
ARTICLES

THE MANCHESTER PROTOTYPE
DATAFLOW COMPUTER -

The Manchester project has developed a powerful dataflow processor based
on dynamic tagging. This processor is large enough to tackle realistic
applications and exhibits impressive speedup for programs with sufficient
parallelism.

J. R. GURD, C. C. KIRKHAM, and I. WATSON

INTRODUCTION
Since about 1970 there has been a growing and wide-
spread research interest in parallel data-driven compu-
tation and dataflow computer architecture. Centers of
expertise in dataflow techniques have emerged at MIT
in the United States, CERT-ONERA in France, NTT and
ETL in Japan, and the authors’ establishment in the
United Kingdom. This interest has culminated in many
designs for data-driven computer systems, several of
which have been or are in the process of being imple-
mented in hardware. For example, a machine based on
the tagged-token model of dataflow computation has
been operational at the University of Manchester since
October 1981. This article reviews the architecture and
performance of this machine.

Dataflow is a technique for specifying computations
in a two-dimensional graphical form: Instructions that
are available for concurrent execution are written
alongside one another, and instructions that must be
executed in sequence are written one under the other.
Data dependencies between individual instructions are
indicated by directed arcs, as shown for a small pro-
gram in Figure 1. Instructions do not reference w
orv, since the data-dependence arcs allow data to be
transmitted directlv from generating instruction to sub-
sequent instruction. Consequently, instructions can be
viewed as pure operations-this perspective is de-
scribed in the Dataflow Programs section. Each instruc-
tion can be activated independently by incoming data
values: Execution commences as soon as all required
input values for that instruction have arrived (as in the
execution sequence of Figure 4).

01985 ACM 0001.0782/85/0100-0034 7.5~

Dataflow systems implement this abstract graphical
model of computation, Individual systems differ mainly
in the way they handle reentrant code. Static systems
do not permit concurrent reactivation, and so they are
restricted to implementing loops and cannot accommo-
date recursion. Dynamic systems permit recursive reac-

mines the types of language features that can be sup-
ported-recursion, for example, cannot be handled by
static systems. The structure of a dataflow computer
follows the model of message-passing multiprocessors.
The Manchester project has designed a powerful data-
flow processing engine based on dynamic tagging. The
system is now running reasonably large user programs
at maximum rates of between 1 and 2 MIPS (million
instructions per second). Details on the architecture of
this system are given in The Manchester Dataflow
Processor section.

To date, few details have been published on the per-
formance of operational dataflow hardware-after all,
only a few of the larger systems have been active for
longer than a year. Skepticism about the potential of
dataflow techniques will persist until good performance
figures can be demonstrated. First attempts have been
made to define the objectives for performance evalua-
tion for dataflow hardware, and some preliminary re-
sults from the Manchester prototype system are pre-
sented here. The strategy for evaluation is presented in
the System Evaluation Strategy section, along with a
discussion of program characteristics and their meas-
urement on a dataflow simulator. The Benchmark Proc-
ess section presents some details of the benchmark pro-

34 Communications of the ACM January 1985 Volume 28 Number 1

Articles

1 ir

(initial values)

nt (final value)

The final stage of translation
forms a machine-code pro-
gram with its input data. This
two-dimensional graphical
form is traditionally used to
present dataflow programs.
The nodes of the graph repre-
sent machine instructions,
while the arcs represent data
paths between instructions. It
will be noticed that the branch
(BRR) instructions behave as
two-way switches inserted in
the arcs, and that where a to-
ken is required as input to
more than one instruction it
has to be replicated using ex-
plicit duplicate (OUP) instruc-
tions.

]anua y 1985 Volume 28 Number 1

FIGURE 1. Dataflow Graph for the Integration Program

Communications of the ACM 35

Articles

grams that have been executed, and the Evaluation Re-
sults section presents the results obtained when these
programs were executed on the prototype hardware.

Programs with large data structures have revealed
that there is a need for hardware with specialized
structure-storing capabilities. A structure-store unit is
being designed to accommodate this need. In the long
term, the use of multiple rings opens the possibility of
incrementally expandable computing power in a data-
flow multiprocessor. The prospects for such extensions
to the existing system are discussed in the Future Di-
rections section.

DATAFLOW PROGRAMS
Dataflow programs can be written at a high, an inter-
mediate, or a low level. Figure 2 shows a program for
computing the area under the curve y = x2 between
x = 0.0 and x = 1.0. It is written in the high-level
single-assignment language SISAL, a typical Pascal-like
dataflow language. SISAL’s single-assignment property
dictates that each variable be assigned only once in a
program. This gives the language cleaner-than-usual se-
mantics and makes it easier for the compiler to exploit
program parallelism. Of course, parallelism could be
extracted from programs written in more conventional
languages, but the extraction process would be complex

export Integrate

funcCioh Integrate {returns real)‘

for initial
int := 0.01
Y := 0.0;
X := 0.02

while
x < 1.0

repeat
int := 0.01 * (old y + y);
Y := old x * old x;
x := old x + 0.02

returns
value of sum int

end for

end function

Dataflow applications programs can be written in hiih4evel
@@ramming languages in exactly the same way es for con-
‘ventional computer systetis. The most qonvenient type of
tanguag6 for compiling data&w code is known as a single-
assignment Mguage. This type of language has a syntax
similar to that of conventional languages like Par&&, IW has
nonsequential semantk% (i.e., it offers concutrent control
constructs). An example program written in‘ t@3 sirtgle-
assignment language SISAL is shown here. The pr6gram
cbmputes the area under the curve y = x*t3&Wenx = O$I and
x = 1 .O using a trapezoidal approximation with constant x
intervals of 0.02.

FIGURE 2. Integration Program in the High-Level
Programming Language SISAL

and would obscure important principles that are natu-
rally apparent in SISAL.

Compilation of the high-level programs first trans-
lates the text into an intermediate-level (or compiler
target) language roughly equivalent to a conventional
macroassembler language. Figure 3 shows an abbrevi-
ated form of the intermediate code produced by the .,
SISAL compiler for the program in Figure 2. Here, the
template assembler language TASS is used. The main
features of the translated program are that the variables
(int, y, x, etc.) can be identified with the SISAL program
text, whereas the operators (CGR, SIL, BRR, etc.] can be
identified with the dataflow instruction set. The abbre-
viated form of Figure 3 is for the sake of clarity, be-
cause the “invented” variables would normally be
given unintelligible names and a lot of redundant as-
sembler code would be produced. In essence, Figure 3
shows the form of a program written directly at the
intermediate level.

The final step of the compilation is to generate code
and data files representing the machine-level program.
Manchester machine code is relocatable via a segment
table (see the next section) that identifies a base ad-
dress and limiting offset for each of 64 code segments.
Consequently, the code file contains segment table en-
tries as well as the instruction store contents. Each in-
struction comprises an opcode and a destination ad-
dress for the instruction output, together with an op-
tional second destination address or a literal operand.
The data file contains the initializing values, which
represent the program input. Each entry consists of a
typed data value and a three-field tag, together with the
destination address to which the input should be sent.

Code at any level can be represented graphically,
since statements specify paths to be followed by data
passing between operators. In particular, it is traditional
to represent the machine-level code as a directed
graph. Figure 1 shows the machine code generated for
the integration program in Figu?e 3.

The integration program is an example of a reentrant
program-that is, one that reuses part of itself. Each
separate iteration reuses the same code but with differ-
ent data. To avoid any confusion of operands from the
different iterations, each data value is tagged with a
unique identifier known as the iteration level that indi-
cates its specific iteration. Data are transmitted along
the arcs in tagged packets known as tokens. Tokens for
the same instruction match together and instigate the
execution of that instruction only if their tags match.

The idea of tags can be extrapolated to encompass
reentrant activation of complete procedures, thereby al-
lowing concurrent executions of the same procedure to
share one version of its instruction code. This is
achieved by extending the tag with an activation name,
which must also match. The activation name is also
used to implement recursive functions, which need tags
to generate a parallel environment analogous to the
“stack” environment used in sequential language im-
plementations.

