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THE MANCHESTER PROTOTYPE 
DATAFLOW COMPUTER - 

The Manchester project has developed a powerful dataflow processor based 
on dynamic tagging. This processor is large enough to tackle realistic 
applications and exhibits impressive speedup for programs with sufficient 
parallelism. 

J. R. GURD, C. C. KIRKHAM, and I. WATSON 

INTRODUCTION 
Since about 1970 there has been a growing and wide- 
spread research interest in parallel data-driven compu- 
tation and dataflow computer architecture. Centers of 
expertise in dataflow techniques have emerged at MIT 
in the United States, CERT-ONERA in France, NTT and 
ETL in Japan, and the authors’ establishment in the 
United Kingdom. This interest has culminated in many 
designs for data-driven computer systems, several of 
which have been or are in the process of being imple- 
mented in hardware. For example, a machine based on 
the tagged-token model of dataflow computation has 
been operational at the University of Manchester since 
October 1981. This article reviews the architecture and 
performance of this machine. 

Dataflow is a technique for specifying computations 
in a two-dimensional graphical form: Instructions that 
are available for concurrent execution are written 
alongside one another, and instructions that must be 
executed in sequence are written one under the other. 
Data dependencies between individual instructions are 
indicated by directed arcs, as shown for a small pro- 
gram in Figure 1. Instructions do not reference w 
orv, since the data-dependence arcs allow data to be 
transmitted directlv from generating instruction to sub- 
sequent instruction. Consequently, instructions can be 
viewed as pure operations-this perspective is de- 
scribed in the Dataflow Programs section. Each instruc- 
tion can be activated independently by incoming data 
values: Execution commences as soon as all required 
input values for that instruction have arrived (as in the 
execution sequence of Figure 4). 
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Dataflow systems implement this abstract graphical 
model of computation, Individual systems differ mainly 
in the way they handle reentrant code. Static systems 
do not permit concurrent reactivation, and so they are 
restricted to implementing loops and cannot accommo- 
date recursion. Dynamic systems permit recursive reac- 

mines the types of language features that can be sup- 
ported-recursion, for example, cannot be handled by 
static systems. The structure of a dataflow computer 
follows the model of message-passing multiprocessors. 
The Manchester project has designed a powerful data- 
flow processing engine based on dynamic tagging. The 
system is now running reasonably large user programs 
at maximum rates of between 1 and 2 MIPS (million 
instructions per second). Details on the architecture of 
this system are given in The Manchester Dataflow 
Processor section. 

To date, few details have been published on the per- 
formance of operational dataflow hardware-after all, 
only a few of the larger systems have been active for 
longer than a year. Skepticism about the potential of 
dataflow techniques will persist until good performance 
figures can be demonstrated. First attempts have been 
made to define the objectives for performance evalua- 
tion for dataflow hardware, and some preliminary re- 
sults from the Manchester prototype system are pre- 
sented here. The strategy for evaluation is presented in 
the System Evaluation Strategy section, along with a 
discussion of program characteristics and their meas- 
urement on a dataflow simulator. The Benchmark Proc- 
ess section presents some details of the benchmark pro- 
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The final stage of translation 
forms a machine-code pro- 
gram with its input data. This 
two-dimensional graphical 
form is traditionally used to 
present dataflow programs. 
The nodes of the graph repre- 
sent machine instructions, 
while the arcs represent data 
paths between instructions. It 
will be noticed that the branch 
(BRR) instructions behave as 
two-way switches inserted in 
the arcs, and that where a to- 
ken is required as input to 
more than one instruction it 
has to be replicated using ex- 
plicit duplicate (OUP) instruc- 
tions. 
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FIGURE 1. Dataflow Graph for the Integration Program 
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grams that have been executed, and the Evaluation Re- 
sults section presents the results obtained when these 
programs were executed on the prototype hardware. 

Programs with large data structures have revealed 
that there is a need for hardware with specialized 
structure-storing capabilities. A structure-store unit is 
being designed to accommodate this need. In the long 
term, the use of multiple rings opens the possibility of 
incrementally expandable computing power in a data- 
flow multiprocessor. The prospects for such extensions 
to the existing system are discussed in the Future Di- 
rections section. 

