
Designing Distributed Systems Using
Approximate Synchrony in Data Center Networks

Dan R. K. Ports Jialin Li Vincent Liu Naveen Kr. Sharma Arvind Krishnamurthy
University of Washington

{drkp,lijl,vincent,naveenks,arvind}@cs.washington.edu

Abstract
Distributed systems are traditionally designed indepen-
dently from the underlying network, making worst-case
assumptions (e.g., complete asynchrony) about its behav-
ior. However, many of today’s distributed applications are
deployed in data centers, where the network is more re-
liable, predictable, and extensible. In these environments,
it is possible to co-design distributed systems with their
network layer, and doing so can offer substantial benefits.

This paper explores network-level mechanisms for pro-
viding Mostly-Ordered Multicast (MOM): a best-effort
ordering property for concurrent multicast operations. Us-
ing this primitive, we design Speculative Paxos, a state
machine replication protocol that relies on the network to
order requests in the normal case. This approach leads to
substantial performance benefits: under realistic data cen-
ter conditions, Speculative Paxos can provide 40% lower
latency and 2.6× higher throughput than the standard
Paxos protocol. It offers lower latency than a latency-
optimized protocol (Fast Paxos) with the same throughput
as a throughput-optimized protocol (batching).

1 Introduction
Most distributed systems are designed independently from
the underlying network. For example, distributed algo-
rithms are typically designed assuming an asynchronous
network, where messages may be arbitrarily delayed,
dropped, or reordered in transit. In order to avoid making
assumptions about the network, designers are in effect
making worst-case assumptions about it.

Such an approach is well-suited for the Internet, where
little is known about the network: one cannot predict what
paths messages might take or what might happen to them
along the way. However, many of today’s applications are
distributed systems that are deployed in data centers. Data
center networks have a number of desirable properties
that distinguish them from the Internet:

• Data center networks are more predictable. They are
designed using structured topologies [8,15,33], which
makes it easier to understand packet routes and ex-
pected latencies.

• Data center networks are more reliable. Congestion
losses can be made unlikely using features such as
Quality of Service and Data Center Bridging [18].

• Data center networks are more extensible. They are
part of a single administrative domain. Combined with
new flexibility provided by modern technologies like
software-defined networking, this makes it possible to
deploy new types of in-network processing or routing.

These differences have the potential to change the way
distributed systems are designed. It is now possible to
co-design distributed systems and the network they use,
building systems that rely on stronger guarantees avail-
able in the network and deploying new network-level
primitives that benefit higher layers.

In this paper, we explore the benefits of co-designing in
the context of state machine replication—a performance-
critical component at the heart of many critical data center
services. Our approach is to treat the data center as an
approximation of a synchronous network, in contrast to
the asynchronous model of the Internet. We introduce two
new mechanisms, a new network-level primitive called
Mostly-Ordered Multicast and the Speculative Paxos repli-
cation protocol, which leverages approximate synchrony
to provide higher performance in data centers.

The first half of our approach is to engineer the network
to provide stronger ordering guarantees. We introduce a
Mostly-Ordered Multicast primitive (MOM), which pro-
vides a best-effort guarantee that all receivers will receive
messages from different senders in a consistent order.
We develop simple but effective techniques for provid-
ing Mostly-Ordered Multicast that leverage the structured
topology of a data center network and the forwarding
flexibility provided by software-defined networking.

Building on this MOM primitive is Speculative Paxos, a
new protocol for state machine replication designed for an
environment where reordering is rare. In the normal case,
Speculative Paxos relies on MOM’s ordering guarantees
to efficiently sequence requests, allowing it to execute and
commit client operations with the minimum possible la-
tency (two message delays) and with significantly higher
throughput than Paxos. However, Speculative Paxos re-
mains correct even in the uncommon case where messages
are delivered out of order: it falls back on a reconciliation
protocol that ensures it remains safe and live with the
same guarantees as Paxos.

Our experiments demonstrate the effectiveness of this
approach. We find:

1

• Our customized network-level multicast mechanism
ensures that multicast messages can be delivered in a
consistent order with greater than 99.9% probability
in a data center environment.

• In these environments, Speculative Paxos provides
40% lower latency and 2.6× higher throughput than
leader-based Paxos.

• Speculative Paxos can provide the best of both
worlds: it offers 20% lower latency than a latency-
optimized protocol (Fast Paxos) while providing the
same throughput as a throughput-optimized protocol
(batching).

We have used Speculative Paxos to implement various
components of a transactional replicated key-value store.
Compared to other Paxos variants, Speculative Paxos al-
lows this application to commit significantly more trans-
actions within a fixed latency budget.

2 Background
Our goal is to implement more efficient replicated ser-
vices by taking advantage of features of the data center
environment. To motivate our approach, we briefly dis-
cuss existing consensus algorithms as well as the design
of typical data center networks upon which they are built.

2.1 Replication and Consensus Algorithms
Replication is widely used to provide highly available
and consistent services in data centers. For example, ser-
vices like Chubby [4] and ZooKeeper [17] provide ap-
plications with support for distributed coordination and
synchronization. Similarly, persistent storage systems like
H-Store [39], Granola [10], and Spanner [9] require mul-
tiple replicas to commit updates. This provides better
availability than using a single replica and also provides
better performance by eschewing costly synchronous disk
writes in favor of maintaining multiple copies in RAM.

Replication systems rely on a consensus protocol (e.g.,
Paxos [24, 25], Viewstamped Replication [29, 35], or
atomic broadcast [3, 19]) to ensure that operations ex-
ecute in a consistent order across replicas. In this paper,
we consider systems that provide a state machine repli-
cation interface [23, 38]. Here, a set of nodes are either
clients or replicas, which both run application code and in-
teract with each other using the replication protocol. Note
that, here, clients are application servers in the data center,
not end-users. Clients submit requests containing an oper-
ation to be executed. This begins a multi-round protocol
to ensure that replicas agree on a consistent ordering of
operations before executing the request.

As an example, consider the canonical state machine
replication protocol, leader-based Paxos. In the normal
case, when there are no failures, requests are processed
as shown in Figure 1. One of the replicas is designated as

Client

Replica
1

Replica
 2

Replica
3

request prepareok reply

exec()

prepare

commit

Figure 1: Normal-case execution of Multi-Paxos/Viewstamped
Replication

the leader, and is responsible for ordering requests; the
leader can be replaced if it fails. Clients submit requests
to the leader. The leader assigns each incoming request
a sequence number, and sends a PREPARE message to
the other replicas containing the request and sequence
number. The other replicas record the request in the log
and acknowledge with a PREPARE-OK message. Once
the leader has received responses from enough replicas, it
executes the operation and replies to the client.

Data center applications demand high performance
from replicated systems. These systems must be able
to execute operations with both high throughput and low
latency. The latter is an increasingly important factor for
modern web applications that routinely access data from
thousands of storage servers, while needing to keep the
total latency within strict bounds for interactive applica-
tions [37]. For replication protocols, throughput is typ-
ically a function of the load on a bottleneck entity, e.g.,
the leader in Figure 1, which processes a disproportion-
ate number of messages. Latency is primarily a function
of the number of message delays in the protocol—for
Paxos, four message delays from when a client submits
its request until it receives a reply.

2.2 Data Centers
Today’s data centers incorporate highly engineered net-
works to provide high availability, high throughput, low
latency, and low cost. Operators take advantage of the
following properties to tune their networks:

Centralized control. All of the infrastructure is in a
single administrative domain, making it possible for op-
erators to deploy large-scale changes. Software-defined
networking tools (e.g., OpenFlow) make it possible to
implement customized forwarding rules coordinated by a
central controller.