36 Communications of the, ACM January 1985 Volume 28 Number 1

Arficles

(\I "TASS" "TSM");

, Integration by trapezoidal rule
! =e======================t========

I initialize the loop variables

int = (Data "R 0.0");
Y = (Data "R 0.0");
x = (Data "R 0.02");

f d
' ! merge the initial values with the loop output values

intJnrg = (Mer int new-int);
x-mrg = (Mer y new-y);
x-mrg = (Mer x new-x);

I test for termination of loop

test = (CGR "R 1.0" xnrg);

! gate the loop variables into new loop instance or direct result to output

gate-int = (BRR intnrg test);
old-int = gate-int.R;
old-y = (BRR y-mrg test).R;
old-x = (BRR x_mrg test).R;

result = (SIL gate-int.L "0 O").L;

, loop body : form new values for loop variables

incr-x = (ADR old-x "R 0.02");
x-sq = (MLR old-x old-x);
height-2 = (ADR old-y x-sq);
area = (MLR "R 0.01" height-2);
cum-area = (ADR old-int area);

! : increment iteration level for new loop variables

new-int = (ADL cum-area "I l").L;
new-y = (ADL x-sq "I l").L;
new-x = (ADL incr_x "I l").L;

I output the final value of int

(OPT result "G 0");

(Finish);

Programs written in SISAL are translated into an intermedi-
ate language such as TASS. Other high-level languages can
be translated into this intermediate form, or programs may
be written in TASS directly. For simplicity, the version of the
integration program shown here is not a compiled version of
the SISAL program in Figure 2, but an assembly-level pro-
gram for the same task. However, the influence of the high-
level version can be seen in the shape of this lower level
program. The Manchester dataflow machine code is used in
this figure. The Manchester system is an example of a
“tagged-token” dataflow machine, which uses tag fields to
distinguish reentrant activations of shared code. The
“iteration-level” tag field is used to separate loop activations,

using the ADL and SIL instructions. The effect of program
“jumps” is achieved by the branch instructions. The remain-
ing instructions are normal arithmetic/logic operations. The
following mnemonics have been used:

ADR-add floating-point values
BRR-branch
CGR-compare floating point I.h. > r.h.
ADL-add to iteration level
MLR-multiply floating-point values
OPT-send output to host processor
SIL-set iteration level

FIGURE 3. Integration Program in the Template Assembly Language TASS

A final cause of reactivation is the reuse of code to The above model of computation is known as tagged-
process different parts of a data structure, for instance, token dataflow. It is the basic model implemented by
an array. This is achieved by another extension to the the prototype Manchester hardware. Note, for example,
tag, known as the index. the use of the tag-manipulating instructions ADL (add

/away 1985 Volume 28 Number 1 Communications of the ACM 37

Articles

(a)

lb)

Figure 4 illustrates the way data appear to flow through the
program graph durin’g execution of the machine code. At the
start of execution, the input data are presented in the form of
data packets, known as tokens, on the input arcs of the
graph. Execution then proceeds by transferring each token
to the head of the arc on which it lies and executing any
instruction that thereby receives a full complement of input

(d)

tokens. The active arcs in each frame are shown in red,
whereas the enabled instructions (i.e., those with a full com-
plement of input tokens) and their output arcs (which will
become active in the next frame) are shown in green. The
transfer and execute cvcle continues as shown until the out-
put data have been sent and there is no further activity in the
graph. Each token and instruction is considered in isolation

FIGURE 4. One Possible Execution Sequence for the Dataflow Problem in Figure 1

38 Communications of the ACM January 1985 Volume 28 Number 1

Articles

(e)

so that program execution is completely asynchronous. The
required synchronization between communicating instruc-
tions is achieved by delaying execution of each instruction
until all its input data are available. The process of determin-
ing that the input is ready is known as token-matching. At
the end of each cycle of the program loop, the ADL instruc-
tions increment the iteration-level tag field so that tokens

0’0

belonging to different cycles may be distinguished. A useful
way of visualizing the effect of this operation is to imagine
that each value of iteration level “colors” the tokens uniquely,
so that only like-colored tokens can match with one another.
This is illustrated by the tokens turning from black to blue as
they pass from the first to the second iteration.

January 1985 Volume 28 Number 1 Communications of the ACM 39

Articles

to Host (168 Kbytesisecond max.)

(14 Ktokensisecond max.)

token packets

Token Queue I

I/O Switch

3 Instruction Store
I

I

executable packets

I

Processing Unit

token packets

from Host (168 Kbytesisecond max.)

(14 Ktokens/second max.)

Figure 5 shows the overall structure of the Manchester pro-
totype dataflow computer system. Tokens are carried in data
packets around a pipelined ring structure (represented by the
thicker arrows), with packets transferred between units at a
maximum rate of 4.37M packets/second. Tokens destined
for the same instruction are paired together in the Matching
Unit. This has limited storage capacity, so that an Overflow
Unit is required for programs with large data sets (the links to
the Matching Unit are represented by the dashed arrows).
Paired tokens, and those destined for one-input instructions,
fetch the appropriate instruction from the Instruction Store,
which contains the machine code for the dataflow program.
The instruction and its input data are forwarded to the Proc-
essing Unit for execution. This produces further tokens,
which circulate back to the Matching Unit to enable subse-
quent instructions. The Token Queue is a first-in-first-out
buffer unit that smoothes out uneven rates of generation and
consumption of tokens in the ring. The I/O Switch module
allows programs and data to be loaded from a host proces-
sor, and permits results to be output for external inspection.

FIGURE 5. Manchester Dataflow System Structure

to iteration level) and SIL (set iteration level) in Figure
1 to ensure correct queuing of the loop termination
control tokens at the inputs to the BRR (branch) in-
structions. Note also the use of explicit DUP (duplicate]
instructions to replicate data required at two or more
subsequent instructions. In order to limit the size of
instructions, the Manchester system imposes a maxi-
mum fan-out from each instruction of two. Chains of
duplicates can be used for larger fan-out. In some cir-
cumstances it is possible for a subsequent duplicate to

be incorporated into the preceeding instruction (as in
Figure 1 for the top-most MLR instruction). The maxi-
mum possible number of inputs to an instruction is also
two: this has to do with the way tokens traveling to the
same instance of an instruction are matched together.
Manchester instructions are thus monadic or dvadic
only. Certain monadic instructions are formed by
dyadic operators with one fixed (literal) input (as also
shown in Figure 1).

The BRR (branch) instructions act as “switches” in

40 Communications of the ACM faanuay 1985 Volume 28 Number 1

the arcs of program graphs and are used to implement
conditionals, loops, and recursion. Each branch is con-
trolled by a Boolean control input, which is shown en-
tering the instruction from the side (usually, but not
necessarily, the right-hand side). If the value of the
token on this input is false, then the other incoming
token (on the top input) is sent down the left-hand
output (labeled F in Figure 1); otherwise the control is
true, and the other input token is sent down the right-
hand output (labeled T). Note that branch instructions
can be used as “gates” that pass a value or destroy it,
according to the Boolean control value, by leaving one
of the output arcs unused (as also shown).

The process of executing a machine-level program is
started by placing tokens representing the initial data
values onto the input arcs of the program graph. Execu-
tion then proceeds by repeated application of the fol-
lowing graph execution rules:

its input data to the Processing Unit, where it is exe-
cuted. Output tokens are eventually produced and
transmitted back toward the Matching Unit to enable
subsequent instructions. The return path passes
through the I/O Switch module, which connects the
system to a host processor, and to the Token Queue,
which is a first-in-first-out buffer for smoothing out
uneven rates of generation and consumption of tokens.

