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Today
• Security: 

what if parts of your distributed system are 
malicious? 

• BFT: state machine replication 

• Bitcoin: peer-to-peer currency 

• Course wrap-up



Security

• Too broad a topic to cover here! 

• Lots of security issues in distributed systems 

• Focus on one today:  
how do we build a trusted distributed system when 
some of its components are untrusted?



Failure models
• Before: fail-stop  

nodes either execute the protocol correctly or just stop 

• Now: Byzantine failures 

• some subset of nodes are faulty 

• they can behave in any arbitrary way:  
send messages, try to trick other nodes, collude, … 

• Why this model? 

• if we can tolerate this, we can tolerate anything else:  
either malicious attacks or random failures



What can go wrong?
• Consider an unreplicated kv store: 

• A:  Append(x, "foo"); Append(x, "bar")  
B:                                   Get(x) -> "foo bar" 
C:                                   Get(x) -> "foo bar” 

• What can a malicious server do? 
• return something totally unrelated 
• reorder the append operations (“bar foo”) 
• only process one of the appends 
• show B and C different results



What about Paxos?
• Paxos tolerates up to f out of 2f+1 fail-stop failures 

• What could a malicious replica do? 
•      stop processing requests (but Paxos should handle this!) 
•      change the value of a key 
•      acknowledge an operation then discard it  
•      execute and log a different operation 
•      tell some replicas that seq 42 is Put and others that it's Get 
•      get different replicas into different views 
•      force view changes to keep the system from making progress



BFT replication

• Same replicated state machine model as Paxos/VR 

• assume 2f+1 out of 3f+1 replicas are non-faulty 

• use voting, signatures to select the right results



BFT model
• attacker controls f replicas 

• can make them do anything 
• knows their crypto keys, can send messages 

• attacker knows what protocol the other replicas are 
running 

• attacker can delay messages in the network arbitrarily 
• but the attacker can't 

• cause more than f replicas to fail 
• cause clients to misbehave break crypto



Why is BFT consensus hard?

• and why do we need 3f+1 replicas?



Paxos Quorums
• Why did Paxos need 2f+1 replicas to tolerate f failures? 

• Every operation needs to talk w/ a majority (f+1)  
 
 
 
 
 
 
 

request

OK

• f of those nodes 
might fail 

• need one left 

• quorums intersectX



• What if we tried to tolerate Byzantine failures with  
2f+1 replicas? 
 
 
 
 
 
 
 

The Byzantine case

put(X, 1)

OK

X=1
X=0

get(X)

X=0 X=0
X=1

X=0
X=0



Quorums
• In Paxos: quorums of f+1 out of 2f+1 nodes 

• quorum intersection:  
any two quorums intersect at at least one node 

• For BFT: quorums of 2f+1 out of 3f+1 nodes 

• quorum majority  
any two quorums intersect at a majority of nodes 
=>  
any two quorums intersect at at least one good node



Are quorums enough?
put(X,1)

X=0 X=1 X=1 X=0



Are quorums enough?
• We saw this problem before with Paxos: 

just writing to a quorum wasn’t enough 

• Solution, in Paxos terms: 
• use a two-phase protocol: propose, then accept 

• Solution, in VR terms: 
• designate one replica as the primary, have it determine 

request order 
• primary proposes operation, waits for quorum 

(prepare / prepareOK    = Paxos’s accept/acceptOK) 



BFT approach
• Use a primary to order requests 

• But the primary might be faulty 

• could send wrong result to client 

• could ignore client request entirely 

• could send different op to different replicas  
(this is the really hard case!)



BFT approach
• All replicas send replies directly to client 

• Replicas exchange information about ops received 
from primary 
(to make sure the primary isn’t equivocating) 

• Clients notify all replicas of ops, not just primary;  
if no progress, they replace primary 

• All messages cryptographically signed



Starting point: VR

• What’s the problem with using this?  

• primary might send different op order to replicas



Next try
• Client sends request to primary & other replicas 

• Primary assigns seq number, sends  
PRE-PREPARE(seq, op) to all replicas 

• When replica receives PRE-PREPARE, sends 
PREPARE(seq, op) to others 

• Once a replica receives 2f+1 matching 
PREPARES, execute the request



• Can a faulty non-primary replica prevent progress? 

• Can a faulty primary cause a problem that won’t be detected? 

• What if it sends ops in a different order to different replicas?



Faulty primary
• What if the primary sends different ops to different replicas? 

• case 1: all good nodes get 2f+1 matching prepares 

• they must have gotten the same op 

• case 2: >= f+1 good nodes get 2f+1 matching prepares 

• they must have gotten the same op 

• what about the other (f or less) good nodes? 

• case 3: < f+1 good nodes get 2f+1 matching prepares 

• system is stuck, doesn’t execute any request



View changes
• What if a replica suspects the primary of being faulty? 

e.g., heard request but not PRE-PREPARE 

• Can it start a view change on its own? 

