
Security 
(and finale)

Dan Ports, CSEP 552

Today
• Security: 

what if parts of your distributed system are
malicious?

• BFT: state machine replication

• Bitcoin: peer-to-peer currency

• Course wrap-up

Security

• Too broad a topic to cover here!

• Lots of security issues in distributed systems

• Focus on one today:  
how do we build a trusted distributed system when
some of its components are untrusted?

Failure models
• Before: fail-stop  

nodes either execute the protocol correctly or just stop

• Now: Byzantine failures

• some subset of nodes are faulty

• they can behave in any arbitrary way:  
send messages, try to trick other nodes, collude, …

• Why this model?

• if we can tolerate this, we can tolerate anything else:  
either malicious attacks or random failures

What can go wrong?
• Consider an unreplicated kv store:

• A: Append(x, "foo"); Append(x, "bar")  
B: Get(x) -> "foo bar" 
C: Get(x) -> "foo bar”

• What can a malicious server do?
• return something totally unrelated
• reorder the append operations (“bar foo”)
• only process one of the appends
• show B and C different results

What about Paxos?
• Paxos tolerates up to f out of 2f+1 fail-stop failures

• What could a malicious replica do?
• stop processing requests (but Paxos should handle this!)
• change the value of a key
• acknowledge an operation then discard it
• execute and log a different operation
• tell some replicas that seq 42 is Put and others that it's Get
• get different replicas into different views
• force view changes to keep the system from making progress

BFT replication

• Same replicated state machine model as Paxos/VR

• assume 2f+1 out of 3f+1 replicas are non-faulty

• use voting, signatures to select the right results

BFT model
• attacker controls f replicas

• can make them do anything
• knows their crypto keys, can send messages

• attacker knows what protocol the other replicas are
running

• attacker can delay messages in the network arbitrarily
• but the attacker can't

• cause more than f replicas to fail
• cause clients to misbehave break crypto

Why is BFT consensus hard?

• and why do we need 3f+1 replicas?

Paxos Quorums
• Why did Paxos need 2f+1 replicas to tolerate f failures?

• Every operation needs to talk w/ a majority (f+1)  
 
 
 
 
 
 
 

request

OK

• f of those nodes 
might fail

• need one left

• quorums intersectX

• What if we tried to tolerate Byzantine failures with  
2f+1 replicas? 
 
 
 
 
 
 
 

The Byzantine case

put(X, 1)

OK

X=1
X=0

get(X)

X=0 X=0
X=1

X=0
X=0

Quorums
• In Paxos: quorums of f+1 out of 2f+1 nodes

• quorum intersection:  
any two quorums intersect at at least one node

• For BFT: quorums of 2f+1 out of 3f+1 nodes

• quorum majority  
any two quorums intersect at a majority of nodes 
=>  
any two quorums intersect at at least one good node

Are quorums enough?
put(X,1)

X=0 X=1 X=1 X=0

Are quorums enough?
• We saw this problem before with Paxos: 

just writing to a quorum wasn’t enough

• Solution, in Paxos terms:
• use a two-phase protocol: propose, then accept

• Solution, in VR terms:
• designate one replica as the primary, have it determine

request order
• primary proposes operation, waits for quorum 

(prepare / prepareOK = Paxos’s accept/acceptOK)

BFT approach
• Use a primary to order requests

• But the primary might be faulty

• could send wrong result to client

• could ignore client request entirely

• could send different op to different replicas  
(this is the really hard case!)

BFT approach
• All replicas send replies directly to client

• Replicas exchange information about ops received
from primary 
(to make sure the primary isn’t equivocating)

• Clients notify all replicas of ops, not just primary;  
if no progress, they replace primary

• All messages cryptographically signed

Starting point: VR

• What’s the problem with using this?

• primary might send different op order to replicas

Next try
• Client sends request to primary & other replicas

• Primary assigns seq number, sends  
PRE-PREPARE(seq, op) to all replicas

• When replica receives PRE-PREPARE, sends
PREPARE(seq, op) to others

• Once a replica receives 2f+1 matching
PREPARES, execute the request

• Can a faulty non-primary replica prevent progress?

• Can a faulty primary cause a problem that won’t be detected?

• What if it sends ops in a different order to different replicas?

Faulty primary
• What if the primary sends different ops to different replicas?

• case 1: all good nodes get 2f+1 matching prepares

• they must have gotten the same op

• case 2: >= f+1 good nodes get 2f+1 matching prepares

• they must have gotten the same op

• what about the other (f or less) good nodes?

• case 3: < f+1 good nodes get 2f+1 matching prepares

• system is stuck, doesn’t execute any request

View changes
• What if a replica suspects the primary of being faulty? 

e.g., heard request but not PRE-PREPARE

• Can it start a view change on its own?