1. Tokens travel (at any finite speed) toward the head
of the arc on which they lie,

2. any instruction that has t
all of its input arcs becomes
execute),

3. any enabled instruction mav start execution as
soon as there is a free instruction processor, and

The ring modules are independently clocked and are
interconnected via asynchronous links capable of trans-
ferring large data packets at rates up to 10 million pack-
ets per second (represented by the thick arrows in Fig-
ure 5). This bandwidth is considerably higher than any
that has been required by the modules yet constructed.
The links to the Host system and the Overflow Unit are
slower by a factor of about 500, although they are to be
upgraded in the near future. The I/O Switch module is
organized as a simple 2 x 2 common bus switch, which
gives priority to input from the ring and selects the
output route by performing a decode of certain marker
bits. It has an internal clock period of 50 ns and is
capable of transferring up to 5 million tokens/second.
This rate is higher than the normal processing rates
achieved by the other modules in the ring.

4. executing instructions place output on their output
arc(s) before terminating and releasing their proces-
sor for further executions (outputs from separate
processors may be interleaved in any order).

Figure 4, on pages 38-39, illustrates the first steps of
one possible execution sequence, based on these rules,
for the dataflow program in Figure 1. In this sequence it
is assumed that a large number of instruction proces-
sors are available so that all possible enabled instruc-
tions are executed simultaneously. It is also assumed
that each instruction executes in one time step, regard-
less of the operation being performed. Different as-
sumptions would produce alternative sequences of exe-
cution, but the same end results would always be pro-
duced. The way data seem to flow through the program
graph during execution gives rise to the term “data-
flow.”

Figure 7, on page 46, illustrates the Token Queue and
Matching Unit modules in detail. Figure 6b, on page 45,
is a photograph of the Matching Unit module. The To-
ken Queue car-prises three pipeline buffer registers
and a circular buffer memory. The token packets con-
tained in the registers and store are 96 bits wide. The
circular memory has a capacity of 32K tokens with 120
ns access time. The clock period is 37.5 ns, giving a
maximum throughput of 2.67 million tokens/second.
This is roughly equivalent to the processing rates
achieved by the remaining ring modules. The discrep-
ancies between the different module rates are due to
the different engineering techniques used.

THE MANCHESTER DATAFLOW PROCESSOR
A block diagram of the prototype Manchester dataflow
system is shown in Figure 5 on the preceding page.
Figure 6a, on page 45, is a photograph of the system.
The basic structure is a ring of four modules connected
to a host system via an I,/0 Switch module. The mod-
ules operate independently in a pipelined fashion. To-
kens are encapsulated in data packets that circulate
around the ring-Token packets destined for the same
instruction are paired together in the Matching Unit.
This unit is organized as a two-tiered hierarchy with a
separate Overflow Unit to handle large data sets. Paired
tokens, and those destined for one-input instructions,
fetch the appropriate instruction from the Instruction
Store, which contains the machine-code for the execut-
ing program. The instruction is forwarded together with

The Matching Unit contains six pipeline registers, a
parallel hash table, and a Is-bit interface to the Over-
flow Unit. Each hash table board comprises a 64 Ktoken
memory plus a 54-bit tag/destination comparator and
interface control. There are 16 such boards at present,
providing a 1Mtoken capacity, with space for expansion
up to 1.25M tokens. Incoming tokens have a 16-bit hash
function computed on their tag and destination fields as
they are passed to the hash buffer register. The com-
puted value is subsequently used to address the parallel
hash table memory banks. Each bank compares its tag
and destination contents with those of the incoming
token, and a match causes the data field of the match-
ing hash location to be output to the store buffer regis-
ter along with the incoming token. The resultant token-
pair packet is 133 bits wide, as shown in Figure 7. If
there is no match between a stored token and the in-
coming token, the incoming token is written into the
first free location accessed by that hash address. Over-
flows occur when all the accessed locations are occu-
pied, in which case the nonmatching incoming token is
sent to the Overflow Unit and indicator flags are set to
notify subsequent tokens of this. Tokens that are des-
tined for one-input instructions (such as “DUP” and

]anuay 1985 Volume 28 A’umber 1 Communications of the ACM

Articles

41

ArtideS

TABLE I. Maximum Averaqe Match Rates versus the Proportion of Bypass Matching Operations

(million $pch&s/
second)

“SIL literal 0” in Figure 1) do not need to find partners
and therefore bypass the hash memory access. Al-
though bypass tokens do not search for a partner, each
is counted as performing a “match” action in determin-
ing the processing rate of the Matching Unit.

The Matching I.Jnit clock period is 180 ns, with a
memory cycle time of 160 ns, giving “match” rates of
1 .ll million matches/second for dyadic operators and
5.56 million bypasses/second for monadic operators.
The average match rate thus depends on the proportion
of executed instructions that receive only one input
token. This proportion is known as the Pby (the propor-
tion of bypass matching operations-see also the Pro-
gram Characteristics section]. Table I iists the maxi-
mum average match rates against thePby (note that, in
practice, the Pby is in the range 0.55 to 0.70).

The Overflow Unit is currently emulated by software
in a microcomputer attached to the overflow interface.
A special-purpose microcoded processor is under con-
struction following the design shown in Figure 7. It will
have an initial capacity of 32 Ktokens and will use
linked lists accessed by a hash lookup. The target mi-
crocycle period is 250 ns, for a processing rate of up to
1 million matches/second.

Figure 8, on page 47, shows the detailed structure of
the Instruction Store and Processing Unit modules. Fig-
ure 6c, on page 45, is a photograph of a typical board.
The Instruction Store comprises two pipeline buffer
registers, a segment lookup table, and a random-access
instruction store to hold the program. The segment
field of the incoming token-pair is used to access a
segment descriptor from the segment table. This de-
scriptor contains a base address for the segment and a
maximum limit for offsets within the segment. The off-
set field of the incoming token is added to the base
address and, provided the limit is not violated, the re-
sulting address is used to access the instruction from
the store. The instruction contents are 70 bits wide, as
shown in Figure 8, and are substituted for the destina-
tion’peld of the input token-pair to form a I66-bit exe-
cutable instruction package. This package is then for-
ward@ for processing. The clock period for the Instruc-
tion Store is 40 ns, with a store access time of 150 ns,
giving a maximum processing rate of 2 million instruc-
tion’ fetches per second.

The Processing Unit comprises five pipeline buffer
registers, a special-purpose preprocessor, and a parallel
array of up to 20 homogeneous microcoded function
units with local buffer registers and common buses for
input and output. The preprocessor executes those few
global operations that cannot be distributed among the

function units. These occur infrequently compared
with the general opcodes, which pass straight through
the preprocessor to be distributed to the first available
function unit via the distribution bus. Each function
unit contains a microcoded bit-slice processor with in-
put and output buffering, 51 internal registers, and 4K
words of writable microcode memory. The internal
word length is 24 bits, with facilities for microcoding
82-bit floating-point arithmetic. Microinstructions are
48 bits wide. The function units compete to transmit
their output onto the arbitration bus and thence out of
the module. The Processing Unit clock has a period of
57 ns. The function unit microcycle period is 229 ns.
The minimum time required to transmit 96 bits
through a function unjt is 13 microcycles, and the
shortest instruction execution time (for DUP with one
output) is 16 microcycles. This leads to a maximum
instruction execution rate of 0.27 MIPS per function
unit. To date, 14 function units have been used suc-
cessfully to achieve processing rates of up to 2 MIPS
(see the Evaluation Results section). With this comple-
ment of function units, the total software parallelism
required to keep all the hardware busy is about 86-fold.

It will be noted that the host and overflow systems
are much slower than the dataflow ring. This has had
two ramifications: Either overflow of the matching
store capacity or interaction with the host processor
leads to a substantial drop in performance.

At present, the sole measurement that can be made
of the system is of the interval between program start
and the arrival at the host of the first output token.
Programs are loaded in advance of their initial data.
The data are then queued in the Token Queue, where
reads are disabled until the last input token has been
transmitted from the host. At this point Token Queue
reads are enabled, and timing commences in the host: It
will be halted by the first arrival from the output port
of the Switch. Benchmark programs are usually organ-
ized to produce a single output token right at the end of
their execution. By repeatedly running each program
with different numbers of active function units, the
speedup efficiency of the system can be assessed, as
illustrated in The Benchmark Process sect@.