A structured network. Data center networks are multi-
rooted trees of switches typically organized into three lev-
els. The leaves of the tree are Top-of-Rack (ToR) switches
that connect down to many machines in a rack, with a rack
containing few tens of servers. These ToR switches are
interconnected using additional switches or routers, which
are organized into an aggregation tier in the middle and

2

a core tier at the top. Each ToR switch is connected to
multiple switches at the next level, thus providing desired
resilience in the face of link or switch failures. Racks
themselves are typically grouped into a cluster (about ten
to twenty racks) such that all connectivity within a cluster
is provided by just the bottom two levels of the network.

Within the data center, there may be many replicated
services: for example, Google’s Spanner and similar stor-
age systems use one replica group per shard, with hun-
dreds or thousands of shards in the data center. The repli-
cas in each group will be located in different racks (for
failure-independence) but may be located in the same
cluster to simplify cluster management and scheduling.
The service will receive requests from clients throughout
the data center.

Switch support for QoS. The controlled setting also
makes it possible to deploy services that can transmit cer-
tain types of messages (e.g., control messages) with higher
priority than the rest of the data center traffic. These pri-
orities are implemented by providing multiple hardware
or software output queues—one for each priority level.
When using strict priorities, the switch will always pull
from higher priority queues before lower priority queues.
The length and drop policy of each queue can be tuned to
drop lower priority traffic first and can also be tuned to
minimize latency jitter.

3 Mostly-Ordered Multicast
The consensus algorithms described in the previous sec-
tion rely heavily on the concept of ordering. Most Paxos
deployments dedicate a leader node to this purpose; ap-
proaches such as Fast Paxos [27] rely on requests to arrive
in order. We argue instead that the structured, highly-
engineered networks used in data centers can themselves
be used to order operations in the normal case. To that end,
this section explores different network-layer options for
providing a mostly-ordered multicast (MOM) mechanism.
We show that simple techniques can effectively provide
best-effort ordering in a data center.

3.1 Model
We consider multicast primitives that allow clients to com-
municate simultaneously with a group of receivers N.

In this category, the traditional totally-ordered multi-
cast provides the following property: if ni ∈ N processes
a multicast message m followed by another multicast mes-
sage m′, then any other node n j ∈ N that receives m′ must
process m before m′. Primitives like this are common
in group communication systems [3]. Ensuring that this
property holds even in the presence of failures is a prob-
lem equivalent to consensus, and would obviate the need
for application code to run protocols like Paxos at all.

Instead, we consider a relaxed version of this property,
which does not require it to hold in every case. A multicast

S2

C1 N1 N2 N3C2

S1

S3 S4 S5

Figure 2: Clients C1 and C2 communicating to a multicast group
comprising of N1, N2, and N3.

implementation is said to possess the mostly-ordered mul-
ticast property if the above ordering constraint is satisfied
with high frequency. This permits occasional ordering
violations: these occur if ni processes m followed by m′

and either (1) n j processes m after m′, or (2) n j does not
process m at all (because the message is lost).

This is an empirical property about the common-case
behavior, not a strict guarantee. As a result, MOMs can
be implemented as a best-effort network primitive. We
seek to take advantage of the properties of the data cen-
ter network previously described in order to implement
MOMs efficiently in the normal case. The property may
be violated in the event of transient network failures or
congestion, so application-level code must be able to han-
dle occasional ordering violations.

In this section, we first examine why existing multi-
cast mechanisms do not provide this property, and then
describe three techniques for implementing MOMs. Each
stems from the idea of equalizing path length between
multicast messages with a topology-aware multicast. The
second adds QoS techniques to equalize latency while
the third leverages in-network serialization to guarantee
correct ordering. In Section 3.4, we evaluate these pro-
tocols using both an implementation on an OpenFlow
switch testbed and a simulation of a datacenter-scale net-
work. We show that the first two techniques are effective
at providing MOMs with a reordering rate of∼0.01–0.1%
and the third eliminates reorderings entirely except during
network failures.

3.2 Existing Multicast is Not Ordered
We first consider existing network-layer multicast mecha-
nisms to understand why ordering violations occur.

Using IP multicast, a client can send a single multi-
cast message to the target multicast address and have it
delivered to all of the nodes. Multicast-enabled switches
will, by default, flood multicast traffic to all the ports in
a broadcast domain. Unnecessary flooding costs can be
eliminated by using IGMP, which manages the member-
ship of a multicast group.

Using a network-level multicast mechanism, packets
from different senders may be received in conflicting or-

3

ders because they traverse paths of varying lengths and
experience varying levels of congestion along different
links. For example, suppose the clients C1 and C2 in Fig-
ure 2 each send a multicast message to the multicast group
{N1,N2,N3} at times t = 0 and t = ε respectively. Let
pi→ j represent the network path traversed by the multi-
cast operation initiated by Ci to N j, and l(pi→ j) represent
its latency. In this setting, the ordering property is violated
if N1 receives m1 followed by m2 while N3 receives m2 fol-
lowed by m1, which could occur if l(p1→1)< l(p2→1)+ε

and l(p1→3) > l(p2→3) + ε . This is distinctly possible
since the paths p1→1 and p2→3 traverse just two links
each while p2→1 and p1→3 traverse four links each.

In practice, many applications do not even use network-
level multicast; they use application-level multicast mech-
anisms such as having the client send individual unicast
messages to each of the nodes in the target multicast group.
This approach, which requires no support from the net-
work architecture, has even worse ordering properties. In
addition to the path length variation seen in network-level
multicast, there is additional latency skew caused by the
messages not being sent at the same time.

3.3 Our Designs
We can improve the ordering provided by network-level
multicast by building our own multicast mechanisms.
Specifically, we present a sequence of design options that
provide successively stronger ordering guarantees.

1. Topology-aware multicast: Ensure that all multicast
messages traverse the same number of links. This
eliminates reordering due to path dilation.

2. High-priority multicast: Use topology-aware multi-
cast, but also assign high QoS priorities to multicasts.
This essentially eliminates drops due to congestion,
and also reduces reordering due to queuing delays.

3. In-network serialization: Use high-priority multicast,
but route all packets through a single root switch. This
eliminates all remaining non-failure related reorder-
ing.

The common intuition behind all of our designs is that
messages can be sent along predictable paths through the
data center network topology with low latency and high
reliability in the common case.

We have implemented these three designs using Open-
Flow [31] software-defined networking, which allows it to
be deployed on a variety of switches. OpenFlow provides
access to switch support for custom forwarding rules, mul-
ticast replication, and even header rewriting. Our designs
assume the existence of a SDN controller for ease of
configuration and failure recovery. The controller installs
appropriate rules for multicast forwarding, and updates
them when switch failures are detected.

3.3.1 Topology-Aware Multicast

In our first design, we attempt to minimize the disparity
in message latencies by assuring that the messages cor-
responding to a single multicast operation traverse the
same number of links. To achieve this, we route multicast
messages through switches that are equidistant from all
of the nodes in the target multicast group. The routes are
dependent on the scope of the multicast group.

For instance, if all multicast group members are located
within the same cluster in a three-level tree topology, the
aggregation switches of that cluster represent the nearest
set of switches that are equidistant from all members. For
datacenter-wide multicast groups, multicast messages are
routed through the root switches.

Equalizing path lengths can cause increased latency
for some recipients of each multicast message, because
messages no longer take the shortest path to each recipi-
ent. However, the maximum latency—and, in many cases,
the average latency—is not significantly impacted: in
datacenter-wide multicast groups, some messages would
have to be routed through the root switches anyway. More-
over, the cost of traversing an extra link is small in data
center networks, particularly in comparison to the Internet.
As a result, this tradeoff is a good one: Speculative Paxos
is able to take advantage of the more predictable ordering
to provide better end-to-end latency.

Addressing. Each multicast group has a single address.
In the intra-cluster case, the address shares the same prefix
as the rest of the cluster, but has a distinct prefix from
any of the ToR switches. In the datacenter-wide case, the
address should come from a subnet not used by any other
cluster.

Routing. The above addressing scheme ensures that,
with longest-prefix matching, multicast messages are
routed to the correct set of switches without any changes
to the existing routing protocols. The target switches will
each have specific rules that convert the message to a
true multicast packet and will send it downward along
any replica-facing ports. Lower switches will replicate the
multicast packet on multiple ports as necessary.