• no - need f+1 requests

• Who will be the next primary?

• How do we keep a malicious node from making sure it’s
always the next primary?

• primary = view number mod n

Straw-man view change
• Replica suspects the primary, sends  

VIEW-CHANGE to the next primary

• Once primary receives 2f+1 VIEW-CHANGEs,  
announces view with NEW-VIEW message

• includes copies of the VIEW-CHANGES

• starts numbering new operations at last seq
number it saw + 1

What goes wrong?

• Some replica saw 2f+1 PREPAREs for op n,
executed it

• The new primary did not

• New primary starts numbering new requests at n  
=> two different ops with seq num n!

Fixing view changes
• Need another round in the operation protocol!

• Not just enough to know that primary proposed op
n, need to make sure that the next primary will hear
about it

• After receiving 2f+1 PREPAREs, replicas send
COMMIT message to let the others know

• Only execute requests after receiving 2f+1
COMMITs

The final protocol
• client sends op to primary

• primary sends PRE-PREPARE(seq, op) to all

• all send PREPARE(seq, op) to all

• after replica receives 2f+1 matching PREPARE(seq,
op), 
send COMMIT(seq, op) to all

• after receiving 2f+1 matching COMMIT(seq, op), 
execute op, reply to client

The final protocol

BFT vs VR/Paxos
• BFT: 4 phases

• PRE-PREPARE - primary
determines request order

• PREPARE - replicas make
sure primary told them same
order

• COMMIT - replicas ensure
that a quorum knows about
the order

• execute and reply

• VR: 3 phases

• PREPARE - primary
determines request order

• PREPARE-OK - replicas
ensure that a quorum knows
about the order

• execute and reply

BFT vs VR/Paxos

What did this buy us?
• Before, we could only tolerate fail-stop failures with

replication

• Now we can tolerate any failure, benign or
malicious

• as long as it only affects less than 1/3 replicas

• (what if more than 1/3 replicas are faulty?)

BFT Impact

• This is a powerful algorithm

• As far as I know, it is not yet being used in industry

• Why?

Performance

• Why would we expect BFT to be slow?

• latency (extra round)

• message complexity (O(n2) communication)

• crypto ops are slow!

Benchmarks
• PBFT paper says they implemented a NFS file

server, got ~3% overhead

• But: NFS server writes to disk synchronously,  
PBFT only does replication 
 (is this ok? fair?)

• Andrew benchmark w/ single client  
=> only measures increased latency, not cost of crypto

Implementation Complexity

[J. Mickens, “The Saddest Moment”, 2013]

Implementation Complexity

• Building a bug-free Paxos is hard!

• BFT is much more complicated

• Which is more likely?

• bugs caused by the BFT implementation

• the bugs that BFT is meant to avoid

BFT summary

• It’s possible to build systems that work correctly
even though parts may be malicious!

• Requires a lot of complex and expensive
mechanisms

• On the boundary of practicality?

Bitcoin
• Goal: have an online currency with the properties we

like about cash

• portable

• can’t spend twice

• can’t repudiate after payment

• no trusted third party

• anonymous

Why not credit cards?

• (or paypal, etc)

• needs a trusted third party which can

• track your purchases

• prohibit some actions

Bitcoin
• e-currency without a trusted central party

• What’s hard technically?

• forgery

• double-spending

• theft

Basic Bitcoin model
• a network of bitcoin servers (peers) run by volunteers

• not trusted; some may be corrupt!

• Each server knows about all bitcoins and transactions

• Transaction (sender —> receiver)

• sender sends transaction info to some peers

• peers flood to other peers

• receiver checks that lots of peers have seen transaction

• receiver checks for double-spending

Transaction chains
• Every bitcoin has a chain of transaction records

• one for each time it’s been transferred

• Each record contains

• public key of new owner

• hash of this bitcoin’s previous transaction record

• signed by private key of old owner

• (in reality: also fractional amounts, multiple recipients, …)

Example
• Bob has a bitcoin received from Alice in T7

• T7: pub(Bob), hash(T6), sig(Alice)

• wants to buy a hamburger from Charlie

• gets his public key

• creates T8: pub(Charlie), hash(T7), sig(Bob)

• sends transaction to Bitcoin peers to store

• Charlie verifies that the network has accepted T8,  
gives Bob the hamburger

Stealing
• Does this approach prevent stealing someone

else’s bitcoins?

• Need a user’s private key to spend a coin

• Challenge: what if an attacker steals Bob’s private
key?

• significant problem in practice!

Double-Spending
• Does this design so far prevent double-spending?

• What keeps Bob from creating two different
transactions spending the same bitcoin?