SYSTEM EVALUATION STRATEGY
There are three objectives for evaluation of the proto-
type hardware:

1. to tune the prototype hardware for optimum per-
formance,

2. to determine the nature of software parallelism that

42 Communications of the ACM January 1985 Volume 28 Number I

Articles

can be effectively exploite& by the hardware, and
3. to determine the relative value of dataflow MIPS

(compared to conventional MIPS).

The nature of the prototype hardware indicates that a
three-phase approach to evaluation might be appropri-
ate. The first phase is to assess performance for those
programs that are small enough to execute entirely
within the matching store limit (i.e., which do not gen-
erate overflow requests). This is the phase reported be-
low. It comprises three subphases:

1. plotting speedup curves,
2. interpreting the results, and
3. rectifying any discovered hardware problems.

The second evaluation phase will involve analysis of
programs that generate mdtlerate amounts of overflow.
Bottlenecks in the overflow loop will eventually be
identified and subsequently rectified, although this
cannot be undertaken with the existing overflow proc-
essor system. The third phase involves the develop-
ment of a hierarchical memory to cope with programs
that generate enormous quantities of overflow. This is
regarded as a longer term objective, which will be ad-
dressed initially through the Structure Store Unit dis-
cussed in the Future Directions section.

For the evaluation that follows, analysis is restricted
to overflow-free programs, although many other char-
acteristics of the codes have been varied. These charac-
teristics were measured by means of a crude software
simulator for the dataflow system.

PROGRAM CHARACTERISTICS
In order to measure program characteristics, a dataflow
simulator that makes many simplifying assumptions
about the system architecture is used. The principal
assumptions made are

1. that each instruction executes in the same time
(execution therefore proceeds in discrete equal
time steps),

2. that an unlimited number of function units can be
used during any one time step, and

3. that output from any executed instruction can be
transmitted to an enabled successor instruction
within the execution time period.

Of course these are somewhat unrealistic assumptions,
but they are helpful in making an approximate charac-
terization of each program.

The two fundamental time measurements recorded
for each program are Sl, the total number of instruc-
tions executed (which would be the number of time
steps required if only one function unit was available),
and Sinf, the number of simulated time steps required
(with an unlimited number of function units perma-
nently available). The ratio Sl/Sinf = avePara gives a
crude measure of the average parallelism available in
the program. A more comprehensive trace of the time
variance of program parallelism can be obtained if
needed.

The simulator also records utilization of the system
memories, as follows:

Codesize = the size of the machine-code program (in
g-byte instructions),

maxTQsize = the maximum occupancy of the Token
Queue circular buffer store (in 12-byte
tokens), and

maxMSsize = the maximum occupancy of the Match-
ing Store hash table (also in 12-byte to-
kens).

The proportion-the Pby-of executed instructions
that bypass the matching store is also recorded. This
corresponds to the fraction of one-input instructions ex-
ecuted. An important measure of performance for nu-
merical computation is the execution rate expressed in
MFLOPS [million floating-point operations per second).
Different machine architectures and programming sys-
tems can be compared by measuring their respective
MIPS to MFLOPS ratios. Consequently, this ratio is re-
corded by the simulator.

Looking at one cycle of the integration program in
Figure 1, it can be easily seen that Sl = 16. It is not
immediately obvious that Sinf = 7, but this can be
checked by locating the longest cycle of dependent in-
structions (i.e., that forming the value of X, which is
input to the CGR instruction). Simulation df 50 cycles
(i.e., the complete program of Figure 3) gives Sl = 808
and Sinf = 356. Consequently, the average parallelism,
avePara, is 2.3. The total Codesize is 17 instructions
(153 bytes), maxTQsize is 5 tokens (60 bytes), and
maxMSsize is 3 tokens (36 bytes). The Pby is 0.625, and
the ratio MIPS/MFLOPS is 2.7 (i.e., 2.7 instructions are
executed on average for every useful floating-point op-
eration).

For comparison, the code compiled from the SISAL
version of the integration program, shown in Figure 2,
produces the following characteristics: Sl = 2455,
Sinf = 829, avePara = 3.0, Codesizq =,80 (720 bytes),
maxTQsize = 11 (132 bytes), maxMSsize = 15 (180
bytes), Pby = 0.628, and the MIPS/MFLOPS ratio = 8.1.
This comparison gives a rough indication of the relative
efficiencies of compiled and hand-written code. For
both programs, DUP (duplicate) accounts for 25 percent
of all executed instructions.

THE BENCHMARK PROCESS
A total of 14 benchmark programs with 29 different
input data sets has been analyzed for the following per-
formance evaluation. The programs are listed in Table
II, along with their characteristics, as measured by a
simulator. A variety of problem types is represented,
and several source languages have been used. MAD is a
single-assignment language like SISAL, and MACRO is
an intermediate-level language like TASS. The effect of
program parallelism has been assessed for both similar
and distinct programs. Parallelism for each particular
code was varied by adjustment of the input data values.
Many different patterns of time variance of parallelism

January 1985 Volume 28 Number 1 Communications of the ACM 43

Articles

LAPLACEAfl MACRO -58 290.1 f2
LAPLACEAJ2 MACRO 58 567,200
SUM/l MAD 107 30
S!JM/2 MAD 107 402
SUM/3 MAD 107 1,208
SUM/4 MAD 107 2,820
SUM/5 MAD 107 9,082
SUM/6 MAD 107 20,428
SUM/7 MAD 107 44,980
SUM/S MAD 107 123,472
INTEGRATE MAD 263 2,051
FFT/l MACRO 606 13,989
FFT/P MACRO 606 14,086
FFT/3 MACRO 606 15,374
FFT/4 MACRO 606 32,661
MATMULT SISAL 657 100,288
LAPtACEB SISAL 811 191,984
PLUMBUNEI MACRO 628 7,531
PLUMBLINE:! MAD 1,462 19,076
GAUSS SISAL 3.201 216,723
LOGlCSlMfl MACRO 3,819 64,660
LOGICSIM/2 MACRO 3,819 346,700
SPLICE SISAL 6,957 5,031,909
RSIM/l SISAL 23,996 189,746
RSIM/P SISAL 24,314 1,!35,912
RSIM/3 SISAL 24,477 851,137
RS!M/4 SISAL 24,850 1,108,104
SIMPLE SISAL 26,365 519,601
IV/l SISAL 39,091 126,991

134
210

2
5

:8
50

100
200
500

12
53
53
27

105
236
210

48
21
60

ii
30
15
18
17
20
63
19

0.70 449
0.70 701
0.67 8
0.62 22
0.61 56
0.61 109
0.81 418
0.61 824
0.61 1,628
0.61 6,058
0.64 41
0.70 211
0.70 211
0.69 152
0.70 419
0.58 6,001
0.60 1,987
0.61 208
0.56 299
0.57 1,260
0.63 339
0.63 1,779
0.69 658
0.61 147
0.60 259
0.60 403
0.62 691
0.59 1.254
0.62 561

640
1,000

4

iill
220
786

1,515
3,293

11,279
106
794
794

1,168
1,834

15,074
15,744

282
484

18,457
905

3,785
6,921
1,894
3,563
2,922
4,437
9,835
3,711

-- -2,16?
2,707

17
79

120
141
182
204
225
247
166
264
264
569
ato
425
915
156
908

3,620
1,227
5,067

165,647
12,611
62,563
50,866
54,048
8,194
6,571

0.140
0.140
0.185
0.170
0.171
0.172
0.172
0.172
0.172
0.1?2
0.158
0.112
0.112
0.111
0.109
0.100
0.114
0.173
0.131
0.106
0.175
0.175
0.111
0.140
0.137
0.139
0.128
0.117
0.117

