• Clients receive broadcast, set their clock to the
value in the message + minimum delay

• Can we say anything about the accuracy?

only that error ranges from 0 to (max-min)

Can we do better?

Interrogation-Based Protocol

Interrogation-Based Protocol

How accurate is this?

• No reliable way to tell where T1 lies between T0 and T2

• Best option is to assume the midpoint, set client’s clock
to T1 + (T2-T0)/2

• What is the maximum error?

How accurate is this?

• No reliable way to tell where T1 lies between T0 and T2

• Best option is to assume the midpoint, set client’s clock
to T1 + (T2-T0)/2

• What is the maximum error?

If we know the minimum latency: (T2-T0)/2 - min

Improving on this
• NTP uses an interrogation-based approach, plus:

• taking multiple samples to eliminate ones not close
to min RTT

• averaging among multiple masters

• taking into account clock rate skew

• PTP adds hardware timestamping support to track
latency introduced in network

Are physical clocks enough?

Alternative: logical clocks

• another way to keep track of time

• based on the idea of causal relationships between
events

• doesn’t require any physical clocks

Definitions

• What is a process?

• What is an event?

• What is a message?

Happens-before relationship

• Captures logical (causal) dependencies between
events

• Within a thread, P1 before P2 means P1 -> P2

• if a = send(M) and b = recv(M), a -> b

• transitivity: if a -> b and b -> c then a -> c

What does -> mean?

What does -> mean?
• a -> b means “b could have been influenced by a”

What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?

What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?

• What does it mean, then? Events are concurrent

What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?

• What does it mean, then? Events are concurrent

• What does it mean for events to be concurrent?

What does -> mean?
• a -> b means “b could have been influenced by a”

• What about a -/-> b? Does that mean b -> a?

• What does it mean, then? Events are concurrent

• What does it mean for events to be concurrent?

• Key insight: no one can tell whether a or b
happened first!

Abstract logical clocks
• Goal: if a -> b, then C(a) < C(b)

• Clock conditions:

• if a and b are on the same process i,  
Ci(a) < Ci(b)

• if a = process i sends M, and  
b = process j receives m 
Ci(a) < Cj(b)

(One) Algorithm

• Each process i increments counter Ci between two
local events

• When i sends a message m, it includes a
timestamp Tm = (Ci at the time message was sent)

• On receiving m, process j updates its clock:  
Cj = max(Cj, Tm + 1) + 1

1 1 1

23

3

3
4
5

7

8

6
7

88

What does this mean?

What does this mean?
• If a -> b, then C(a) < C(b)

What does this mean?
• If a -> b, then C(a) < C(b)

• Is the converse true: if C(a) < C(b) then a -> b?

What does this mean?
• If a -> b, then C(a) < C(b)

• Is the converse true: if C(a) < C(b) then a -> b?

• no, they could also be concurrent

What does this mean?
• If a -> b, then C(a) < C(b)

• Is the converse true: if C(a) < C(b) then a -> b?

• no, they could also be concurrent

• if we were to use the Lamport clock as a global
order, we would induce some unnecessary
ordering constraints

Could we build a better
logical clock?

Could we build a better
logical clock?

• One where the converse is true,  
C(a) < C(b) => a -> b

Could we build a better
logical clock?

• One where the converse is true,  
C(a) < C(b) => a -> b

• Note that there must still be concurrent events:  
sometimes neither C(a) < C(b) or C(b) < C(a)

Could we build a better
logical clock?

• One where the converse is true,  
C(a) < C(b) => a -> b

• Note that there must still be concurrent events:  
sometimes neither C(a) < C(b) or C(b) < C(a)

• Strawman: keep a dependency list,  
i.e. a list of all previous events

Could we build a better
logical clock?

• One where the converse is true,  
C(a) < C(b) => a -> b

• Note that there must still be concurrent events:  
sometimes neither C(a) < C(b) or C(b) < C(a)

• Strawman: keep a dependency list,  
i.e. a list of all previous events

• Better answer: vector clocks (later!)

Snapshots

Motivating Example:
PageRank

• Long-running computation on thousands of servers

• each server holds some subset of webpages

• each page starts out with some reputation

• each iteration: transfer some of a page’s
reputation to the pages it links to

• What do we do if a server crashes?

Suppose we want to take a snapshot
for fault tolerance.

How often would we need to snapshot
each machine?

Consistent Snapshots
• We want processes to record their snapshots at “about the

same time”

• If a process’s checkpoint reflects receiving message m, then
the sending process’s checkpoint should reflect sending it

• or if a channel’s checkpoint contains a message

• If a process’s checkpoint reflects sending a message, the
message needs to be reflected in the receiver’s or channel’s
checkpoint

• i.e., can’t lose messages

Put another way:

• Process checkpoints are logically concurrent

• i.e., no process checkpoint happens-before
another!