• Need to make sure the bitcoin peers properly verify a
transaction:

• T8’s signature matches T7’s pub key

• there was no prior transaction that mentioned
hash(T7)

Verifying the transaction
chain

• Need to ensure that every client sees a consistent
set of operations

• everyone agrees on which transactions
happened and in what order

• Could achieve with a central server maintaining a
log, but we wanted to avoid that!

Can we use BFT?

• In theory, yes, but…

• BFT does not scale to large numbers of replicas!

• Can we ensure that malicious nodes make up less
than 1/3rd of the replicas?

Sybil attacks
• You can have as many identities as you want on the

internet!

• So an attacker could run many replicas, overwhelm
the honest nodes  
(limited only by network bandwidth, etc)

• How does BFT deal with this problem?

• How does Bitcoin deal with this problem?

The blockchain

• Full copy of all transactions stored in each peer

• Each block:  
hash(previousblock), set of transactions, nonce

• Hash chain implies order of blocks

• A transaction isn’t real until it’s in the blockchain

Extending the blockchain
• How do peers add to the blockchain?

• All the peers look at the longest chain of blocks, 
try to create a new block extending the previous block

• Requirement: hash(new block) < target

• peers must find a nonce value that works by brute force

• requires months of CPU time, but thousands of peers
are working on it => new block every 10 minutes

• when new block created, announce it to all peers

Proof of work
• Why do peers have to work to find correct nonces?

• This solves the sybil attack problem  
without a central authority or admission control

• BFT required less than 1/3 replicas faulty

• Bitcoin requires less than 1/2 the CPU power  
controlled by faulty replicas  
(actually, some attacks possible if 1/3 faulty)

Double-spending
• Start with blockchain …->B6

• Bob creates transaction B->C, gets it into
blockchain 
 … -> B6 -> B7, where B7 contains B->C

• so Charlie gives him a hamburger

• Can Bob create another block Bx and get peers  
to accept chain … -> B6 -> Bx instead?

Double-spending
• When will a peer accept a new chain it hears about?

• When it’s longer than all other chains it’s seen

• So an attacker needs to produce a longer chain to
double-spend

• needs to create B6->Bx->B8, longer than B6->B7
• and needs to do that before the rest of the network

creates a new block (10 minutes)

• so the attacker needs to have more CPU power than
the rest of the network

Bitcoin summary
• Building a peer-to-peer currency involves lots of

technical problems: 
preventing theft, double-spending, forgery even
though some participants may be malicious

• Using CPU proof-of-work instead of BFT-like
protocol avoids Sybil attacks

• Also lots of non-technical problems:  
why does it have value, legality?

Wrapup

• What have we learned?

From the first lecture:

But it’s easy to make a distributed system that’s
less scalable and less reliable than a

centralized one!

We want to build distributed systems to be
more scalable, and more reliable.

Distributed Systems
Challenges

• Managing communication

• Tolerating partial failures

• Keeping data consistent 
despite many copies and massive concurrency

• Scale and performance requirements

• Malicious behavior

• Testing

We’ve seen a variety of tools for
addressing these challenges

• Managing communication: RPC and DSM

• Tolerating failures:  
Paxos, VR, Chain Replication, NOPaxos

• Keeping data consistent:  
replication, transactions, cache coherency

• Scale and performance:  
partitioning, caching, consistent hashing

• Security: BFT

• Testing: model checking and verification

We’ve seen how these are
used in various real systems

• The Google storage stack: 
GFS, Chubby, Bigtable, Megastore, Spanner

• Weak consistency systems:  
Amazon’s Dynamo, COPS

• Data analytics:  
MapReduce, GraphLab, Spark

We’ve built systems that
solve these problems

• Fault-tolerant MapReduce (Lab 1)

• Fault tolerant state through Paxos/replication (Lab
2/3)

• Scalability through sharding (Lab 4)

• Building a replicated sharded key-value store  
is a major accomplishment!

• Lesson: know when to use these
design patterns to solve distributed
systems challenges 
 

• Many of the systems we looked at use: 
RPC, state machine replication, Paxos, transactions…

• Reuse these algorithms even if not code

• Lesson: know when to avoid solving hard
problems you don’t need to 
 

• Example: MapReduce loses data on certain failures;  
GFS uses a centralized, in-memory master

• Lesson: recognize and avoid trying to
solve impossible problems 
 

• Example: can’t guarantee consistency and perfect
availability and low latency in all cases, so use
eventual consistency when this matters (Dynamo)

• Example: can’t make failures completely transparent
with RPC

Distributed Systems are Exciting!

• Some of the hardest challenges we face in CS

• Some of the most powerful things we can build

• systems that span the world,  
serve millions of users,  
and are always up