• no - need f+1 requests 

• Who will be the next primary? 

• How do we keep a malicious node from making sure it’s 
always the next primary? 

• primary = view number mod n



Straw-man view change
• Replica suspects the primary, sends  

VIEW-CHANGE to the next primary 

• Once primary receives 2f+1 VIEW-CHANGEs,  
announces view with NEW-VIEW message 

• includes copies of the VIEW-CHANGES 

• starts numbering new operations at last seq 
number it saw + 1



What goes wrong?

• Some replica saw 2f+1 PREPAREs for op n, 
executed it 

• The new primary did not 

• New primary starts numbering new requests at n  
=> two different ops with seq num n!



Fixing view changes
• Need another round in the operation protocol! 

• Not just enough to know that primary proposed op 
n, need to make sure that the next primary will hear 
about it 

• After receiving 2f+1 PREPAREs, replicas send 
COMMIT message to let the others know 

• Only execute requests after receiving 2f+1 
COMMITs



The final protocol
• client sends op to primary 

• primary sends PRE-PREPARE(seq, op) to all 

• all send PREPARE(seq, op) to all 

• after replica receives 2f+1 matching PREPARE(seq, 
op), 
send COMMIT(seq, op) to all 

• after receiving 2f+1 matching COMMIT(seq, op), 
execute op, reply to client



The final protocol



BFT vs VR/Paxos
• BFT: 4 phases 

• PRE-PREPARE - primary 
determines request order 

• PREPARE - replicas make 
sure primary told them same 
order 

• COMMIT - replicas ensure 
that a quorum knows about 
the order 

• execute and reply

• VR: 3 phases 

• PREPARE - primary 
determines request order 

• PREPARE-OK - replicas 
ensure that a quorum knows 
about the order 

• execute and reply



BFT vs VR/Paxos



What did this buy us?
• Before, we could only tolerate fail-stop failures with 

replication 

• Now we can tolerate any failure, benign or 
malicious 

• as long as it only affects less than 1/3 replicas 

• (what if more than 1/3 replicas are faulty?)



BFT Impact

• This is a powerful algorithm 

• As far as I know, it is not yet being used in industry 

• Why?



Performance

• Why would we expect BFT to be slow? 

• latency (extra round) 

• message complexity (O(n2) communication) 

• crypto ops are slow!



Benchmarks
• PBFT paper says they implemented a NFS file 

server, got ~3% overhead 

• But: NFS server writes to disk synchronously,  
PBFT only does replication 
     (is this ok? fair?) 

• Andrew benchmark w/ single client  
=> only measures increased latency, not cost of crypto



Implementation Complexity

[J. Mickens, “The Saddest Moment”, 2013]



Implementation Complexity

• Building a bug-free Paxos is hard! 

• BFT is much more complicated 

• Which is more likely? 

• bugs caused by the BFT implementation 

• the bugs that BFT is meant to avoid



BFT summary

• It’s possible to build systems that work correctly 
even though parts may be malicious! 

• Requires a lot of complex and expensive 
mechanisms 

• On the boundary of practicality?



Bitcoin
• Goal: have an online currency with the properties we 

like about cash 

• portable 

• can’t spend twice 

• can’t repudiate after payment 

• no trusted third party 

• anonymous



Why not credit cards?

• (or paypal, etc) 

• needs a trusted third party which can 

• track your purchases 

• prohibit some actions



Bitcoin
• e-currency without a trusted central party 

• What’s hard technically? 

• forgery 

• double-spending 

• theft



Basic Bitcoin model
• a network of bitcoin servers (peers) run by volunteers 

• not trusted; some may be corrupt! 

• Each server knows about all bitcoins and transactions 

• Transaction (sender —> receiver) 

• sender sends transaction info to some peers 

• peers flood to other peers 

• receiver checks that lots of peers have seen transaction 

• receiver checks for double-spending



Transaction chains
• Every bitcoin has a chain of transaction records 

• one for each time it’s been transferred 

• Each record contains 

• public key of new owner  

• hash of this bitcoin’s previous transaction record 

• signed by private key of old owner 

• (in reality: also fractional amounts, multiple recipients, …)



Example
• Bob has a bitcoin received from Alice in T7 

• T7: pub(Bob), hash(T6), sig(Alice) 

• wants to buy a hamburger from Charlie 

• gets his public key 

• creates T8: pub(Charlie), hash(T7), sig(Bob) 

• sends transaction to Bitcoin peers to store 

• Charlie verifies that the network has accepted T8,  
gives Bob the hamburger



Stealing
• Does this approach prevent stealing someone 

else’s bitcoins? 

• Need a user’s private key to spend a coin 

• Challenge: what if an attacker steals Bob’s private 
key? 

• significant problem in practice!



Double-Spending
• Does this design so far prevent double-spending? 

• What keeps Bob from creating two different 
transactions spending the same bitcoin? 