DATAFLOW PROGRAMS 
Dataflow programs can be written at a high, an inter- 
mediate, or a low level. Figure 2 shows a program for 
computing the area under the curve y = x2 between 
x = 0.0 and x = 1.0. It is written in the high-level 
single-assignment language SISAL, a typical Pascal-like 
dataflow language. SISAL’s single-assignment property 
dictates that each variable be assigned only once in a 
program. This gives the language cleaner-than-usual se- 
mantics and makes it easier for the compiler to exploit 
program parallelism. Of course, parallelism could be 
extracted from programs written in more conventional 
languages, but the extraction process would be complex 

export Integrate 

funcCioh Integrate {returns real)‘ 

for initial 
int := 0.01 
Y := 0.0; 
X := 0.02 

while 
x < 1.0 

repeat 
int := 0.01 * (old y + y); 
Y := old x * old x; 
x := old x + 0.02 

returns 
value of sum int 

end for 

end function 

Dataflow applications programs can be written in hiih4evel 
@@ramming languages in exactly the same way es for con- 
‘ventional computer systetis. The most qonvenient type of 
tanguag6 for compiling data&w code is known as a single- 
assignment Mguage. This type of language has a syntax 
similar to that of conventional languages like Par&&, IW has 
nonsequential semantk% (i.e., it offers concutrent control 
constructs). An example program written in‘ t@3 sirtgle- 
assignment language SISAL is shown here. The pr6gram 
cbmputes the area under the curve y = x*t3&Wenx = O$I and 
x = 1 .O using a trapezoidal approximation with constant x 
intervals of 0.02. 

FIGURE 2. Integration Program in the High-Level 
Programming Language SISAL 

and would obscure important principles that are natu- 
rally apparent in SISAL. 

Compilation of the high-level programs first trans- 
lates the text into an intermediate-level (or compiler 
target) language roughly equivalent to a conventional 
macroassembler language. Figure 3 shows an abbrevi- 
ated form of the intermediate code produced by the ., 
SISAL compiler for the program in Figure 2. Here, the 
template assembler language TASS is used. The main 
features of the translated program are that the variables 
(int, y, x, etc.) can be identified with the SISAL program 
text, whereas the operators (CGR, SIL, BRR, etc.] can be 
identified with the dataflow instruction set. The abbre- 
viated form of Figure 3 is for the sake of clarity, be- 
cause the “invented” variables would normally be 
given unintelligible names and a lot of redundant as- 
sembler code would be produced. In essence, Figure 3 
shows the form of a program written directly at the 
intermediate level. 

The final step of the compilation is to generate code 
and data files representing the machine-level program. 
Manchester machine code is relocatable via a segment 
table (see the next section) that identifies a base ad- 
dress and limiting offset for each of 64 code segments. 
Consequently, the code file contains segment table en- 
tries as well as the instruction store contents. Each in- 
struction comprises an opcode and a destination ad- 
dress for the instruction output, together with an op- 
tional second destination address or a literal operand. 
The data file contains the initializing values, which 
represent the program input. Each entry consists of a 
typed data value and a three-field tag, together with the 
destination address to which the input should be sent. 

Code at any level can be represented graphically, 
since statements specify paths to be followed by data 
passing between operators. In particular, it is traditional 
to represent the machine-level code as a directed 
graph. Figure 1 shows the machine code generated for 
the integration program in Figu?e 3. 

The integration program is an example of a reentrant 
program-that is, one that reuses part of itself. Each 
separate iteration reuses the same code but with differ- 
ent data. To avoid any confusion of operands from the 
different iterations, each data value is tagged with a 
unique identifier known as the iteration level that indi- 
cates its specific iteration. Data are transmitted along 
the arcs in tagged packets known as tokens. Tokens for 
the same instruction match together and instigate the 
execution of that instruction only if their tags match. 

The idea of tags can be extrapolated to encompass 
reentrant activation of complete procedures, thereby al- 
lowing concurrent executions of the same procedure to 
share one version of its instruction code. This is 
achieved by extending the tag with an activation name, 
which must also match. The activation name is also 
used to implement recursive functions, which need tags 
to generate a parallel environment analogous to the 
“stack” environment used in sequential language im- 
plementations. 
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(\I "TASS" "TSM"); 

, Integration by trapezoidal rule 
! =e======================t======== 

I initialize the loop variables 

int = (Data "R 0.0"); 
Y = (Data "R 0.0"); 
x = (Data "R 0.02"); 

f d 
' ! merge the initial values with the loop output values 

intJnrg = (Mer int new-int); 
x-mrg = (Mer y new-y); 
x-mrg = (Mer x new-x); 

I test for termination of loop 

test = (CGR "R 1.0" xnrg); 

! gate the loop variables into new loop instance or direct result to output 

gate-int = (BRR intnrg test); 
old-int = gate-int.R; 
old-y = (BRR y-mrg test).R; 
old-x = (BRR x_mrg test).R; 

result = (SIL gate-int.L "0 O").L; 

, loop body : form new values for loop variables 

incr-x = (ADR old-x "R 0.02"); 
x-sq = (MLR old-x old-x); 
height-2 = (ADR old-y x-sq); 
area = (MLR "R 0.01" height-2); 
cum-area = (ADR old-int area); 

! : increment iteration level for new loop variables 

new-int = (ADL cum-area "I l").L; 
new-y = (ADL x-sq "I l").L; 
new-x = (ADL incr_x "I l").L; 

I output the final value of int 

(OPT result "G 0"); 

(Finish); 

