Physical clock synchronization [flaviu cristian]

Setup

- master clock that is assumed to keep perfect time (RT)
 - keeps time t

- slave clocks C_i that we want to synchronize to master
 - each keeps local time $C_i(t)$
 - assume that C_i is “correct” if it drifts at a rate p
 - i.e., $(1-p)\Delta \leq C_i(t+\Delta) - C_i(t) \leq (1+p)\Delta$

- want two properties from clock synchronization
 - Clock consistency (internal): $|C_i(t) - C_j(t)| < d_1$ for all i, j
 - Clock accuracy (external): $|C_i(t) - t| < d_2$ for all i

If you have external synchronization, get internal synchronization for free.

Why is clock synchronization hard?

We have to assume an asynchronous network. So, messages have:

- lower bound “min” on propagation delay, dictated by speed of light
 - if unknown, assume $\text{min} = 0$ (hurts estimates the most)
- no real upper bound on propagation delay
 - some algorithms assume a known max – problematic in practice

\[=> \text{start the ping experiment} \]
Simple broadcast-based time synchronization

Clock broadcasts time to all slaves
- broadcast message contains \(t \)
- slaves set clock to \((t + \text{min}) \) when they receive broadcast

What is the accuracy of the clock?
- depends on where in the distribution the message delay is
- if assume “max” delay, then error could fall anywhere in the range \((\text{max} - \text{min}) \)
- provable that this is the tightest error bound with probability 100%
 - therefore tightest consistency / accuracy

Interrogation-based time synchronization

Goal:
- figure out what the master’s clock says when the slave’s clock says \(T_2 \)
 - it depends on alpha and beta, obviously
 - bounded by two cases: alpha = 0, and beta = 0
 - if alpha = 0, then beta = \((T_2 - T_0) - 2 \cdot \text{min}\)
 - \(\text{Cmaster}(T_2) = T_1 + \text{min} + \beta \)
 - \(\text{Cmaster}(T_2) = T_1 + (T_2 - T_0) - \text{min} \)
 - if beta = 0 , then:
 - \(\text{Cmaster}(T_2) = T_1 + \text{min} \)
- least possible error is to pick the midpoint
 - \(\text{Cmaster}(T_2) = T_1 + ((T_2 - T_0) / 2) \)
 - Max error = \(((T_2 - T_0) / 2) - \text{min}\)
That was ignoring clock skew p. If you factor in clock skew, then the equations get a little more complicated:

- Least possible error is to pick:
 - $C_{\text{master}}(T_2) = T + ((T_2 - T_0)/2)(1 + 2p) - \min p$
 - Max error = $((T_2 - T_0)/2)(1 + 2p) - \min$

Many implications to this:

- max error grows as clock skew climbs
- if you don’t know “min”
 - have to set $\min = 0$, and max error is basically proportional to the RTT
- error diminishes as the measurement trial RTT approaches $2*\min$
 - is a probabilistic tradeoff
 - can require measurements to be close to RTT to “accept” them and achieve rapport – increase number of trials necessary, but get tight error bounds
 - can be sloppy and take any measurement – decreases number of trials, but get worse error bounds

Other realities

- don’t want jump discontinuities in time
 - play around with clock rate, rather than clock setting, to make clock drift into sync with master over a configurable time period
- often don’t have a single master, but a distributed hierarchy of clocks
 - need a way to average estimates from multiple parents
- Q: does GPS change any of this fundamentally?
 - can get a pretty tight bound on “min”
 - alpha, beta are low
 - get very good synchronization error bounds as a result