• alternatively:  
if a -> b, and b is in some checkpoint, so is a

Chandy-Lamport algorithm
• Assumptions

• finite set of processes and channels
• strongly connected graph between processes
• channels are infinite buffers, 

error-free,  
in-order delivery,  
finite delay

• processes are deterministic

• Why do we need each of these?

The Algorithm
• Start: some process sends itself a “take snapshot” token

• When i receives a token from j:
• i checkpoints its process state
• i sends token on all outgoing channels
• i records that channel from j is empty
• i starts recording messages on other channels  

until receiving a token on that channel

• Done when every process has received a token  
on every channel

Why does this work?

Why does this work?

• Tokens separate logical time into  
“before the snapshot” from “after the snapshot”

• if process i records state that includes receiving a
message from j 
then j’s state includes sending that message

Discussion

• Is this the best way to snapshot systems?

• Can we use this technique for other purposes?

State Machine Replication 

(Chain Replication & Lab 2)

How do we build a system
that tolerates server failures?
• Replication!

• Goal: tolerate up to f server failures  
by using (at least) f+1 copies

• Goal: look just like one copy to the client

• Challenge: coordinating operations so they are
applied to all replicas with the same result

State Machine Replication
• Incredibly powerful abstraction

• Idea: model the system as a state machine

• service maintains some amount of state

• transition function: (input, state) -> new state

• output function: (input, state) -> output

• i.e., system state/output entirely determined by input
sequence

Key idea: 
If the system is a state machine,

keeping the replicas consistent means
agreeing on the order of operations

Are all real systems  
state machines?

Are all real systems  
state machines?

• Needs to be deterministic

• what about clocks? randomness?

• parallel execution within a single machine
(multicore)

• Need to be careful to capture all inputs?

Ordering operations
• Goal: achieve a consistent order of operations  

on all replicas

• What does “consistent” mean here?

• Single-copy serializability: it appears to all clients as though
operations were executed sequentially on a single machine

• i.e, total order of operations doesn’t change

• Strict serializability (linearizability): adds real time req:  
if a finishes before b starts, a is ordered before b

State machine replication

• Many ways to achieve this:

• Primary copy approaches

• chain replication is one example

• Lab 2 is a simplified version

• Quorum approaches, e.g. Paxos (two weeks)

Primary Copy Replication
• Key idea: have a designated primary that  

assigns order to requests

• All replicas execute requests in primary’s order

• Client sees results consistent with that order

• Client doesn’t see results until executed by “enough”
replicas (here, all f+1)

• When primary fails, replace it — but make sure the new
primary respects the order of all successful operations 
(this is the hard part!)

Chain Replication Assumptions

Chain Replication Assumptions

• f+1 nodes to tolerate f failures

• nodes fail only by crashing, and crashes are
detected

• fault-tolerant master service keeps track of system
membership

• operations are read or write

Chain Replication

Normal Case Processing

• Updates sent to head, propagated down chain,
response comes from tail

• Key invariant: each node has seen a superset of
operations seen by all following nodes in the chain

• What is the commit point of an operation?

Failures in the Chain
• What happens if the tail fails?

• What happens if the head fails?

• What happens if a node in the middle fails?

• What happens if we add a node?

• What happens if the master fails?

Performance
• Alternative: primary sends to all other replicas in

parallel, waits for responses

• could use f+1 replicas and wait for responses from all,  
or 2f+1 and wait for responses from majority

• Throughput: chain replication best (2 msgs per node)

• Latency: chain replication worst  
- need to execute at every replica in sequence  
- need to wait for slowest replica

Lab 2

• Simplified version of chain replication:  
chain always two nodes (primary & backup)

• Part A: implement the view service (master)

• Part B: implement a primary/backup  
key-value store

View Service Behavior
• What state does the master need?

• list of alive replicas, last ping time
• view number, primary and backup for that view

• View transitions
• initial state -> make some node primary in view 1
• primary, no backup -> add a backup
• primary, backup -> backup fails
• primary, backup -> primary fails, replace with backup

View Service Behavior

• Servers periodically ping master
• n missed pings => server dead
• 1 successful ping => server alive
• primary dead => promote backup
• no backup, some live server => add it as backup

Primary/Backup
• Need to ensure that the new primary has up-to-date

state

• Only promote previous backup (not an idle server)

• What if the previous backup didn’t have time to get
the state from the old master?
• primary must acknowledge new view to view server
• if it doesn’t, can’t move to a new view  

even if the primary fails!

Multiple Primaries
• Can more than one replica think it’s the primary?

• How do we keep other replicas from acting as the
primary?

• Operations need to be forwarded to the backup to
succeed

• Backup will always be the primary in the next view,
so it rejects forwarded ops from the old primary