Programs written in SISAL are translated into an intermedi- 
ate language such as TASS. Other high-level languages can 
be translated into this intermediate form, or programs may 
be written in TASS directly. For simplicity, the version of the 
integration program shown here is not a compiled version of 
the SISAL program in Figure 2, but an assembly-level pro- 
gram for the same task. However, the influence of the high- 
level version can be seen in the shape of this lower level 
program. The Manchester dataflow machine code is used in 
this figure. The Manchester system is an example of a 
“tagged-token” dataflow machine, which uses tag fields to 
distinguish reentrant activations of shared code. The 
“iteration-level” tag field is used to separate loop activations, 

using the ADL and SIL instructions. The effect of program 
“jumps” is achieved by the branch instructions. The remain- 
ing instructions are normal arithmetic/logic operations. The 
following mnemonics have been used: 

ADR-add floating-point values 
BRR-branch 
CGR-compare floating point I.h. > r.h. 
ADL-add to iteration level 
MLR-multiply floating-point values 
OPT-send output to host processor 
SIL-set iteration level 

FIGURE 3. Integration Program in the Template Assembly Language TASS 

A final cause of reactivation is the reuse of code to The above model of computation is known as tagged- 
process different parts of a data structure, for instance, token dataflow. It is the basic model implemented by 
an array. This is achieved by another extension to the the prototype Manchester hardware. Note, for example, 
tag, known as the index. the use of the tag-manipulating instructions ADL (add 
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Figure 4 illustrates the way data appear to flow through the 
program graph durin’g execution of the machine code. At the 
start of execution, the input data are presented in the form of 
data packets, known as tokens, on the input arcs of the 
graph. Execution then proceeds by transferring each token 
to the head of the arc on which it lies and executing any 
instruction that thereby receives a full complement of input 

(d) 

tokens. The active arcs in each frame are shown in red, 
whereas the enabled instructions (i.e., those with a full com- 
plement of input tokens) and their output arcs (which will 
become active in the next frame) are shown in green. The 
transfer and execute cvcle continues as shown until the out- 
put data have been sent and there is no further activity in the 
graph. Each token and instruction is considered in isolation 

FIGURE 4. One Possible Execution Sequence for the Dataflow Problem in Figure 1 
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(e) 

so that program execution is completely asynchronous. The 
required synchronization between communicating instruc- 
tions is achieved by delaying execution of each instruction 
until all its input data are available. The process of determin- 
ing that the input is ready is known as token-matching. At 
the end of each cycle of the program loop, the ADL instruc- 
tions increment the iteration-level tag field so that tokens 

0’0 

belonging to different cycles may be distinguished. A useful 
way of visualizing the effect of this operation is to imagine 
that each value of iteration level “colors” the tokens uniquely, 
so that only like-colored tokens can match with one another. 
This is illustrated by the tokens turning from black to blue as 
they pass from the first to the second iteration. 
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to Host (168 Kbytesisecond max.) 

(14 Ktokensisecond max.) 

token packets 

Token Queue I 

I/O Switch 

3 Instruction Store 
I 

I 

executable packets 

I 

Processing Unit 

token packets 

from Host (168 Kbytesisecond max.) 

(14 Ktokens/second max.) 

Figure 5 shows the overall structure of the Manchester pro- 
totype dataflow computer system. Tokens are carried in data 
packets around a pipelined ring structure (represented by the 
thicker arrows), with packets transferred between units at a 
maximum rate of 4.37M packets/second. Tokens destined 
for the same instruction are paired together in the Matching 
Unit. This has limited storage capacity, so that an Overflow 
Unit is required for programs with large data sets (the links to 
the Matching Unit are represented by the dashed arrows). 
Paired tokens, and those destined for one-input instructions, 
fetch the appropriate instruction from the Instruction Store, 
which contains the machine code for the dataflow program. 
The instruction and its input data are forwarded to the Proc- 
essing Unit for execution. This produces further tokens, 
which circulate back to the Matching Unit to enable subse- 
quent instructions. The Token Queue is a first-in-first-out 
buffer unit that smoothes out uneven rates of generation and 
consumption of tokens in the ring. The I/O Switch module 
allows programs and data to be loaded from a host proces- 
sor, and permits results to be output for external inspection. 

FIGURE 5. Manchester Dataflow System Structure 

to iteration level) and SIL (set iteration level) in Figure 
1 to ensure correct queuing of the loop termination 
control tokens at the inputs to the BRR (branch) in- 
structions. Note also the use of explicit DUP (duplicate] 
instructions to replicate data required at two or more 
subsequent instructions. In order to limit the size of 
instructions, the Manchester system imposes a maxi- 
mum fan-out from each instruction of two. Chains of 
duplicates can be used for larger fan-out. In some cir- 
cumstances it is possible for a subsequent duplicate to 

be incorporated into the preceeding instruction (as in 
Figure 1 for the top-most MLR instruction). The maxi- 
mum possible number of inputs to an instruction is also 
two: this has to do with the way tokens traveling to the 
same instance of an instruction are matched together. 
Manchester instructions are thus monadic or dvadic 
only. Certain monadic instructions are formed by 
dyadic operators with one fixed (literal) input (as also 
shown in Figure 1). 