Note that in this scheme, core switches have a multicast
rule for every datacenter-wide multicast group while ag-
gregation switches have a rule for every multicast group
within its cluster. Typical switches have support for thou-
sands to tens of thousands of these multicast groups.

As an example of end-to-end routing, suppose the client
C1 in Figure 2 wishes to send a message to a three-member
multicast group that is spread across the data center. The
group’s multicast address will be of a subnet not shared
by any cluster, and thus will be routed to either S1 or S2.
Those core switches will then replicate it into three mes-
sages that are sent on each of the downward links. This
simple mechanism guarantees that all messages traverse

4

the same number of links.

Failure Recovery. When a link or switch fails, the SDN
controller will eventually detect the failure and route
around it as part of the normal failover process. In many
cases, when there is sufficient path redundancy inside the
network (as with a data center network organized into
a Clos topology [15]), this is sufficient to repair MOM
routing as well. However, in some cases—most notably
a traditional fat tree, where there is only a single path
from each root switch down to a given host—some root
switches may become unusable for certain replicas. In
these cases, the controller installs rules in the network
that “blacklist” these root switches for applicable multi-
cast groups. Note, however, that failures along upward
links in a fat tree network can be handled locally by sim-
ply redirecting MOM traffic to any working root without
involving the controller [30].

3.3.2 High-Priority Multicast

The above protocol equalizes path length and, in an un-
loaded network, significantly reduces the reordering rate
of multicast messages. However, in the presence of back-
ground traffic, different paths may have different queuing
delays. For example, suppose clients C1 and C2 in Figure 2
send multicasts m1 and m2 through S1 and S2 respectively.
The latency over these two switches might vary signifi-
cantly. If there is significant cross-traffic over the links
S1− S5 and S2− S4 but not over the links S1− S4 and
S2− S5, then N2 is likely to receive m1 followed by m2
while N3 would receive them in opposite order.

We can easily mitigate the impact of cross-traffic on la-
tency by assigning a higher priority to MOM traffic using
Quality of Service (QoS) mechanisms. Prioritizing this
traffic is possible because this traffic is typically a small
fraction of overall data center traffic volume. By assigning
MOM messages to a strict-priority hardware queue, we
can ensure that MOM traffic is always sent before other
types of traffic. This limits the queuing delays introduced
by cross-traffic to the duration of a single packet. With
10 Gbps links and 1500 byte packets, this corresponds to
a worst-case queuing delay of about 1.2 µs per link or a
total of about 2.4 µs from a core switch to a ToR switch.
Our evaluation results show that this leads to a negligible
amount of reordering under typical operating conditions.

3.3.3 In-Network Serialization

Even with QoS, currently-transmitting packets cannot be
preempted. This fact, combined with minor variations
in switch latency imply that there is still a small chance
of message reordering. For these cases, we present an
approach that uses the network itself to guarantee correct
ordering of messages in spite of cross-traffic.

Our approach is to route all multicast operations to
a given group through the same switch. This top-level

switch not only serves as a serialization point, but also
ensures that messages to a given group node traverse the
same path. As a result, it provides perfect ordering as long
as the switch delivers packets to output ports in order (we
have not observed this to be a problem, as discussed in
Section 3.4.1) and there are no failures.

Addressing/Routing. As before, we assign a single ad-
dress to each multicast group. In this design, however,
the SDN controller will unilaterally designate a root or
aggregation switch as a serialization point and install the
appropriate routes in the network. By default, we hash the
multicast addresses across the relevant target switches for
load balancing and ease of routing.

In certain network architectures, similar routing func-
tionality can also be achieved using PIM Sparse Mode
multicast [12], which routes multicast packets from all
sources through a single “rendezvous point” router.

Failure Recovery. Like the failure recovery mechanism
of Section 3.3.1, we can also rely on an SDN controller
to route around failures. If a switch no longer has a valid
path to all replicas of a multicast group or is unreachable
by a set of clients, the controller will remap the multi-
cast group’s address to a different switch that does have
a valid path. This may require the addition of routing ta-
ble entries across a handful of switches in the network.
These rules will be more specific than the default, hashed
mappings and will therefore take precedence. Downtime
due to failures is minimal: devices typically have four or
five 9’s of reliability [14] and path recovery takes a few
milliseconds [30].

We can further reduce the failure recovery time by
letting the end hosts handle failover. We can do this by
setting up n different multicast serialization points each
with their own multicast address and pre-installed rout-
ing table entries. By specifying the multicast address, the
clients thus choose which serialization point to use. A
client can failover from one designated root switch to
another immediately after it receives switch failure notifi-
cations from the fabric controller or upon encountering a
persistent communication failure to a target MOM group.
This approach requires some additional application-level
complexity and increases routing table/address usage, but
provides much faster failover than the baseline.

Load Balancing. In-network serialization is not inher-
ently load-balancing in the same way as our previous de-
signs: all multicast traffic for a particular group traverses
the same root switch. However, as described previously,
there are many replica groups, each with message load far
below the capacity of a data center core switch. Different
groups will be hashed to different serialization switches,
providing load balancing in aggregate. If necessary, the
SDN controller can explicitly specify the root switch for
particular groups to achieve better load balancing.

5

Root Layer
(Arista 7150S)

Aggr. Layer
(HP 6600)

ToR Layer
(HP 6600)

10 Gbps

1 Gbps

1 Gbps

Figure 3: Testbed configuration

3.4 Evaluation of MOMs
Can data center networks effectively provide mostly-
ordered multicast? To answer this question, we conducted
a series of experiments to determine the reorder rate of
concurrent multicast transmissions. We perform experi-
ments using a multi-switch testbed, and conduct simula-
tions to explore larger data center deployments.

3.4.1 Testbed Evaluation

We evaluate the ordering properties of our multicast mech-
anism using a testbed that emulates twelve switches in
a fat-tree configuration, as depicted in Figure 3. The
testbed emulates four Top-of-Rack switches in two clus-
ters, with two aggregation switches per cluster and four
root switches connecting the clusters. Host-ToR and ToR-
aggregation links are 1 Gbps, while aggregation-root links
are 10 Gbps. This testbed captures many essential proper-
ties of a data center network, including path length vari-
ance and the possibility for multicast packets to arrive
out of order due to multi-path effects. The testbed can de-
liver multicast messages either using native IP multicast,
topology-aware MOM, or network serialization.

The testbed is realized using VLANs on five switches.
Four HP ProCurve 6600 switches implement the ToR and
aggregation switches, and an Arista 7150S-24 10 Gbps
switch implements the root switches. All hosts are Dell
PowerEdge R610 servers with 4 6-core Intel Xeon L5640
CPUs running Ubuntu 12.04, using Broadcom BCM5709
1000BaseT adapters to connect to the ToRs.

A preliminary question is whether individual switches
will cause concurrent multicast traffic to be delivered in
conflicting orders, which could occur because of paral-
lelism in switch processing. We tested this by connecting
multiple senders and receivers to the same switch, and
verified that all receivers received multicast traffic in the
same order. We did not observe any reorderings on any of
the switches we tested, including the two models in our
testbed, even at link-saturating rates of multicast traffic.

With the testbed configured as in Figure 3, we con-
nected three senders and three receivers to the ToR
switches. The receivers record the order of arriving mul-
ticasts and compare them to compute the frequency of
ordering violations.

0%

0.001%

0.01%

0.1%

1%

10%

100%

50000 100000 150000 200000

Pa
ck

et
re

or
de

rin
g

fre
qu

en
cy

Multicast sending rate (packets/sec)

Multicast
MOMs

Network Serialization

Figure 4: Measured packet reorder rates on 12-switch testbed

In this configuration, ordering violations can occur be-
cause multicast packets traverse different paths between
switches. Figure 4 shows that this occurs frequently for
conventional IP multicast, with as many as 25% of packets
reordered. By equalizing path lengths, our topology-aware
MOM mechanism reduces the reordering frequency by 2–
3 orders of magnitude. Network serialization eliminates
reorderings entirely.

