Final Philosophy

What the exam looks like.

• Definitions, comparisons, advantages & disadvantages
 • what is it?
 • how does it work?
 • why have it?
 • pay particular attention to the terminology that was highlighted in the slides
• Apply the concepts and techniques you have learned to situations you have (hopefully) not seen before.

The goal is to test your knowledge of the material and how well you can apply it, not how fast you can tell me what you know.

• Douglas will take the exam beforehand to make sure that he can finish it in half the time you will have.
Topics

Architecture vs. implementation
Design principles
RISC vs. CISC
 • Enforcing backwards compatibility
 • New instructions & the rationale for including them
ILP & TLP
Pipelining
 • Dependences vs. hazards
 • Techniques to eliminate hazards
 • Precise Interrupts & pipelining
Techniques to reduce branch delays
 • Dynamic branch prediction
 • Branch target buffers
Topics

Static & dynamic scheduling

- Techniques for static scheduling
- Implementations of dynamic scheduling
 - Tomasulo
 - Physical register pool
 - Reorder buffers
- Preserving precise interrupts
- VLIW computers
- Superscalars vs. VLIW processors

Multithreaded processors

- Coarse-grain, fine-grain & SMT
Topics

Caches

- Configuration tradeoffs
- Hardware & compiler techniques to hide memory latency, reduce memory ops, increase memory bandwidth

Multiprocessors

- The Religious War: SMP vs. MP
- Cache coherency on bus-based & distributed MIMDS
- Synchronization
- Datapath machines

Hardware & compiler techniques to hide memory latency, reduce memory ops, increase memory bandwidth

Configuration tradeoffs

Cache coherency on bus-based & distributed MIMDS