The BRR (branch) instructions act as “switches” in 
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the arcs of program graphs and are used to implement 
conditionals, loops, and recursion. Each branch is con- 
trolled by a Boolean control input, which is shown en- 
tering the instruction from the side (usually, but not 
necessarily, the right-hand side). If the value of the 
token on this input is false, then the other incoming 
token (on the top input) is sent down the left-hand 
output (labeled F in Figure 1); otherwise the control is 
true, and the other input token is sent down the right- 
hand output (labeled T). Note that branch instructions 
can be used as “gates” that pass a value or destroy it, 
according to the Boolean control value, by leaving one 
of the output arcs unused (as also shown). 

The process of executing a machine-level program is 
started by placing tokens representing the initial data 
values onto the input arcs of the program graph. Execu- 
tion then proceeds by repeated application of the fol- 
lowing graph execution rules: 

its input data to the Processing Unit, where it is exe- 
cuted. Output tokens are eventually produced and 
transmitted back toward the Matching Unit to enable 
subsequent instructions. The return path passes 
through the I/O Switch module, which connects the 
system to a host processor, and to the Token Queue, 
which is a first-in-first-out buffer for smoothing out 
uneven rates of generation and consumption of tokens. 

1. Tokens travel (at any finite speed) toward the head 
of the arc on which they lie, 

2. any instruction that has t 
all of its input arcs becomes 
execute), 

3. any enabled instruction mav start execution as 
soon as there is a free instruction processor, and 

The ring modules are independently clocked and are 
interconnected via asynchronous links capable of trans- 
ferring large data packets at rates up to 10 million pack- 
ets per second (represented by the thick arrows in Fig- 
ure 5). This bandwidth is considerably higher than any 
that has been required by the modules yet constructed. 
The links to the Host system and the Overflow Unit are 
slower by a factor of about 500, although they are to be 
upgraded in the near future. The I/O Switch module is 
organized as a simple 2 x 2 common bus switch, which 
gives priority to input from the ring and selects the 
output route by performing a decode of certain marker 
bits. It has an internal clock period of 50 ns and is 
capable of transferring up to 5 million tokens/second. 
This rate is higher than the normal processing rates 
achieved by the other modules in the ring. 

4. executing instructions place output on their output 
arc(s) before terminating and releasing their proces- 
sor for further executions (outputs from separate 
processors may be interleaved in any order). 

Figure 4, on pages 38-39, illustrates the first steps of 
one possible execution sequence, based on these rules, 
for the dataflow program in Figure 1. In this sequence it 
is assumed that a large number of instruction proces- 
sors are available so that all possible enabled instruc- 
tions are executed simultaneously. It is also assumed 
that each instruction executes in one time step, regard- 
less of the operation being performed. Different as- 
sumptions would produce alternative sequences of exe- 
cution, but the same end results would always be pro- 
duced. The way data seem to flow through the program 
graph during execution gives rise to the term “data- 
flow.” 

Figure 7, on page 46, illustrates the Token Queue and 
Matching Unit modules in detail. Figure 6b, on page 45, 
is a photograph of the Matching Unit module. The To- 
ken Queue car-prises three pipeline buffer registers 
and a circular buffer memory. The token packets con- 
tained in the registers and store are 96 bits wide. The 
circular memory has a capacity of 32K tokens with 120 
ns access time. The clock period is 37.5 ns, giving a 
maximum throughput of 2.67 million tokens/second. 
This is roughly equivalent to the processing rates 
achieved by the remaining ring modules. The discrep- 
ancies between the different module rates are due to 
the different engineering techniques used. 

THE MANCHESTER DATAFLOW PROCESSOR 
A block diagram of the prototype Manchester dataflow 
system is shown in Figure 5 on the preceding page. 
Figure 6a, on page 45, is a photograph of the system. 
The basic structure is a ring of four modules connected 
to a host system via an I,/0 Switch module. The mod- 
ules operate independently in a pipelined fashion. To- 
kens are encapsulated in data packets that circulate 
around the ring-Token packets destined for the same 
instruction are paired together in the Matching Unit. 
This unit is organized as a two-tiered hierarchy with a 
separate Overflow Unit to handle large data sets. Paired 
tokens, and those destined for one-input instructions, 
fetch the appropriate instruction from the Instruction 
Store, which contains the machine-code for the execut- 
ing program. The instruction is forwarded together with 