3.4.2 Simulation Results

To evaluate the effectiveness of our proposed multicast de-
signs on a larger network, we use a parallel, packet-level,
event-driven simulator. In addition to the experiments
described below, we have validated the simulator by sim-
ulating the same topology as our testbed, using measured
latency distributions for the two switch types. The simu-
lated and measured results match to within 8%.

The simulated data center network topology consists
of 2560 servers and a total of 119 switches. The switches
are configured in a three-level FatTree topology [1] with
a total oversubscription ratio of about 1:4. The core and
aggregation switches each have 16 10 Gbps ports while
the ToRs each have 8 10 Gbps ports and 40 1 Gbps ports.
Each switch has a strict-priority queue in addition to stan-
dard queues. Both queues use drop-tail behavior and a
switching latency distribution taken from our measure-
ments of the Arista 7150 switch.

In this setup, we configure end hosts to periodically
transmit MOM traffic to a multicast group of 3 nodes
where we observe the frequency of ordering violations.
In addition to MOM traffic, hosts also send background
traffic to one another. We derive the distribution of interar-
rival times and ON/OFF-period length for the background
traffic from measurements of Microsoft data centers [2].

In the experiments in Figure 5, we measure reordering
rates for the four options previously discussed: standard
multicast, topology-aware multicast (MOMs), MOMs
with QoS, and MOMs with in-network serialization.

Reordering. In Figure 5(a), we fix the MOM sending
rate to 50,000 messages per second and vary the amount
of simulated background traffic. The range equates to
about 5–30% average utilization. Note that data center
traffic is extremely bursty, so this range is typical [2]. In

6

0%

0.01%

0.1%

1%

10%

5% 10% 15% 20% 25% 30%

Pa
ck

et
 re

or
de

ri
ng

 fr
eq

ue
nc

y

Network utilization

Multicast
MOMs

MOMs + QoS
MOMs + NS

(a) Reorder rates with varying network utilization; MOM sending rate
fixed at 50,000 per second.

0%

0.01%

0.1%

1%

10%

20000 40000 60000 80000 100000

Pa
ck

et
 re

or
de

ri
ng

 fr
eq

ue
nc

y

Multicast sending rate (packets/sec)

Multicast
MOMs

MOMs + QoS
MOMs + NS

(b) Reorder rates with varying MOM throughput; background traffic
fixed at 10% average utilization.

Figure 5: Simulated packet reorder rates, in a 160-switch, three-level fat-tree network

Figure 5(b), we vary the MOM sending rate and fix the
average utilization to 10%. Results are similar for other
utilization rates.

As expected, the standard multicast approach has a
relatively high rate of packet reorderings because packets
traverse paths of varying lengths. Simply being aware
of the topology reduces the rate of reorderings by an
order of magnitude, and employing QoS prioritization
mitigates the impact of congestion caused by other traffic.
The in-network serialization approach achieves perfect
ordering: as packets are routed through a single switch,
only congestion losses could cause ordering violations.

Latency. As we previously observed, MOM can in-
crease the path length of a multicast message to the
longest path from a sender to one of the receivers. As a
result, the time until a message arrives at the first receiver
increases. However, for more than 70% of messages, the
average latency over all receivers remains unchanged.
The latency skew, i.e., the difference between maximum
and minimum delivery time to all recipients for any given
message, is in all cases under 2.5 µs for the in-network
serialization approach.

4 Speculative Paxos
Our evaluation in the previous section shows that we can
engineer a data center network to provide MOMs. How
should this capability influence our design of distributed
systems? We argue that a data center network with MOMs
can be viewed as approximately synchronous: it provides
strong ordering properties in the common case, but they
may occasionally be violated during failures.

To take advantage of this model, we introduce Spec-
ulative Paxos, a new state machine replication protocol.
Speculative Paxos relies on MOMs to be ordered in the
common case. Each replica speculatively executes re-
quests based on this order, before agreement is reached.
This speculative approach allows the protocol to run with
the minimum possible latency (two message delays) and
provides high throughput by avoiding communication be-

Client interface

• invoke(operation)→ result

Replica interface

• speculativelyExecute(seqno, operation)
→ result

• rollback(from-seqno, to-seqno,
list<operations>)

• commit(seqno)

Figure 6: Speculative Paxos library API

tween replicas on each request. When occasional ordering
violations occur, it invokes a reconciliation protocol to
rollback inconsistent operations and agree on a new state.
Thus, Speculative Paxos does not rely on MOM for cor-
rectness, only for efficiency.

4.1 Model
Speculative Paxos provides state machine replication, fol-
lowing the model in Section 2.1. In particular, it guaran-
tees linearizability [16] provided that there are no more
than f failures: operations appear as though they were ex-
ecuted in a consistent sequential order, and each operation
sees the effect of operations that completed before it. The
API of the Speculative Paxos library is shown in Figure 6.

Speculative Paxos differs from traditional state ma-
chine replication protocols in that it executes operations
speculatively at the replicas, before agreement is reached
about the ordering of requests. When the replica re-
ceives a request, the Speculative Paxos library makes
a speculativelyExecute upcall to the application code,
providing it with the requested operation and an associ-
ated sequence number. In the event of a failed speculation,
the Speculative Paxos library may make a rollback up-
call, requesting that the application undo the most recent
operations and return to a previous state. To do so, it
provides the sequence number and operation of all the
commands to be rolled back. The Speculative Paxos li-
brary also periodically makes commit upcalls to indicate

7

that previously-speculative operations will never be rolled
back, allowing the application to discard information (e.g.,
undo logs) needed to roll back operations.

Importantly, although Speculative Paxos executes oper-
ations speculatively on replicas, speculative state is not
exposed to clients. The Speculative Paxos library only re-
turns results to the client application after they are known
to have successfully committed in the same order at a
quorum of replicas. In this respect, Speculative Paxos is
similar to Zyzzyva [22], and differs from systems that
employ speculation on the client side [41].
Failure Model Although the premise for our work is
that data center networks can provide stronger guarantees
of ordering than distributed algorithms typically assume,
Speculative Paxos does not rely on this assumption for
correctness. It remains correct under the same assump-
tions as Paxos and Viewstamped Replication: it requires
2 f + 1 replicas and provides safety as long as no more
than f replicas fail simultaneously, even if the network
drops, delays, reorders, or duplicates messages. It pro-
vides liveness as long as messages that are repeatedly
resent are eventually delivered before the recipients time
out. (This requirement is the same as in Paxos, and is
required because of the impossibility of consensus in an
asynchronous system [13].)

4.2 Protocol
Speculative Paxos consists of three sub-protocols:

• Speculative processing commits requests efficiently
in the normal case where messages are ordered and
< f/2 replicas have failed (Section 4.2.2)

• Synchronization periodically verifies that replicas
have speculatively executed the same requests in the
same order (Section 4.2.3)

• Reconciliation ensures progress when requests are
delivered out of order or when between f/2 and f
nodes have failed (Section 4.2.4)

4.2.1 Replica State

Each replica maintains a status, a log, and a view number.
The replica’s status indicates whether it can process

new operations. Most of the time, the replica is in the
NORMAL state, which allows speculative processing of
new operations. While the reconciliation protocol is in
progress, the replica is in the RECONCILIATION state.
There are also RECOVERY and RECONFIGURATION states
used when a failed replica is reconstructing its state and
when the membership of the replica set is changing.

The log is a sequence of operations executed by the
replica. Each entry in the log is tagged with a sequence
number and a state, which is either COMMITTED or SPEC-
ULATIVE. All committed operations precede all specu-
lative operations. Each log entry also has an associated

Client

Replica
1

Replica
2

Replica
3

Replica
5

request specreply(result,hash)

specexec()

match?