15.9
15.6
-
-

-

39.4
11.7
11.7
11.1
11.3
5o.r
37.0

-
-

-
-
-

39.0
-

These data were obtained from software simulation of the
Manchester prototype dataflow machine. The simulator imi-
tates sequential execution of programs but also keeps track
of the shortest path through the graph, making the assump
tion that each instruction could be executed in an identical
time period. The ratio of the total number of instructions
executed (Sl) to the length of the shortest path (Sin9 gives a
rough measure of the amount of parallelism in the graph
(avePara). Store usage is recorded as the maximum simu-
lated store requirement for the Token Queue (maxTQsize)
and the Matching Store (maxMSsize), assuming that neither
store overflows. The final recorded characteristic is the pro-
portion (Pby) of one-input instructions executed, since these
bypass the Matching Unit, which constitutes the major bottle-
neck in the ring. The variation of parallelism with time is not
accounted for since it appears to be unimportant in predict-
ing the speedup obtained when additional parallel resources
are used to execute the program. The characteristics of a

were found. In addition, code sizes and store occupan-
cies varied considerably. Note, however, that the Pby is
&I the range 0.56 to 0.70 for all programs. -

As mentioned above, the onIv measureinent that can
be made on the prototype hardware is the execution
time until the arrival at the host of the first output
token with a given number of active function units, For
n function units this time is denoted Tn, where n has
been varied from I to 14. Knowing the simulator-

variety of benchmark programs that have been executed on
the prototype Manchester dataflow system are listed. The
smaller programs have been written in a macroassembler
language, MACRO, which was a forerunner to the template
assembler, TASS. The lasger programs have been written in
the high-level single-assignment languages MAD and SISAL.
The final columns record hardware execution characteristics
for the benchmark programs. The first of these (MIPS/FU)
shows the average processing rate with a single active func-
tion unit. This value is related to the average number of
microinstructions executed per machine instruction. Low val-
ues imply the use of many cornpIe: operators, such as the
floating-point trigonometric functions. The final column
(MIPS/MFLOPS) is recorded for programs that make heavy
use of floating-point arithmetic and indicates the average
number of instructions executed per “useful” floating-point
operation.

derived characteristics of each program, the following
quantities can be derived from the values of Tn:

Pn = Tl/Tn:
the effective number of function units when n
is active,

En = lOOPn/n:
the percent utilization of n active function
units,

44 Communications of the ACM januay 1985 Volume 28 Number 1

Reports and Articles

FIGURE 6a. The Manchester Prototype Dataflow Computer

Mn = Sl/Tn:
the actual MIP rate of n active function units,
and

Mn’ = nSl/Tl:
the potential MIP rate of n active function
units.

A typical set of measurements (for the SIMPLE pro-
gram) is shown in Table III.

EVALUATION RESULTS
For each program and data set run together, the values
of Tn, Pn, En, Mn, and Mn’ were tabulated. To interpret
these values as measures of the speedup performance of
the system, Pn is plotted against n, as shown in Figure
11 (for the RSIM/l program). Notice how lines of con-
stant function unit utilization appear on this graph. To
compare the results for different kinds of programs, the
results are better presented after normalization by a
factor Sl/Tl = Ml. This entails plotting Mn against
Mn’ (actual MIPS versus potential MIPS), as also shown
in Figure 9, on page 48.

The shape of the speedup curve is typical of the re-
sults obtained when parallelism in a program is limited.
There is an initial portion in which speedup is nearly

FIGURE 6b. The Matching Unit Module

FIGURE 6c. A Typical Board

TABLE Ill. A Typical Set of Measurements of the Execution Time that
Elapses before the First Output Token Arrives at the Host

Function Runme ACWII PptaMltel
Unitr C-W SpeeduP EffiCie& f&lPS MIPS :
(nt @fO ml ow wnt (MIA’1

1 4.4215 1.00 100.0 0.117 0.117

2 2.2106 2.00 100.0 0.235 0.235

3 1.4751 3.00 99.9 0.352 0.352

4 1.1077 3.99 99.8 0.469 0.470

5 0.6886 4.98 99.5 0.585 0.587

6 0.7429 5.95 99.2 0.699 0.705

7 0.6400 6.91 98.7 0.812 0.822

8 0.5643 7.84 97.9 0.921 0.940

9 0.5071 8.72 96.9 1.024 1.057

10 0.4629 9.55 95.5 1.122 1.175

11 0.4301 10.28 93.5 1.208 1.292

12 0.4038 10.95 91.3 1.287 1.410

fanuay 1985 Volume 28 Number 1 Communications of the ACM 45

Articles

from Switch (52.44 Mbytes/second max)

1

I Token Queue Input Buffer
I

The internal structure of some of the hardware modules in
the Manchester prototype machine are shown. The thick ar-
rows and the dashed arrows correspond to those in Figure
5; the thin arrows indicate data paths that are internal to
each module. The Token Queue comprises a 32K-word cir-
cular FIFO store with three surrounding buffer registers. The
store and registers are 96 bits wide and contain token pack-
ages formatted as follows:

I Token Queue Store Buffer
I

I Token Queue Output Buffer
I

““1Fdmax)

I Matching Unit Merge Buffer

(data (37 bits), tag (36 bits), destination (22 bits),
marker (1 bit))

32 K tokens
The Matching Unit is based on a 1.25M-word pseudoasso-
ciative memory with six pipeline registers in the main ring and
two buffers interfacing with the Overflow Unit. The memory is
used to store unmatched tokens while awaiting their part-
ners. Its associative operation is achieved by accessing a
parallel store using an appropriate hash function. Tokens
destined for one-input instructions do not need to match with
partners; they pass straight through the unit. Other matching
actions are also permitted, according to the 3-bit “matching
function” specified in the destination field of the token. The
associative “name” used for matching comprises the token’s
tag together with the instruction address part of the destina-
tion. The 22-bit destination field is therefore split as follows:

(instruction address (18 bits), left/right input (1 bit),
matching function (3 bits))

Overflow &zJ bus

I Matching Unit Store Buffer
I

cl

I *b
Overflow

l * I/O Control
4t

h
I
I I.

Overflow Send Buffer Matching Unit Split Buffer

The Overflow Unit handles tokens
that cannot be placed in the par-
allel hash table because they en-
counter a full hash entry. There is
no attempt to compute a new
hash function since it does not
matter if subsequent tokens
match with their partners before
the overflowing token matches
with its partner. The asynchro-
nous nature of the dataflow
model ensures that the computa-
tion will yield determinate results
regardless of the order in which
tokens are matched. Overflow to-
kens are stored in linked lists in
the Overflow Unit, which contains
a microcoded processor together
with data and pointer memories.

1 Matched token pairs are sent out
h in packets with the following for-
h mat:
I

(data (37 bits), data (37 bits),
32K-1 M : tag (36 bits), destination (22 bits),
tokens h marker (1 bit))

I

Matching Unit Output Buffer

to Instruction Store (74.29 Mbytes/second max)

FIGURE 7. A Close-Up Look at the Token Queue, Matching Unit, and Overflow Unit

46 Communications of the ACM Ianua y 1965 Volume 28 Number 1

Articles

from Matching Unit (74 29 Mbytes/second max.)

133.bit
token pairs

Instruction Store Input Buffer

64 Entries

1 64K Instructions

1
Instruction Store Output Buffer z!;
Preprocessor Input Buffer

Preprocessor

1

I Preprocessor Output Buffer
I

I Function Unit Distribute Buffer

Details of the remainder of the Manchester prototype machine are
shown. The Instruction Store comprises a random-access memory and
two registers. The 1 a-bit virtual instruction addresses have the format

(segment (6 bits), offset (12 bits))

The segment field accesses a 20-bit base address in the segment table
and checks that the specified offset is within the limits of the segment.
If it is, the offset is added to the base and used to read the instruction.
Instructions are formatted in one of the following forms:

(opcode (10 bits), destination (22 bits))
(opcode (10 bits), destination (22 bits), destination (22 bits))
(opcode (10 bits), destination (22 bits), literal data (37 bits))

The resulting packet is ready for execution and is in the form

(data (37 bits), data (37 bits), opcode (10 bits), tag (36 bits), destination
(22 bits), destination (22 bits (optional)),

marker (1 bit))

A small number of instructions are executed in the specialized preproc-
essor module, but the majority are passed into one of the homogenous
microcoded function units via the distribution bus. Instructions are exe
cuted independently in their allotted function unit, and the eventual
output is merged onto the arbitration bus and thence out of the Proc-
essing Unit toward the Switch.

arbitration bus
(52.4 Mbytes/second max.)