The Matching Unit contains six pipeline registers, a 
parallel hash table, and a Is-bit interface to the Over- 
flow Unit. Each hash table board comprises a 64 Ktoken 
memory plus a 54-bit tag/destination comparator and 
interface control. There are 16 such boards at present, 
providing a 1Mtoken capacity, with space for expansion 
up to 1.25M tokens. Incoming tokens have a 16-bit hash 
function computed on their tag and destination fields as 
they are passed to the hash buffer register. The com- 
puted value is subsequently used to address the parallel 
hash table memory banks. Each bank compares its tag 
and destination contents with those of the incoming 
token, and a match causes the data field of the match- 
ing hash location to be output to the store buffer regis- 
ter along with the incoming token. The resultant token- 
pair packet is 133 bits wide, as shown in Figure 7. If 
there is no match between a stored token and the in- 
coming token, the incoming token is written into the 
first free location accessed by that hash address. Over- 
flows occur when all the accessed locations are occu- 
pied, in which case the nonmatching incoming token is 
sent to the Overflow Unit and indicator flags are set to 
notify subsequent tokens of this. Tokens that are des- 
tined for one-input instructions (such as “DUP” and 
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TABLE I. Maximum Averaqe Match Rates versus the Proportion of Bypass Matching Operations 

(million $pch&s/ 
second) 

“SIL literal 0” in Figure 1) do not need to find partners 
and therefore bypass the hash memory access. Al- 
though bypass tokens do not search for a partner, each 
is counted as performing a “match” action in determin- 
ing the processing rate of the Matching Unit. 

The Matching I.Jnit clock period is 180 ns, with a 
memory cycle time of 160 ns, giving “match” rates of 
1 .ll million matches/second for dyadic operators and 
5.56 million bypasses/second for monadic operators. 
The average match rate thus depends on the proportion 
of executed instructions that receive only one input 
token. This proportion is known as the Pby (the propor- 
tion of bypass matching operations-see also the Pro- 
gram Characteristics section]. Table I iists the maxi- 
mum average match rates against thePby (note that, in 
practice, the Pby is in the range 0.55 to 0.70). 

The Overflow Unit is currently emulated by software 
in a microcomputer attached to the overflow interface. 
A special-purpose microcoded processor is under con- 
struction following the design shown in Figure 7. It will 
have an initial capacity of 32 Ktokens and will use 
linked lists accessed by a hash lookup. The target mi- 
crocycle period is 250 ns, for a processing rate of up to 
1 million matches/second. 

Figure 8, on page 47, shows the detailed structure of 
the Instruction Store and Processing Unit modules. Fig- 
ure 6c, on page 45, is a photograph of a typical board. 
The Instruction Store comprises two pipeline buffer 
registers, a segment lookup table, and a random-access 
instruction store to hold the program. The segment 
field of the incoming token-pair is used to access a 
segment descriptor from the segment table. This de- 
scriptor contains a base address for the segment and a 
maximum limit for offsets within the segment. The off- 
set field of the incoming token is added to the base 
address and, provided the limit is not violated, the re- 
sulting address is used to access the instruction from 
the store. The instruction contents are 70 bits wide, as 
shown in Figure 8, and are substituted for the destina- 
tion’peld of the input token-pair to form a I66-bit exe- 
cutable instruction package. This package is then for- 
ward@ for processing. The clock period for the Instruc- 
tion Store is 40 ns, with a store access time of 150 ns, 
giving a maximum processing rate of 2 million instruc- 
tion’ fetches per second. 

The Processing Unit comprises five pipeline buffer 
registers, a special-purpose preprocessor, and a parallel 
array of up to 20 homogeneous microcoded function 
units with local buffer registers and common buses for 
input and output. The preprocessor executes those few 
global operations that cannot be distributed among the 

function units. These occur infrequently compared 
with the general opcodes, which pass straight through 
the preprocessor to be distributed to the first available 
function unit via the distribution bus. Each function 
unit contains a microcoded bit-slice processor with in- 
put and output buffering, 51 internal registers, and 4K 
words of writable microcode memory. The internal 
word length is 24 bits, with facilities for microcoding 
82-bit floating-point arithmetic. Microinstructions are 
48 bits wide. The function units compete to transmit 
their output onto the arbitration bus and thence out of 
the module. The Processing Unit clock has a period of 
57 ns. The function unit microcycle period is 229 ns. 
The minimum time required to transmit 96 bits 
through a function unjt is 13 microcycles, and the 
shortest instruction execution time (for DUP with one 
output) is 16 microcycles. This leads to a maximum 
instruction execution rate of 0.27 MIPS per function 
unit. To date, 14 function units have been used suc- 
cessfully to achieve processing rates of up to 2 MIPS 
(see the Evaluation Results section). With this comple- 
ment of function units, the total software parallelism 
required to keep all the hardware busy is about 86-fold. 

It will be noted that the host and overflow systems 
are much slower than the dataflow ring. This has had 
two ramifications: Either overflow of the matching 
store capacity or interaction with the host processor 
leads to a substantial drop in performance. 