Replica
4

specexec()

specexec()

specexec()

specexec()

Figure 7: Speculative processing protocol.

summary hash. The summary hash of entry n is given by

summaryn = H(summaryn−1 || operationn)

Thus, it summarizes the replica’s state up to that point: two
replicas that have the same summary hash for log entry
n must agree on the order of operations up to entry n. To
simplify exposition, we assume replicas retain their entire
logs indefinitely; a standard checkpointing procedure can
be used to truncate logs.

The system moves through a series of views, each with
a designated view number and leader. Each replica main-
tains its own idea of the current view number. The leader
is selected in a round-robin ordering based on the view
number, i.e., for view v, replica v mod n is the leader. This
is similar to leader election in [6] and [29], but the leader
does not play a special role in the normal-case specu-
lative processing protocol. It is used only to coordinate
synchronization and reconciliation.

4.2.2 Speculative Processing

Speculative Paxos processes requests speculatively in the
common case. When a client application initiates an op-
eration, the Speculative Paxos library sends a REQUEST
message to all replicas. This message includes the op-
eration requested, the identity of a client, and a unique
per-client request identifier. The REQUEST message is
sent using our MOM primitive, ensuring that replicas are
likely to receive concurrent requests in the same order.

Replicas participate in speculative processing when
they are in the NORMAL state. Upon receiving a REQUEST
message, they immediately speculatively execute the re-
quest: they assign the request the next higher sequence
number, append the request to the log in the SPECULA-
TIVE state, and make an upcall to application code to
execute the request. It then sends a SPECULATIVE-REPLY
message to the client, which includes the result of execut-
ing the operation as well as the sequence number assigned
to the request and a summary hash of the replica’s log.

Clients wait for SPECULATIVE-REPLY messages from
a superquorum of f + d f/2e+ 1 replicas, and compare
the responses. If all responses match exactly, i.e., they
have the same sequence number and summary hash, the
client treats the operation as committed. The matching

8

responses indicate that the superquorum of replicas have
executed the request (and all previous operations) in the
same order. The replicas themselves do not yet know
that the operation has committed, but the reconciliation
protocol ensures that any such operation will persist even
if there are failures, and may not be rolled back. If the
client fails to receive SPECULATIVE-REPLY messages
from a superquorum of replicas before a timeout, or if
the responses do not match (indicating that the replicas
are not in the same state), it initiates a reconciliation, as
described in Section 4.2.4.

Why is a superquorum of responses needed rather than
a simple majority as in Paxos? The reasoning is the same
as in Fast Paxos1: even correct replicas may receive oper-
ations from different clients in inconsistent orders. Con-
sider what would happen if we had used a quorum of size
f +1, and one request was executed by f +1 replicas and
a different request by the other f . If any of the replicas
in the majority subsequently fail, the recovery protocol
will not be able to distinguish them. As a result, the size
a superquorum must be chosen such that, if an operation
is successful, a majority of active replicas will have that
operation in their log [28].

4.2.3 Synchronization

In the speculative processing protocol, clients learn that
their requests have succeeded when they receive matching
speculative replies from a superquorum of replicas. The
replicas, however, do not communicate with each other
as part of speculative processing, so they do not learn
the outcome of the operations they have executed. The
synchronization protocol is a periodic process, driven by
the leader, that verifies that replicas are in the same state.

Periodically (every t milliseconds, or every k re-
quests), the leader initiates synchronization by sending
a 〈SYNC, v, s〉 message to the other replicas, where v is
its current view number and s is the highest sequence
number in its log. Replicas respond to SYNC messages by
sending the leader a message 〈SYNC-REPLY, v, s, h(s)〉,
where h(s) is the summary hash associated with entry s in
its log. If v is not the current view number, or the replica
is not in the NORMAL state, the message is ignored.

When the leader has received f + d f/2e+ 1 SYNC-
REPLY messages for a sequence number s, including its
own, it checks whether the hashes in the messages match.
If so, the replicas agree on the ordering of requests up to
s. The leader promotes all requests with sequence number
less than or equal to s from SPECULATIVE to COMMIT-
TED state, and makes a commit(s) upcall to the application.
It then sends a message 〈COMMIT, v, s, h(s)〉 to the other

1Fast Paxos is typically presented as requiring quorums of size 2 f +1
out of 3 f + 1, but like Speculative Paxos can be configured such that
2 f +1 replicas can make progress with f failures but need superquorums
to execute fast rounds [27].

replicas. Replicas receiving this message also commit all
operations up to s if their summary hash matches.

If the leader receives SYNC-REPLY messages that do
not have the same hash, or if a replica receives a COMMIT
message with a different hash than its current log entry, it
initiates a reconciliation.

4.2.4 Reconciliation

From time to time, replica state may diverge. This can oc-
cur if messages are dropped or reordered by the network,
or if replicas fail. The reconciliation protocol repairs di-
vergent state and ensures that the system makes progress.

The reconciliation protocol follows the same gen-
eral structure as view changes in Viewstamped Repli-
cation [29]: all replicas stop processing new requests and
send their log to the new leader, which selects a definitive
log and distributes it to the other replicas. The main differ-
ence is that the leader must perform a more complex log
merging procedure that retains any operation that success-
fully completed even though operations may have been
executed in different orders at different replicas.

When a replica begins a reconciliation, it increments
its view number and sets its status to RECONCILIATION,
which stops normal processing of client requests. It then
sends a 〈START-RECONCILIATION, v〉 message to the
other replicas. The other replicas, upon receiving a START-
RECONCILIATION message for a higher view than the
one they are currently in, perform the same procedure.
Once a replica has received START-RECONCILIATION
messages for view v from f other replicas, it sends a
〈RECONCILE, v, v`, log〉message to the leader of the new
view. Here, v` is the last view in which the replica’s status
was NORMAL.

Once the new leader receives RECONCILE messages
from f other replicas, it merges their logs. The log merg-
ing procedure considers all logs with the highest v` (in-
cluding the leader’s own log, if applicable) and produces
a combined log with two properties:

• If the same prefix appears in a majority of the logs,
then those entries appear in the combined log in the
same position.

• Every operation in any of the input logs appears in the
output log.

The first property is critical for correctness: it ensures that
any operation that might have successfully completed at
a client survives into the new view. Because clients treat
requests as successful once they have received matching
summary hashes from f + d f/2e+ 1 replicas, and f of
those replicas might have subsequently failed, any suc-
cessful operation will appear in at least d f/2e+1 logs.

The second property is not required for safety, but en-
sures that the system makes progress. Even if all multicast
requests are reordered by the network, the reconciliation

9

procedure selects a definitive ordering of all requests.
The procedure for merging logs is as follows:

• The leader considers only logs with the highest v`; any
other logs are discarded. This ensures that the results
of a previous reconciliation are respected.

• It then selects the log with the most COMMITTED en-
tries. These operations are known to have succeeded,
so they are added to the combined log.

• Starting with the next sequence number, it checks
whether a majority of the logs have an entry with
the same summary hash for that sequence number. If
so, that operation is added to the log in SPECULATIVE
state. This process is repeated with each subsequent
sequence number until no match is found.

• It then gathers all other operations found in any log
that have not yet been added to the combined log,
selects an arbitrary ordering for them, and appends
them to the log in the SPECULATIVE state.

The leader then sends a 〈START-VIEW, v, log〉message
to all replicas. Upon receiving this message, the replica
installs the new log: it rolls back any speculative opera-
tions in its log that do not match the new log, and executes
any new operations in ascending order. It then sets its cur-
rent view to v, and resets its status to NORMAL, resuming
speculative processing of new requests.
Ensuring progress with f failures. The reconciliation
protocol uses a quorum size of f + 1 replicas, unlike
the speculative processing protocol, which requires a su-
perquorum of f + d f/2e+1 replicas. This means that rec-
onciliation can succeed even when more than f/2 but no
more than f replicas are faulty, while speculative pro-
cessing cannot. Because reconciliation ensures that all
operations submitted before the reconciliation began are
assigned a consistent order, it can commit operations even
if up to f replicas are faulty.