I

Function Unit
I

L

0
I,

Function Unit b

(91.;7 Mbytes/second max.)
distribution bus

Function Unit Arbitration Buffer

I

Processing Unit Output Buffer

to Switch (52.44 Mbytes/second max.) 7 96-bit tokens

FIGURE 8. Details of the Instruction Store and Processing Unit

]anuay 1985 Volume 28 Number 1 Communications of the ACM 47

Articles

2.c

1.8

actual
MIPS

1.6

1.4

1.2

1.0

0.8

0.6

0.4 2.96

0.2

utilization

efficiency

Pn

8.65
8.35
7.99
7.52

6.94

6.29

60%

5.55

4.75

3.88

1.99

I .oo

“’ I +H &, 1 2 3 4 5 6 7 8 9 10 11 12 *
I I I I I I I I I I I I

I I I I 1 I I I I I b

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

potential MIPS

80%

The speedup obtained when additional hardware parallelism ized so that Pl = 1 .O. Second, they demonstrate the effi-
is introduced into the prototype ring by allowing extra func- ciency of utilization of n function units. This rate should ide-
tion units to participate in executing the program RSIM/l is ally be constant at 100 percent to provide linear speedup as
shown. The curves are obtained by measuring the execution extra function units are added, but in practice it decreases as
time (Tn) associated with the use of n function units. They n increases. Third, the curves give the absolute processing
can be interpreted in several different ways. First, they show rate (in MIPS) achieved by a system with n function units for
the effective processing rate of n function units (Pn), normal- each program.

48 Communications of the ACM lanuary 198.5 Volume 28 Number 1

FIGURE 9. A Plot of the Speedup Performance of the Prototype

Articles

linear in n (and where En is thus close to 100 percent),
followed by a gradual deterioration in utilization until a
program-constrained limit is reached. In the case of the
RSIM/l program, avePara is only 15-fold, so the effec-
tive use of between 8 and 9 function units when 12 are
active is acceptably efficient.

It is, of course, possible for a highly parallel program
to reach a hardware-constrained limit before it runs out
of program parallelism. The effect of this behavior,
viewed on speedup curves such as in Figure 9, will be
similar to the software-limited case described above,
except that the limit will be imposed by the match rate
achieved in the Matching Unit, as shown in Table I.
With the maximum number of function units limited to
14, program runs did not reach the current maximum
match rate of around 2 MIPS, and so this effect was not
observed.

In another work,] we have published superimposed
speedup curves for many of the benchmark programs
listed in the previous section. These curves show the
effects of variable instruction mix and variable program
parallelism. It is noticeable that when floating-point in-
structions (which are microcoded in the function units
and hence take much longer to execute than integer
operations) are used, the potential MIP rate for each
function unit is correspondingly smaller. However, the
major pattern to emerge from this study is the impor-
tance of the parameter avePara in determining the
shape of the speedup curve for various programs. Pro-
grams with similar values of avePara exhibit virtually
identical speedup curves. The higher the value, the
closer the curve is to the 100 percent utilization rate.
This seems to indicate that this crude approximation
the overall average parallelism of a code is all that is
necessary for an accurate prediction of its speedup
curve. This annlies regardless of factors such as time

to

Gee of parallelism, the source language used, the
proportion of one-input instructions executed, etc. It is
surprising that such a simple measure should give such
a constant indication of the pattern of use of processing
resources, but it does help to answer the question of
what nature a program has to have if it is to be suitable
for execution on this dataflow system. A program is
suitable if it has a value of avePara in the region of 40
or more. Significantly, the larger applications codes ex-
hibit the same patterns as the simpler benchmarks.

Another noticeable feature of the study is that there
is an unusable area of potentially high function unit
utilization above an execution rate of about 1 MIPS.
Since this occurs for programs with large values of
avePara, it seems unlikely that this performance area
has been lost because of a lack of program parallelism,
and so other causes have been sought.

One suggestion is that the use of multiple-function
units in a pipeline causes contention problems in the
Processing Unit arbitrator and thus leads to perform-

’ Gurd. J. R.. and Watson, 1. A preliminary evaluation of a prototype dataflow
computer. In Proceedings of the Ninfh IFIPS World Computer Congress, R.E.A.
Mason. Ed. Elsevier North-Holland. New York. Sept. 1983.

ante degradation. Another possibility is that disparate
execution times in the pipeline stages lead to pipeline
“starvation,” a well-known cause of performance degra-
dation. Two experiments were designed to determine
the actual cause.

The first experiment confirmed that programs are not
responsible for restricting available concurrent activity.
The method adopted was to take a well-understood
program (the double-recursive SUM code) and force it
into a highly parallel form by artificially excluding
those parts known to be serial in nature. In this pro-
gram the serial sections occur at the start and end of
each run. They can be eliminated by subtracting the
run times for two large, but different, data sets. The
data sets chosen were those that generated individual
avePara values of 80 and 150. The timing that results is
for a simulated code that has an overall avePara value
greater than 700, with no serial sections.

The second experiment was designed to eliminate
the effects of pipeline starvation caused by unsatisfied
match requests in the Matching Unit. This was
achieved by running a test program with Pby = 1, in
which all instructions have one input and the Matching
Unit is always bypassed. In this mode the Matching
Unit can process tokens at a rate equivalent to nearly
6 MIPS, and it can be guaranteed that the processing
rate is limited solely by the number of available func-
tion units.

The results of these experiments show three things.
First, the performance degradation above the l-MIPS
execution rate occurs even when the effect of serial
code has been eliminated. Second, programs that al-
ways bypass the Matching Unit are able to enter the
“forbidden” zone. Third, where parallelism is limited
solely by software, the totally flat curves exonerate the
Processing Unit arbitrator because they show that per-
formance is never degraded when function units are
added.

The implication of these results is that there must be
a deficiency in the pipeline buffering between the
Matching Unit and the Processing Unit. The system
cannot cope with prolonged sequences of unsuccessful
match operations without starving the function units of
input. It has subsequently been established that addi-
tional buffering at the output of the Matching Unit sig-
nificantly reduces the falloff in speedup curves for
highly parallel programs.

It is not clear whether an average instruction exe-
cuted in a dataflow system is more or less powerful
than an average conventional instruction. This casts
some doubt on the value of the MIPS rates quoted
above. Consequently, the relative value of dataflow
MIPS has been assessed by studying the MIPS/MFLOPS
ratios obtained for various programs. These ratios have
been measured for high-speed conventional systems,
such as the CDC6600, CDC7600, and Cray-1, by users,
such as Lawrence Livermore National Laboratory, who
have large floating-point computational requirements.
It has been discovered that assembly-language program-

januay 1985 Volume 28 Number 1 Communications of the ACM 49

Articles

mers for such systems can achieve between three and
four MIPS/MFLQPS, whereas good FORTRAN compil-
ers achieve between five and seven MIPS/MFLOPS.
The corresponding ratios for the integration program of
Figures 2 and 3 (2.7 for assembler and 8.1 for SISAL)
indicate that the measured dataflow MIPS have the po-
tential to match the power of conventional-sequential
MIPS. However, ratios for larger SISAL programs are
often much bigger than this, ranging from 20 to 50. This
indicates that present compilation techniques require
considerable improvement.