At present, the sole measurement that can be made 
of the system is of the interval between program start 
and the arrival at the host of the first output token. 
Programs are loaded in advance of their initial data. 
The data are then queued in the Token Queue, where 
reads are disabled until the last input token has been 
transmitted from the host. At this point Token Queue 
reads are enabled, and timing commences in the host: It 
will be halted by the first arrival from the output port 
of the Switch. Benchmark programs are usually organ- 
ized to produce a single output token right at the end of 
their execution. By repeatedly running each program 
with different numbers of active function units, the 
speedup efficiency of the system can be assessed, as 
illustrated in The Benchmark Process sect@. 

SYSTEM EVALUATION STRATEGY 
There are three objectives for evaluation of the proto- 
type hardware: 

1. to tune the prototype hardware for optimum per- 
formance, 

2. to determine the nature of software parallelism that 
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can be effectively exploite& by the hardware, and 
3. to determine the relative value of dataflow MIPS 

(compared to conventional MIPS). 

The nature of the prototype hardware indicates that a 
three-phase approach to evaluation might be appropri- 
ate. The first phase is to assess performance for those 
programs that are small enough to execute entirely 
within the matching store limit (i.e., which do not gen- 
erate overflow requests). This is the phase reported be- 
low. It comprises three subphases: 

1. plotting speedup curves, 
2. interpreting the results, and 
3. rectifying any discovered hardware problems. 

The second evaluation phase will involve analysis of 
programs that generate mdtlerate amounts of overflow. 
Bottlenecks in the overflow loop will eventually be 
identified and subsequently rectified, although this 
cannot be undertaken with the existing overflow proc- 
essor system. The third phase involves the develop- 
ment of a hierarchical memory to cope with programs 
that generate enormous quantities of overflow. This is 
regarded as a longer term objective, which will be ad- 
dressed initially through the Structure Store Unit dis- 
cussed in the Future Directions section. 

For the evaluation that follows, analysis is restricted 
to overflow-free programs, although many other char- 
acteristics of the codes have been varied. These charac- 
teristics were measured by means of a crude software 
simulator for the dataflow system. 

PROGRAM CHARACTERISTICS 
In order to measure program characteristics, a dataflow 
simulator that makes many simplifying assumptions 
about the system architecture is used. The principal 
assumptions made are 

1. that each instruction executes in the same time 
(execution therefore proceeds in discrete equal 
time steps), 

2. that an unlimited number of function units can be 
used during any one time step, and 

3. that output from any executed instruction can be 
transmitted to an enabled successor instruction 
within the execution time period. 

Of course these are somewhat unrealistic assumptions, 
but they are helpful in making an approximate charac- 
terization of each program. 

The two fundamental time measurements recorded 
for each program are Sl, the total number of instruc- 
tions executed (which would be the number of time 
steps required if only one function unit was available), 
and Sinf, the number of simulated time steps required 
(with an unlimited number of function units perma- 
nently available). The ratio Sl/Sinf = avePara gives a 
crude measure of the average parallelism available in 
the program. A more comprehensive trace of the time 
variance of program parallelism can be obtained if 
needed. 

The simulator also records utilization of the system 
memories, as follows: 

Codesize = the size of the machine-code program (in 
g-byte instructions), 

maxTQsize = the maximum occupancy of the Token 
Queue circular buffer store (in 12-byte 
tokens), and 

maxMSsize = the maximum occupancy of the Match- 
ing Store hash table (also in 12-byte to- 
kens). 

The proportion-the Pby-of executed instructions 
that bypass the matching store is also recorded. This 
corresponds to the fraction of one-input instructions ex- 
ecuted. An important measure of performance for nu- 
merical computation is the execution rate expressed in 
MFLOPS [million floating-point operations per second). 
Different machine architectures and programming sys- 
tems can be compared by measuring their respective 
MIPS to MFLOPS ratios. Consequently, this ratio is re- 
corded by the simulator. 

Looking at one cycle of the integration program in 
Figure 1, it can be easily seen that Sl = 16. It is not 
immediately obvious that Sinf = 7, but this can be 
checked by locating the longest cycle of dependent in- 
structions (i.e., that forming the value of X, which is 
input to the CGR instruction). Simulation df 50 cycles 
(i.e., the complete program of Figure 3) gives Sl = 808 
and Sinf = 356. Consequently, the average parallelism, 
avePara, is 2.3. The total Codesize is 17 instructions 
(153 bytes), maxTQsize is 5 tokens (60 bytes), and 
maxMSsize is 3 tokens (36 bytes). The Pby is 0.625, and 
the ratio MIPS/MFLOPS is 2.7 (i.e., 2.7 instructions are 
executed on average for every useful floating-point op- 
eration). 