Upon receiving a START-VIEW message, each replica
also sends a 〈IN-VIEW, v〉 message to the leader to ac-
knowledge that it has received the log for the new view.
Once the leader has received IN-VIEW messages from f
other replicas, it commits all of the speculative operations
that were included in the START-VIEW message, notifies
the clients, and notifies the other replicas with a COMMIT
message. This allows operations to be committed even
if there are more than f/2 failed replicas. This process is
analogous to combining regular and fast rounds in Fast
Paxos: only f + 1 replicas are required in this case be-
cause only the leader is is allowed to propose the ordering
of requests that starts the new view.

4.2.5 Recovery and Reconfiguration

Replicas that have failed and rejoined the system follow a
recovery protocol to ensure that they have the current state.

A reconfiguration protocol can also be used to change the
membership of the replica group, e.g., to replace failed
replicas with new ones. For this purpose, Speculative
Paxos uses standard recovery and reconfiguration pro-
tocols from Viewstamped Replication [29]. The reconfig-
uration protocol also includes the need to add or remove
newly-joined or departing replicas to the multicast group.
For our OpenFlow multicast forwarding prototype, it re-
quires contacting the OpenFlow controller.

Reconfiguration can also be used to change the system
from Speculative Paxos to a traditional implementation
of Paxos or VR. Because reconfiguration can succeed
with up to f failures, this can be a useful strategy when
more than f/2 failures occur, or during transient network
failures that can cause packets to be reordered.

4.3 Correctness

Speculative Paxos treats an operation as successful (and
notifies the client application) if the operation is COMMIT-
TED in at least one replica’s log, or if it is SPECULATIVE
in a common prefix of f + d f/2e+1 replica’s logs.

Any successful operation always survives in the same
serial order. We only need to consider reconciliations
here, as speculative processing will only add new oper-
ations to the end of the log, and synchronization will
cause successful operations to be COMMITTED. Consider
first operations that succeeded because they were specula-
tively executed on f +d f/2e+1 replicas. These operations
will survive reconciliations. The reconciliation process re-
quires f +1 out of 2 f +1 replicas to respond, so d f/2e+1
logs containing these operations will be considered, and
the log merging algorithm ensures they will survive in the
same position.

Operations can also be committed through reconcil-
iation. This can happen only once f + 1 replicas have
processed the START-VIEW message for that view. All of
these replicas agree on the ordering of these operations,
and at least one will participate in the next reconciliation,
because f +1 replicas are required for reconciliation. The
reconciliation procedure only merges logs with the high-
est v`, and the log merging procedure will ensure that the
common prefix of these logs survives.

Only one operation can succeed for a given sequence
number. By itself, the speculative processing protocol
allows only one operation to succeed for a given sequence
number, because an operation only succeeds if specu-
latively committed by a superquorum of replicas. The
reconciliation protocol will not assign a different opera-
tion to any sequence number that could potentially have
speculatively committed at enough replicas, nor one that
committed as the result of a previous reconciliation.

10

Latency (Msg Delays) Message Complexity Messages at Bottleneck Replica

Paxos 4 2n 2n
Paxos + batching 4+ 2+ 2n

b 2+ 2n
b

Fast Paxos 3 2n 2n
Speculative Paxos 2 2n+ 2n

s 2+ 2n
s

Table 1: Comparison of Paxos, Fast Paxos, and Speculative Paxos. n is the total number of replicas; b is the batch size for Paxos with
batching, and s is the number of requests between synchronization for Speculative Paxos.

4.4 Discussion
Speculative Paxos offers high performance because it
commits most operations via the fast-path speculative
execution protocol. It improves on the latency of client
operations, an increasingly critical factor in today’s ap-
plications: a client can submit a request and learn its out-
come in two message delays—the optimal latency, and
a significant improvement over the four message delays
of leader-based Paxos, as shown in Table 1. Speculative
Paxos also provides better throughput, because it has no
bottleneck replica that bears a disproportionate amount of
the load. In Speculative Paxos, each replica processes only
two messages (plus periodic synchronizations), whereas
all 2n messages are processed by the leader in Paxos.

Speculative Paxos is closely related to Fast Paxos [27],
which reduces latency by sending requests directly from
clients to all replicas. Fast Paxos also incurs a penalty
when different requests are received by the replicas in a
conflicting order. In Fast Paxos, the message flow is

client→ replicas→ leader→ client
and so the protocol requires three message delays. Spec-
ulative Paxos improves on this by executing operations
speculatively so that clients can learn the result of their
operations in two message delays. The tradeoff is that the
reconciliation protocol is more expensive and speculative
operations might need to be rolled back, making Specu-
lative Paxos slower in conflict-heavy environments. This
tradeoff is an example of our co-design philosophy: Fast
Paxos would also benefit from MOM, but Speculative
Paxos is optimized specially for an environment where
multicasts are mostly ordered.

Speculative Paxos improves throughput by reducing
the number of messages processed by each node. Despite
the name, Fast Paxos does not improve throughput, al-
though it reduces latency: the leader still processes 2n
messages, so it remains a bottleneck. Other variants on
Paxos aim to reduce this bottleneck. A common approach
is to batch requests at the leader, only running the full
protocol periodically. This also eliminates a bottleneck,
increasing throughput dramatically, but increases rather
than reducing latency.

4.5 Evaluation
We have implemented the Speculative Paxos protocol as
a library for clients and replicas. Our library comprises

 0

 200

 400

 600

 800

 1000

 1200

 1400

0K 20K 40K 60K 80K 100K120K140K160K180K

L
at

en
cy

 (
us

)

Throughput (operations/sec)

SpecPaxos
Paxos

Fast Paxos
Paxos + batching

Figure 8: Latency vs throughput tradeoff for testbed deployment

about 10,000 lines of C++, and also supports leader-based
Paxos (with or without batching) and Fast Paxos.

We evaluate the performance of Speculative Paxos and
compare it to Paxos and Fast Paxos using a deployment
on the twelve-switch testbed shown in Figure 3, measur-
ing the performance tradeoffs under varying client load.
We then investigate the protocol’s sensitivity to network
conditions by emulating MOM ordering violations.

4.5.1 Latency/Throughput Comparison

In our testbed experiments, we use three replicas, so f = 1,
and a superquorum of all three replicas is required for
Speculative Paxos or Fast Paxos to commit operations
on the fast path. The replicas and multiple client hosts
are connected to the ToR switches with 1 Gbps links.
Speculative Paxos and Fast Paxos clients use the network
serialization variant of MOM for communicating with the
replicas; Paxos uses standard IP multicast.

Figure 8 plots the median latency experienced by
clients against the overall request throughput obtained by
varying the number of closed-loop clients from 2 to 300.
We compare Speculative Paxos, Fast Paxos, and Paxos
with and without batching. In the batching variant, we use
the latency-optimized sliding-window batching strategy
from PBFT [6], with batch sizes up to 64. (This limit
on batch sizes is not reached in this environment; higher
maximum batch sizes have no effect.) This comparison
shows:

• At low to medium request rates, Speculative Paxos
provides lower latency (135 µs) than either Paxos
(220 µs) or Fast Paxos (171 µs). This improvement
can be attributed to the fewer message delays.

11

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000
 110000

0.001% 0.01% 0.1% 1%

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
)

Simulated packet reordering rate

SpecPaxos
Paxos + batching

Fast Paxos
Paxos

Figure 9: Throughput with simulated packet reordering

Application Total LoC Rollback LoC

Timestamp Server 154 10
Lock Manager 606 75

Key-value Store 2011 248

Table 2: Complexity of rollback in test applications

• Speculative Paxos is able to sustain a higher through-
put level (∼100,000 req/s) than either Paxos or Fast
Paxos (∼38,000 req/s), because fewer messages are
handled by the leader, which otherwise becomes a
bottleneck.