This opinion is reinforced by a comparison of the
dataflow results with the run times achieved for con-
ventional implementations of some of the benchmark
programs described above. For example, Table IV com-
pares the dataflow run times for the RSIM family of
programs with those obtained for versions written in
the C language and executed on a VAX11/780 system.
It can be seen that the current SISAL/dataflow system
is about five to ten times slower than the C/VAXll/
780 system.

More of these direct comparisons are being made be-
tween the dataflow system and conventional machines.
They involve two categories of competitive run-time
measurement for a range of benchmark programs. The
first category uses single-source programs, written in
SISAL, to evaluate different SISAL implementations.
The second allows rewriting of programs, to assess the
impact of code optimization in different language sys-
tems. The most useful comparisons will be with simi-
lar-sized sequential systems, such as the VAX 11/780.
The VAX SISAL compiler, expected to be ready in early
1985, will enable comprehensive single-source tests to
proceed. Tests in the second category await the transla-
tion of more programs from conventional languages
into SISAL.

FUTURE DIRECTIONS
For the immediate future, the results presented here
should provide ample motivation for improving the effi-
ciency of the generated code for the SISAL/dataflow
system. This objective will be pursued with a combina-
tion of software and hardware enhancements to tackle
inefficiencies in the compiler system and in the ma-
chine architecture. It is believed that system perform-
ance will exceed that of conventional language systems
on the VAX11/780 for a variety of applications within

TABLE IV. Comparison of VAX and Dataflow Run Times for RSIM
Programs (all run times in seconds)

RSIM/l 0.04 1.36 0.16
RSIM/2 0.10 8.26 0.89
RSIM/S 0.08 6.12 0.68
RSIM14 0.28 8.67 , 0.88

the next year. In the longer term, it should be possible
to use the extensible nature of the dataflow hardware
to provide much higher computing rates by building a
dataflow multiprocessor. We now consider these in-
tended improvements and the benefits we expect them
to provide. Implementation of all these various en-
hancements should significantly improve the SISAL/
dataflow system performance reported earlier.

Improvements to the code generation system are
being made by letting the SISAL compiler implementa-
tion influence the design of the dataflow instruction
set. Frequently occurring combinations of instructions
are being amalgamated into new “super” instructions,
with attendant reduction in Sl and Sinf parameters and
improved execution speed. For example, the introduc-
tion of the SAZ (set activation name and zero index)
instruction reduced Codesize and Sl by about 10 per-
cent for most programs.

Improvements can also be realized through more
conventional optimization techniques, such as common
subexpression elimination, removal of constants from
loops, etc. Researchers at Lawrence Livermore have im-
plemented several such optimizations for an intermedi-
ate phase of the SISAL compiler, and these also reduce
Codesize and Sl by about 10 percent.

Experience with the larger benchmark programs in-
dicates that the overhead associated with storing data
structures in the Matching Unit is excessive. Each
stored token carries its tag and destination individually,
which leads to replication of information that should be
compacted. Two schemes have been proposed to alle-
viate this waste. The first involves the creation of a
matching store hierarchy, using a scheme analogous to
a conventional paging system. This is difficult to design
unless it proves consistently feasible to identify areas of
locality in dataflow programs. With the present state of
knowledge, this cannot be guaranteed. Consequently,
an alternative scheme involving the construction of a
specialized Structure Store Unit has been adopted. This
unit will be attached to the processing ring by a second
Switch module located between the Processing Unit
and the I/O Switch. A prototype implementation
should be operational early in 1985.

The effect of a Structure Store Unit on system per-
formance has been studied using an enhanced version
of the simulator described in the Program Characteris-
tics section. The programs used were compiled from the
SISAL language using a modified compiler. For a typical
program, Sl is reduced by about 40 percent. Much of
this improvement results from the removal of spurious
parallelism, causing the overall parallelism to drop
slightly.

Unfortunately, the amounts of Matching Unit and
Token Queue store used are high, whether or not the
Structure Store Unit is used. It is therefore important to
assess matching store usage and to optimize the han-
dling of Matching Unit overflows. Studies in this area
are hampered by the slow speed of the current host
system and overflow processor interfaces, and so up-

50 Communications of the ACM January 1985 Volume 28 Number 1

Articles

graded versions of these are being installed. A longer-
term project would involve investigating more general
ways of reducing the amount of matching store and
Token Queue store required for a computation. This
would require the design of an “intelligent” Token
Queue that could schedule sections of highly parallel
programs in such a way as to minimize these storage
requirements. Preliminary studies of recursive divide-
and-conquer algorithms indicate that there are enor-
mous potential savings in this area.

It is not feasible to add extra function units to the
Processing Unit indefinitely, since the match rate in the
Matching Unit will eventually limit the processing rate.
An important objective of research into dataflow archi-
tecture is thus to establish techniques for constructing
and utilizing multiprocessor systems in which the
matching process is distributed. In a dataflow multipro-
cessor, a number of processing rings are connected to-
gether via an interconnection network. The network
allows any ring to send results to any other ring. The
choice of network is critical to large system perform-
ance. Some networks have an equal delay for all com-
munications; other networks penalize some transfers
more than others. There is also a relationship between
the power of each processor and the total size of the
network. Some systems emphasize simplicity of proces-
sor design and thus require large communications nets.
Other systems have powerful processors and therefore
need smaller networks to achieve the same overall
computing power. The Manchester system falls into the
latter category.

There are no present plans to construct a Manchester
multiprocessor using the present system design and
technology. However, such a system would be attrac-
tive if the basic processing ring could be implemented
in a higher density VLSI technology. Consequently,
simulation of a multiprocessor based on the existing
processing ring has been undertaken. Performance re-
sults for systems containing up to 64 processing rings
have shown respectable speedups for some of the
benchmark programs reported above.

The key requirement for high performance in any
multiprocessor structure is uniform distribution of
work across the processors. This can be achieved at
compile/link time, but often requires intervention from
the applications programmer and always requires
knowledge of the system configuration. It is more desir-
able to achieve the distribution automatically, whereby
the compiler/linker would not need to know the con-
figuration. The fine grain of parallelism in dataflow
would facilitate this, although other substantial prob-
lems persist. Various load/run-time “split functions”
have been investigated to distribute the work load.
These use hashing techniques similar to those used in
the pseudoassociative Matching Unit.

It should be noted that the ability to use this kind of
“randomizing,” postcompilation split function consti-
tutes the major advantage of dataflow over more con-
ventional, coarse-grain multiprocessors. In the latter

system it is necessary for the programmer to direct the
distribution of code across the processors, since load-
time splitting is currently too inefficient and expensive.
It may be that future research will uncover automatic
coarse-grain split methods, but it is by no means clear
that this can be achieved.

CONCLUSIONS
The Manchester project has constructed an operational
tagged-token dataflow processor large enough to tackle
realistic applications. A small range of benchmark pro-
grams has been written and executed on the hardware
to provide evaluation data. The preliminary evaluation
has returned several important results: _First, it has es-
tablished that a wide variety of programs contains suffi-
cient parallelism to exhibit impressive speedup in rela-
tion to the number of active function units in a single-
ring system. Second, it has been established that the
crude measure, Sl/Sinf, of program parallelism is in
practice a useful indicator of the suitability of a pro-
gram for the architecture, regardless of the time vari-
ance of the parallelism. Third, a weakness in the pres-
ent pipeline implementa=has been identified, the
rectification of which provides better speedup charac-
teristics. Fourth, the effectiveness of the supporting
software systkm has been improved by studying the
ratio of instructions executed for each useful floating-
point operation in certain large computations. Finally,
the need for a Structure Store Unit has been ez
lished and specifications for its design have been deter-
mined.

It is important, however, to note that this is only an
initial attempt at evaluation. In particular, more work
is required to determine the behavior of programs that
cause matching store overflow. There is also a need to
study techniques for parallel algorithm design and
transformation and low-level code optimization. In
highly parallel programs there is a need to control the
amount of active computation by scheduling work
within the Token Queue so that matching store re-
quirements are minimized. There also remains the
study of multiring systems, in particular the investiga-
tin and evaluation of suitable split functions.