For comparison, the code compiled from the SISAL 
version of the integration program, shown in Figure 2, 
produces the following characteristics: Sl = 2455, 
Sinf = 829, avePara = 3.0, Codesizq =,80 (720 bytes), 
maxTQsize = 11 (132 bytes), maxMSsize = 15 (180 
bytes), Pby = 0.628, and the MIPS/MFLOPS ratio = 8.1. 
This comparison gives a rough indication of the relative 
efficiencies of compiled and hand-written code. For 
both programs, DUP (duplicate) accounts for 25 percent 
of all executed instructions. 

THE BENCHMARK PROCESS 
A total of 14 benchmark programs with 29 different 
input data sets has been analyzed for the following per- 
formance evaluation. The programs are listed in Table 
II, along with their characteristics, as measured by a 
simulator. A variety of problem types is represented, 
and several source languages have been used. MAD is a 
single-assignment language like SISAL, and MACRO is 
an intermediate-level language like TASS. The effect of 
program parallelism has been assessed for both similar 
and distinct programs. Parallelism for each particular 
code was varied by adjustment of the input data values. 
Many different patterns of time variance of parallelism 
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LAPLACEAfl MACRO -58 290.1 f2 
LAPLACEAJ2 MACRO 58 567,200 
SUM/l MAD 107 30 
S!JM/2 MAD 107 402 
SUM/3 MAD 107 1,208 
SUM/4 MAD 107 2,820 
SUM/5 MAD 107 9,082 
SUM/6 MAD 107 20,428 
SUM/7 MAD 107 44,980 
SUM/S MAD 107 123,472 
INTEGRATE MAD 263 2,051 
FFT/l MACRO 606 13,989 
FFT/P MACRO 606 14,086 
FFT/3 MACRO 606 15,374 
FFT/4 MACRO 606 32,661 
MATMULT SISAL 657 100,288 
LAPtACEB SISAL 811 191,984 
PLUMBUNEI MACRO 628 7,531 
PLUMBLINE:! MAD 1,462 19,076 
GAUSS SISAL 3.201 216,723 
LOGlCSlMfl MACRO 3,819 64,660 
LOGICSIM/2 MACRO 3,819 346,700 
SPLICE SISAL 6,957 5,031,909 
RSIM/l SISAL 23,996 189,746 
RSIM/P SISAL 24,314 1,!35,912 
RSIM/3 SISAL 24,477 851,137 
RS!M/4 SISAL 24,850 1,108,104 
SIMPLE SISAL 26,365 519,601 
IV/l SISAL 39,091 126,991 
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These data were obtained from software simulation of the 
Manchester prototype dataflow machine. The simulator imi- 
tates sequential execution of programs but also keeps track 
of the shortest path through the graph, making the assump 
tion that each instruction could be executed in an identical 
time period. The ratio of the total number of instructions 
executed (Sl) to the length of the shortest path (Sin9 gives a 
rough measure of the amount of parallelism in the graph 
(avePara). Store usage is recorded as the maximum simu- 
lated store requirement for the Token Queue (maxTQsize) 
and the Matching Store (maxMSsize), assuming that neither 
store overflows. The final recorded characteristic is the pro- 
portion (Pby) of one-input instructions executed, since these 
bypass the Matching Unit, which constitutes the major bottle- 
neck in the ring. The variation of parallelism with time is not 
accounted for since it appears to be unimportant in predict- 
ing the speedup obtained when additional parallel resources 
are used to execute the program. The characteristics of a 

were found. In addition, code sizes and store occupan- 
cies varied considerably. Note, however, that the Pby is 
&I the range 0.56 to 0.70 for all programs. - 

As mentioned above, the onIv measureinent that can 
be made on the prototype hardware is the execution 
time until the arrival at the host of the first output 
token with a given number of active function units, For 
n function units this time is denoted Tn, where n has 
been varied from I to 14. Knowing the simulator- 

variety of benchmark programs that have been executed on 
the prototype Manchester dataflow system are listed. The 
smaller programs have been written in a macroassembler 
language, MACRO, which was a forerunner to the template 
assembler, TASS. The lasger programs have been written in 
the high-level single-assignment languages MAD and SISAL. 
The final columns record hardware execution characteristics 
for the benchmark programs. The first of these (MIPS/FU) 
shows the average processing rate with a single active func- 
tion unit. This value is related to the average number of 
microinstructions executed per machine instruction. Low val- 
ues imply the use of many cornpIe: operators, such as the 
floating-point trigonometric functions. The final column 
(MIPS/MFLOPS) is recorded for programs that make heavy 
use of floating-point arithmetic and indicates the average 
number of instructions executed per “useful” floating-point 
operation. 

derived characteristics of each program, the following 
quantities can be derived from the values of Tn: 

Pn = Tl/Tn: 
the effective number of function units when n 
is active, 

En = lOOPn/n: 
the percent utilization of n active function 
units, 

44 Communications of the ACM januay 1985 Volume 28 Number 1 



Reports and Articles 

FIGURE 6a. The Manchester Prototype Dataflow Computer 

Mn = Sl/Tn: 
the actual MIP rate of n active function units, 
and 

Mn’ = nSl/Tl: 
the potential MIP rate of n active function 
units. 