• Like Speculative Paxos, batching also increases the
throughput of Paxos substantially by eliminating the
leader bottleneck: the two achieve equivalent peak
throughput levels. However, batching also increases la-
tency: at a throughput level of 90,000 req/s, its latency
is 3.5 times higher than that of Speculative Paxos.

4.5.2 Reordering Sensitivity

To gain further insight into Speculative Paxos perfor-
mance under varying conditions, we modified our imple-
mentation to artificially reorder random incoming packets.
These tests used three nodes with Xeon L5640 processors
connected via a single 1 Gbps switch.

We measured throughput with 20 concurrent closed-
loop clients. When packet reordering is rare, Speculative
Paxos outperforms Paxos and Fast Paxos by a factor of 3×,
as shown in Figure 9. As the reorder rate increases, Spec-
ulative Paxos must perform reconciliations and perfor-
mance drops. However, it continues to outperform Paxos
until the reordering rate exceeds 0.1%. Our experiments
in Section 3.4 indicate that data center environments will
have lower reorder rates using topology-aware multicast,
and can eliminate orderings entirely except in rare failure
cases using network serialization. Paxos performance is
largely unaffected by reordering, and Fast Paxos through-
put drops slightly because conflicts must be resolved by
the leader, but this is cheaper than reconciliation.

5 Applications
We demonstrate the benefits and tradeoffs involved in
using speculation by implementing and evaluating several
applications ranging from the trivial to fairly complex.

Since Speculative Paxos exposes speculation at the ap-
plication replicas, it requires rollback support from the
application. The application must be able to rollback op-
erations in the event of failed speculations.

We next describe three applications ranging from a
simple timestamp server to a complex transactional, dis-
tributed key-value store inspired by Spanner [9]. We mea-
sure the performance achieved by using Speculative Paxos
and comment on the complexity of rollback code.
Timestamp Server. This network service generates
monotonically increasing timestamps or globally unique
identifier numbers. Such services are often used for dis-
tributed concurrency control. Each replica maintains its
own counter which is incremented upon a new request.
On rollback, the counter is simply decremented once for
each request to be reverted.
Lock Manager. The Lock Manager is a fault-tolerant
synchronization service which provides a fine-grained
locking interface. Clients can acquire and release locks in
read or write mode. Each replica maintains a mapping of
object locks held by a client and the converse. On rollback,
both these mappings are updated by the inverse operation,
e.g., RELEASE(X) for LOCK(X). Since these operations
do not commute, they must be rolled back in the reverse
order in which they were applied.
Transactional Key-Value Store. We built a distributed
in-memory key-value store which supports serializable
transactions using two-phase commit and strict two-phase
locking or optimistic concurrency control (OCC) to pro-
vide concurrency control. Client can perform GET and
PUT operations, and commit them atomically using BE-
GIN, COMMIT, and ABORT operations.

The key-value store keeps multiple versions of each
row (like many databases) to support reading a consistent
snapshot of past data, and to implement optimistic con-
currency control. Rolling back PUT operations requires
reverting a key to an earlier version, and rolling back PRE-
PARE, COMMIT, and ABORT two-phase commit operations
requires adjusting transaction metadata to an earlier state.

We test the key-value store on the previously-described
testbed. In our microbenchmark, a single client executes
transactions in a closed loop. Each transaction involves
several replicated get and put operations. Speculative
Paxos commits a transaction in an average of 1.01 ms, a
30% improvement over the 1.44 ms required for Paxos,
and a 10% improvement over the 1.12 ms for Fast Paxos.

We also evaluate the key-value store on a more complex
benchmark: a synthetic workload based on a profile of the
Retwis open-source Twitter clone. The workload chooses

12

Paxos

Paxos+Batching

Fast Paxos

SpecPaxos

0 1500 3000 4500 6000

Max Throughput (Transactions/second)

Figure 10: Maximum throughput attained by key-value store
within 10 ms SLO

keys based on a Zipf distribution, and operations based
on the transactions implemented in Retwis. Figure 10
plots the maximum throughput the system can achieve
while remaining within a 10 ms SLO. By simultaneously
providing lower latency and eliminating throughput bot-
tlenecks, Speculative Paxos achieves significantly greater
throughput within this latency budget.

6 Related Work
Weak Synchrony. The theoretical distributed systems
literature has studied several models of weak synchrony
assumptions. These include bounding the latency of mes-
sage delivery and the relative speeds of processors [11], or
introducing unreliable failure detectors [7]. In particular,
a single Ethernet LAN segment has been shown to be
nearly synchronous in practice, where even short timeouts
are effective [40] and reorderings are rare [21]. The data
center network is far more complex; we have shown that
with existing multicast mechanisms, reorderings are fre-
quent, but our network-level MOM mechanisms can be
used to ensure ordering with high probability.

In the context of a single LAN, the Optimistic Atomic
Broadcast [36] protocol provides total ordering of mes-
sages under the assumption of a spontaneous total or-
dering property equivalent to our MOM property, and
was later used to implement a transaction processing sys-
tem [21]. Besides extending this idea to the more com-
plex data center context, the Speculative Paxos protocol
is more heavily optimized for lower reorder rates. For
example, the OAB protocol requires all-to-all commu-
nication; Speculative Paxos achieves higher throughput
by avoiding this. Speculative Paxos also introduces addi-
tional mechanisms such as summary hashes to support a
client/server state machine replication model instead of
atomic broadcast.
Paxos Variants. Speculative Paxos is similar to Fast
Paxos [27], which reduces latency when messages arrive
at replicas in the same order. Speculative Paxos takes
this approach further, eliminating another message round
and communication between the replicas, in exchange for
reduced performance when messages are reordered.

Total ordering of operations is not always needed. Gen-
eralized Paxos [26] and variants such as Multicoordinated
Paxos [5] and Egalitarian Paxos [32] mitigate the cost of
conflicts in a Fast Paxos-like protocol by requiring the pro-

grammer to identify requests that commute and permitting
such requests to commit in different orders on different
replicas. Such an approach could allow Speculative Paxos
to tolerate higher reordering rates.
Speculation. Speculative Paxos is also closely related
to recent work on speculative Byzantine fault tolerant
replication. The most similar is Zyzzyva [22], which em-
ploys speculation on the server side to reduce the cost
of operations when replicas are non-faulty. Like Spec-
ulative Paxos, Zyzzyva replicas execute requests spec-
ulatively and do not learn the outcome of their request,
but clients can determine if replicas are in a consistent
state. Zyzzyva’s speculation assumes that requests are
not assigned conflicting orders by a Byzantine primary
replica. Speculative Paxos applies the same idea in a non-
Byzantine setting, speculatively assuming that requests
are not reordered by the network. Eve [20] uses specu-
lation and rollback to allow non-conflicting operations
to execute concurrently; some of its techniques could be
applied here to reduce the cost of rollback.

An alternate approach is to apply speculation on the
client side. SpecBFT [41] modifies the PBFT protocol so
that the primary sends an immediate response to the client,
which continues executing speculatively until it later re-
ceives confirmation from the other replicas. This approach
also allows the client to resume executing after two mes-
sage delays. However, the client cannot communicate over
the network or issue further state machine operations until
the speculative state is committed. This significantly lim-
its usability for data center applications that often perform
a sequence of accesses to different storage systems [37].
Client-side speculation also requires kernel modifications
to support unmodified applications [34].

7 Conclusion
We have presented two mechanisms: the Speculative
Paxos protocol, which achieves higher performance when
the network provides our Mostly-Ordered Multicast prop-
erty, and new network-level multicast mechanisms de-
signed to provide this ordering property. Applied to-
gether with MOM, Speculative Paxos achieves signifi-
cantly higher performance than standard protocols in data
center environments. This example demonstrates the ben-
efits of co-designing a distributed system with its under-
lying network, an approach we encourage developers of
future data center applications to consider.