• Need to make sure the bitcoin peers properly verify a 
transaction: 

• T8’s signature matches T7’s pub key 

• there was no prior transaction that mentioned 
hash(T7)



Verifying the transaction 
chain

• Need to ensure that every client sees a consistent 
set of operations 

• everyone agrees on which transactions 
happened and in what order 

• Could achieve with a central server maintaining a 
log, but we wanted to avoid that!



Can we use BFT?

• In theory, yes, but… 

• BFT does not scale to large numbers of replicas! 

• Can we ensure that malicious nodes make up less 
than 1/3rd of the replicas?



Sybil attacks
• You can have as many identities as you want on the 

internet! 

• So an attacker could run many replicas, overwhelm 
the honest nodes  
(limited only by network bandwidth, etc) 

• How does BFT deal with this problem? 

• How does Bitcoin deal with this problem?



The blockchain

• Full copy of all transactions stored in each peer 

• Each block:  
hash(previousblock), set of transactions, nonce 

• Hash chain implies order of blocks 

• A transaction isn’t real until it’s in the blockchain



Extending the blockchain
• How do peers add to the blockchain? 

• All the peers look at the longest chain of blocks, 
try to create a new block extending the previous block 

• Requirement: hash(new block) < target 

• peers must find a nonce value that works by brute force 

• requires months of CPU time, but thousands of peers 
are working on it => new block every 10 minutes 

• when new block created, announce it to all peers



Proof of work
• Why do peers have to work to find correct nonces? 

• This solves the sybil attack problem  
without a central authority or admission control 

• BFT required less than 1/3 replicas faulty 

• Bitcoin requires less than 1/2 the CPU power  
controlled by faulty replicas  
(actually, some attacks possible if 1/3 faulty)



Double-spending
• Start with blockchain …->B6 

• Bob creates transaction B->C, gets it into 
blockchain 
  … -> B6 -> B7, where B7 contains B->C 

• so Charlie gives him a hamburger 

• Can Bob create another block Bx and get peers  
to accept chain   … -> B6 -> Bx instead?



Double-spending
• When will a peer accept a new chain it hears about? 

• When it’s longer than all other chains it’s seen 

• So an attacker needs to produce a longer chain to 
double-spend 

• needs to create B6->Bx->B8, longer than B6->B7 
• and needs to do that before the rest of the network 

creates a new block (10 minutes) 

• so the attacker needs to have more CPU power than 
the rest of the network



Bitcoin summary
• Building a peer-to-peer currency involves lots of 

technical problems: 
preventing theft, double-spending, forgery even 
though some participants may be malicious 

• Using CPU proof-of-work instead of BFT-like 
protocol avoids Sybil attacks 

• Also lots of non-technical problems:  
why does it have value, legality?



Wrapup

• What have we learned?



From the first lecture:

But it’s easy to make a distributed system that’s 
less scalable and less reliable than a 

centralized one!

We want to build distributed systems to be 
more scalable, and more reliable.



Distributed Systems 
Challenges

• Managing communication 

• Tolerating partial failures 

• Keeping data consistent 
despite many copies and massive concurrency 

• Scale and performance requirements 

• Malicious behavior 

• Testing



We’ve seen a variety of tools for 
addressing these challenges

• Managing communication: RPC and DSM 

• Tolerating failures:  
Paxos, VR, Chain Replication, NOPaxos 

• Keeping data consistent:  
replication, transactions, cache coherency 

• Scale and performance:  
partitioning, caching, consistent hashing 

• Security: BFT 

• Testing: model checking and verification



We’ve seen how these are 
used in various real systems

• The Google storage stack: 
GFS, Chubby, Bigtable, Megastore, Spanner 

• Weak consistency systems:  
Amazon’s Dynamo, COPS 

• Data analytics:  
MapReduce, GraphLab, Spark



We’ve built systems that 
solve these problems

• Fault-tolerant MapReduce (Lab 1) 

• Fault tolerant state through Paxos/replication (Lab 
2/3) 

• Scalability through sharding (Lab 4) 

• Building a replicated sharded key-value store  
is a major accomplishment!



• Lesson: know when to use these 
design patterns to solve distributed 
systems challenges 
 

• Many of the systems we looked at use: 
RPC, state machine replication, Paxos, transactions… 

• Reuse these algorithms even if not code



• Lesson: know when to avoid solving hard 
problems you don’t need to 
 

• Example: MapReduce loses data on certain failures;  
GFS uses a centralized, in-memory master



• Lesson: recognize and avoid trying to 
solve impossible problems 
 

• Example: can’t guarantee consistency and perfect 
availability and low latency in all cases, so use 
eventual consistency when this matters (Dynamo) 

• Example: can’t make failures completely transparent 
with RPC



Distributed Systems are Exciting!

• Some of the hardest challenges we face in CS 

• Some of the most powerful things we can build 

• systems that span the world,  
serve millions of users,  
and are always up