The major long-term interest in dataflow techniques
will be in the construction and performance of multi-
processor systems. It is particularly important to know
how dataflow systems should be designed for imple-
mentation in VLSI, and to be certain that effective soft-
ware techniques are available for utilizing the hard-
ware. An important advance in this area is the an-
nouncement by NEC of a dataflow image-processing
chip, the uPD7281 Image Pipeline Processor, which was
to be on the market toward the end of 1984.

Acknowledgments. The authors gratefully acknowl-
edge the assistance of their present and former col-
leagues in the Dataflow Research Group at Manchester,

]anua y 1985 Volume 28 Number 1 Communications of the ACM 51

Articles

particularly Katsura Kawakami, Adrian Parker, and
John Sargeant, who have assisted with the preparation
of this paper. Construction of the prototype hardware
and software systems has been funded by research
grants GR/A/74715, GR/B/40196, and GR/B/74788
from the Science and Engineering Research Council of
Great Britain under its Distributed Computing Systems
Program. The work has also been supported by an Ex-
ternal Research Program grant from Digital Equipment
Corporation, the staff of which has written certain of
the benchmark programs.

Further Reading. The first four items will serve as
useful introductory material for the nonspecialist. On a
more specific level, the earliest reference to graphical
programming appeared in an obscure internal report
within the National Cash Register Corporation in 1958
[5]; a similar idea was published at an MIT Conference
in 1962 [6]. The first comprehensive theory for a graph-
ical model of computation, and the most frequently ref-
erenced pioneer dataflow paper, was published in 1966
[i’]. This was followed by the publication of two influ-
ential theses on dataflow computation models at Stan-
ford [8] and MIT [9]. The term “dataflow” was coined
in the first of these theses.

There followed a phase of prolific work at MIT by
Jack Dennis, who is usually regarded as the instigator of
the concepts of dataflow computers as they are now
understood. His Computation Structures Group has
been responsible for most of the theoretical and devel-
opment work for static dataflow systems [lo-121. Sub-
sequent static systems have been constructed at CERT-
ONERA in Toulouse [13] and Texas Instruments [14].

One of Dennis’ early papers [ll] suggested the notion
of dynamic dataflow. This idea was refined at MIT (in
the form of code-copying systems) [15], at Utah by Al
Davis [16], and at UC1 and MIT by Arvind (in the form
of tagged-token systems) [17]. The development of
tagged-token dataflow occurred at Manchester simulta-
neously and independently [18].

The principles of single-assignment programming
languages were first published in 1968 [19]. The term
“single assignment” was coined by Chamberlin in 1972
[20]. These ideas have subsequently been incorporated
into dataflow projects, culminating with the design of
the SISAL language in 1983 [21].

REFERENCES
1. IEEE. Special issue on dataflow systems. ZEEE Comput. 15, 2 (Feb.

1982).
2. Gurd, J.R., Watson, 1.. Kirkham, CC., and Glauert. J.R.W. The data-

flow approach to parallel computation. In Distribufed Computing, F.B.
Chambers, D.A. Duce, and G.P. Jones, Eds. APIC Studies in Data
Processing. vol. 20, Academic Press, New York, Sept. 1984.

3. Glauert, J.R.W. High level languages for dataflow computers. State of
the Art Rep. Ser. IO. Number 2, on Programming Technology, Perga-
man-Info&h. Maidenhead. U.K.. Mar. 1982.

4. Treleaven. P.C.. Brownbridge, D.R., and Hopkins, R.P. Data-driven
and demand-driven computer architecture. ACM Compuf. Sure. 14,l
(Mar. 1982). 93-143.

5. Young. J.W., and Kent, H.K. Abstract formulation of data processing
problems. Intern. Rep., Product Specifications Dept., The National
Cash Register Company, Hawthorne, Calif., 1958.

6. Brown, G.W. A new concept in programming. In Computers and the
World of the Future, M. Greenberger, Ed. MIT Press, Cambridge,
Mass., 1962.

7. Karp. R.M.. and Miller, R.E. Properties of a model for parallel com-
putations: Determinacy, termination and queue@ SIAM J. Appt.
Math. II, 6 (Nov. 1966), 1390-1411.

6. Adams, D.A. A computational model with data flow sequencing.
Ph.D. thesis, TR/CS-117, Dept. of Computer Science, Stanford Univ.,
Calif.. 1968.

9. Rodriguez. J.E. A graph model for parallel computation. Ph.D. thesis,
MIT/LCS/TR-64. Laboratory for Computer Science, MIT, Cam-
bridge, Mass., 1969.

10. Dennis, J.B.. Fosseen. J.B., and Linderman. J.P. Data Flow Schemas.
Lecture Notes in Computer Science, vol. 5. Springer-Verlag, New
York, 1974.

11. Dennis. J.B. First Version of a Data Flow Procedure Language. Lecture
Notes in Computer Science. vol. 19. Springer-Verlag. New York,
1974.

12. Dennis, J.B., and Misunas, D.P. A preliminary architecture for a
basic data flow architecture. In Proceedings of the 2nd Annual Sympo-
sium on Computer Architecture. IEEE Press, New York, Jan. 1975, pp.
126-132.

13. Syre. J.C., et al. LAU system-A parallel data-driven software/hard-
ware system based on single-assignment. In Parallel Compufers-
Parallel Mathematics. M. Feilmeier. Ed. Elsevier North-Holland. New
York, 1977.

14. Johnson, D. Automatic partitioning of programs in multiprocessor
systems. In Proceedings of fhe IEEE COMPCON, IEEE Press, New
York, Apr. 1980.

15. Miranker. G.S. Implementation of procedures on a class of data flow
processors. In Proceedings of the IEEE International Conference on Par-
allel Processing, IEEE Press, New York, Aug. 1977.

16. Davis, A.L. The architecture and system method of DDMl: A recur-
sively structured data driven machine. In Proceedings of the 5th
ACM Symposium on Computer Architecture. SIGARCH Newsl. 6. 7
(Apr. 1978), 210-215.

17. Arvind. Gostelow. K.P., and Plouffe, W. An asynchronous program-
ming language and computing machine. Tech. Rep. TR114a, Dept. of
Information and Computer Science, Univ. of California, Irvine, Dec.
1978.

18. Gurd, J.R., Watson, I., and Glauert, J.R.W. A multilayered data flow
computer architecture. Intern. Rep.. Dept. of Computer Science,
Univ. of Manchester, England. Jan. 1978.

19. Tesler, LG. A language design for concurrent processes. In Proceed-
ings of AFIPS Spring joint Computer Conference [Atlantic City, N.J.,
Apr. 30-May 2). AFIPS Press, Montvale, N.J., 1968, pp. 403-408.

20. Chamberlin. D.D. The “single-assignment” approach to parallel proc-
essing. In Proceedings of AFIPS Fall Joint Computer Conference (Las
Vegas, Nev.. Nov. 16-18). AFIPS Press, Montvale, N.J., 1971, pp. 263-
270.

21. McGraw, J., et al. SISAL-Streams and iteration in a single-
assignment language. Language Reference Manual (version 1.0).
Lawrence Livermore National Laboratory, Livermore. Calif.. July
1983.

CR Categories and Subject Descriptors: Cl.3 [Processor Architec-
tures]: Other Architecture Styles; C.4 [Performance of Systems]; D.3.2
[Programming Languages]: Language Classifications

General Terms: Design. Languages, Performance
Additional Key Words and Phrases: tagged-token dataflow. signal-

assignment programming, SISAL

Authors’ Present Address: J.R. Gurd, C.C. Kirkham, and I. Watson, Dept.
of Computer Science, University of Manchester, Oxford Road, Man-
chester, Ml3 9PL. England.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

52 Communications of the ACM January 1985 Volume 28 Number 1