Acknowledgements
We would like to thank Adriana Szekeres, Irene Zhang,
our shepherd Robbert van Renesse, and the anonymous
reviewers for their feedback. This work was supported
in part by Google and the National Science Foundation
(CNS-0963754, CNS-1217597, CNS-1318396, and CNS-
1420703).

13

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-

able, commodity data center network architecture.
In Proceedings of ACM SIGCOMM 2008, Seattle,
WA, USA, Aug. 2008.

[2] T. Benson, A. Akella, and D. A. Maltz. Network traf-
fic characteristics of data centers in the wild. In Pro-
ceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement (IMC ’10), Nov. 2010.

[3] K. P. Birman and T. A. Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings
of the 11th ACM Symposium on Operating Systems
Principles (SOSP ’87), Austin, TX, USA, Oct. 1987.

[4] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
7th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’06), Seattle, WA,
USA, Nov. 2006.

[5] L. Camargos, R. Schmidt, and F. Pedone. Multi-
coordinated Paxos. Technical report, University of
Lugano Faculty of Informatics, 2007/02, Jan. 2007.

[6] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In Proceedings of the 3rd USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI ’99), New Orleans, LA, USA, Feb.
1999.

[7] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus. Jour-
nal of the ACM, 43(4):685–722, July 1996.

[8] Cisco data center infrastructure design guide
2.5. https://www.cisco.com/application/pdf/

en/us/guest/netsol/ns107/c649/ccmigration_

09186a008073377d.pdf.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. In Proceed-
ings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12),
Hollywood, CA, USA, Oct. 2012.

[10] J. Cowling and B. Liskov. Granola: Low-overhead
distributed transaction coordination. In Proceedings
of the 2012 USENIX Annual Technical Conference,
Boston, MA, USA, June 2012.

[11] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus
in the presence of partial synchrony. Journal of the
ACM, 35(2):228–323, Apr. 1988.

[12] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deer-
ing, M. Handley, V. Jacobson, C. Liu, P. Sharma, and
L. Wei. Protocol independent multicast-sparse mode
(PIM-SM): Protocol specification. RFC 2117, June
1997. https://tools.ietf.org/html/rfc2117.

[13] M. J. Fischer, N. A. Lynch, and M. S. Patterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, Apr.
1985.

[14] P. Gill, N. Jain, and N. Nagappan. Understanding
network failures in data centers: Measurement, anal-
ysis, and implications. In Proceedings of ACM SIG-
COMM 2011, Toronto, ON, Canada, Aug. 2011.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. VL2: A scalable and flexible data center
network. In Proceedings of ACM SIGCOMM 2009,
Barcelona, Spain, Aug. 2009.

[16] M. P. Herlihy and J. M. Wing. Linearizabiliy: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463–492, July 1990.

[17] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-
scale systems. In Proceedings of the 2010 USENIX
Annual Technical Conference, Boston, MA, USA,
June 2010.

[18] IEEE 802.1 Data Center Bridging. http://www.

ieee802.org/1/pages/dcbridges.html.

[19] F. Junqueira, B. Reed, and M. Serafini. Zab: High-
performance broadcast for primary-backup systems.
In Proceedings of the 41st IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN ’11), Hong Kong, China, June 2011.

[20] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, and M. Dahlin. All about Eve: Execute-
verify replication for multi-core servers. In Proceed-
ings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12),
Hollywood, CA, USA, Oct. 2012.

[21] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.
Processing transactions over optimistic atomic
broadcast protocols. In Proceedings of the 13th
International Symposium on Distributed Computing
(DISC ’99), Bratislava, Slovakia, Sept. 1999.

14

https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://www.cisco.com/application/pdf/en/us/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf
https://tools.ietf.org/html/rfc2117
http://www.ieee802.org/1/pages/dcbridges.html
http://www.ieee802.org/1/pages/dcbridges.html

[22] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative Byzantine fault
tolerance. In Proceedings of the 21th ACM Sympo-
sium on Operating Systems Principles (SOSP ’07),
Stevenson, WA, USA, Oct. 2007.

[23] L. Lamport. Time, clocks, and ordering of events in
a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[24] L. Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2):133–169, May
1998.

[25] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, Dec. 2001.

[26] L. Lamport. Generalized consensus and Paxos.
Technical Report MSR-TR-2005-33, Microsoft Re-
search, Mar. 2005.

[27] L. Lamport. Fast Paxos. Distributed Computing,
19(2):79–103, Oct. 2006.

[28] L. Lamport. Lower bounds for asynchronous con-
sensus. Distributed Computing, 19(2):104–125, Oct.
2006.

[29] B. Liskov and J. Cowling. Viewstamped replication
revisited. Technical Report MIT-CSAIL-TR-2012-
021, MIT Computer Science and Artificial Intelli-
gence Laboratory, Cambridge, MA, USA, July 2012.

[30] V. Liu, D. Halperin, A. Krishnamurthy, and T. An-
derson. F10: A fault-tolerant engineered network. In
Proceedings of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI

’13), Lombard, IL, USA, Apr. 2013.

[31] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communica-
tion Review, 38(2):69–74, Apr. 2008.

[32] I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In
Proceedings of the 25rd ACM Symposium on Oper-
ating Systems Principles (SOSP ’13), Farmington,
PA, USA, Nov. 2013.

[33] R. N. Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subra-
manya, and A. Vahdat. PortLand: A scalable fault-
tolerant layer 2 data center network fabric. In
Proceedings of ACM SIGCOMM 2009, Barcelona,
Spain, Aug. 2009.

[34] E. B. Nightingale, P. M. Chen, and J. Flinn. Spec-
ulative execution in a distributed file system. In
Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP ’05), Brighton,
United Kingdom, Oct. 2005.

[35] B. M. Oki and B. H. Liskov. Viewstamped replica-
tion: A new primary copy method to support highly-
available distributed systems. In Proceedings of the
7th ACM Symposium on Principles of Distributed
Computing (PODC ’88), Toronto, Ontario, Canada,
Aug. 1988.

[36] F. Pedone and A. Schiper. Optimistic atomic broad-
cast. In Proceedings of the 12th International Sym-
posium on Distributed Computing (DISC ’98), An-
dros, Greece, Sept. 1998.

[37] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosen-
blum, and J. K. Ousterhout. It’s time for low latency.
In Proceedings of the 13th Workshop on Hot Topics
in Operating Systems (HotOS ’11), Napa, CA, USA,
May 2011.

[38] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: a tuto-
rial. ACM Computing Surveys, 22(4):299–319, Dec.
1990.

[39] M. Stonebraker, S. Madden, D. J. Abadi, S. Hari-
zopoulos, N. Hachem, and P. Helland. The end of an
architectural era: (it’s time for a complete rewrite).
In Proceedings of the 33rd International Conference
on Very Large Data Bases (VLDB ’07), Vienna, Aus-
tria, Sept. 2007.

[40] P. Urbán, X. Défago, and A. Schiper. Chasing the
FLP impossibility result in a LAN: or, how robust
can a fault tolerant server be? In Proceedings of
the 20th IEEE Symposium on Reliable Distributed
Systems (SRDS ’01), New Orleans, LA USA, Oct.
2001.

[41] B. Wester, J. Cowling, E. Nightingale, P. M. Chen,
J. Flinn, and B. Liskov. Tolerating latency in repli-
cated state machines through client speculation. In
Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI

’09), Boston, MA, USA, Apr. 2009.

15

	Introduction
	Background
	Replication and Consensus Algorithms
	Data Centers

	Mostly-Ordered Multicast
	Model
	Existing Multicast is Not Ordered
	Our Designs
	Topology-Aware Multicast
	High-Priority Multicast
	In-Network Serialization

	Evaluation of MOMs
	Testbed Evaluation
	Simulation Results

	Speculative Paxos
	Model
	Protocol
	Replica State
	Speculative Processing
	Synchronization
	Reconciliation
	Recovery and Reconfiguration

	Correctness
	Discussion
	Evaluation
	Latency/Throughput Comparison
	Reordering Sensitivity

	Applications
	Related Work
	Conclusion