A typical set of measurements (for the SIMPLE pro- 
gram) is shown in Table III. 

EVALUATION RESULTS 
For each program and data set run together, the values 
of Tn, Pn, En, Mn, and Mn’ were tabulated. To interpret 
these values as measures of the speedup performance of 
the system, Pn is plotted against n, as shown in Figure 
11 (for the RSIM/l program). Notice how lines of con- 
stant function unit utilization appear on this graph. To 
compare the results for different kinds of programs, the 
results are better presented after normalization by a 
factor Sl/Tl = Ml. This entails plotting Mn against 
Mn’ (actual MIPS versus potential MIPS), as also shown 
in Figure 9, on page 48. 

The shape of the speedup curve is typical of the re- 
sults obtained when parallelism in a program is limited. 
There is an initial portion in which speedup is nearly 

FIGURE 6b. The Matching Unit Module 

FIGURE 6c. A Typical Board 

TABLE Ill. A Typical Set of Measurements of the Execution Time that 
Elapses before the First Output Token Arrives at the Host 

Function Runme ACWII PptaMltel 
Unitr C-W SpeeduP EffiCie& f&lPS MIPS : 
(nt @fO ml ow wnt (MIA’1 

1 4.4215 1.00 100.0 0.117 0.117 

2 2.2106 2.00 100.0 0.235 0.235 

3 1.4751 3.00 99.9 0.352 0.352 

4 1.1077 3.99 99.8 0.469 0.470 

5 0.6886 4.98 99.5 0.585 0.587 

6 0.7429 5.95 99.2 0.699 0.705 

7 0.6400 6.91 98.7 0.812 0.822 

8 0.5643 7.84 97.9 0.921 0.940 

9 0.5071 8.72 96.9 1.024 1.057 

10 0.4629 9.55 95.5 1.122 1.175 

11 0.4301 10.28 93.5 1.208 1.292 

12 0.4038 10.95 91.3 1.287 1.410 
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from Switch (52.44 Mbytes/second max ) 

1 

I Token Queue Input Buffer 
I 

The internal structure of some of the hardware modules in 
the Manchester prototype machine are shown. The thick ar- 
rows and the dashed arrows correspond to those in Figure 
5; the thin arrows indicate data paths that are internal to 
each module. The Token Queue comprises a 32K-word cir- 
cular FIFO store with three surrounding buffer registers. The 
store and registers are 96 bits wide and contain token pack- 
ages formatted as follows: 

I Token Queue Store Buffer 
I 

I Token Queue Output Buffer 
I 

““1Fdmax) 

I Matching Unit Merge Buffer 

(data (37 bits), tag (36 bits), destination (22 bits), 
marker (1 bit)) 

32 K tokens 
The Matching Unit is based on a 1.25M-word pseudoasso- 
ciative memory with six pipeline registers in the main ring and 
two buffers interfacing with the Overflow Unit. The memory is 
used to store unmatched tokens while awaiting their part- 
ners. Its associative operation is achieved by accessing a 
parallel store using an appropriate hash function. Tokens 
destined for one-input instructions do not need to match with 
partners; they pass straight through the unit. Other matching 
actions are also permitted, according to the 3-bit “matching 
function” specified in the destination field of the token. The 
associative “name” used for matching comprises the token’s 
tag together with the instruction address part of the destina- 
tion. The 22-bit destination field is therefore split as follows: 

(instruction address (18 bits), left/right input (1 bit), 
matching function (3 bits)) 

Overflow &zJ bus 

I Matching Unit Store Buffer 
I 

cl 

I *b 
Overflow 

l * I/O Control 
4t 

h 
I 
I I. 

Overflow Send Buffer Matching Unit Split Buffer 

The Overflow Unit handles tokens 
that cannot be placed in the par- 
allel hash table because they en- 
counter a full hash entry. There is 
no attempt to compute a new 
hash function since it does not 
matter if subsequent tokens 
match with their partners before 
the overflowing token matches 
with its partner. The asynchro- 
nous nature of the dataflow 
model ensures that the computa- 
tion will yield determinate results 
regardless of the order in which 
tokens are matched. Overflow to- 
kens are stored in linked lists in 
the Overflow Unit, which contains 
a microcoded processor together 
with data and pointer memories. 

1 Matched token pairs are sent out 
h in packets with the following for- 
h mat: 
I 

(data (37 bits), data (37 bits), 
32K-1 M : tag (36 bits), destination (22 bits), 
tokens h marker (1 bit)) 

I 

Matching Unit Output Buffer 

to Instruction Store (74.29 Mbytes/second max ) 

FIGURE 7. A Close-Up Look at the Token Queue, Matching Unit, and Overflow Unit 
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from Matching Unit (74 29 Mbytes/second max.) 

133.bit 
token pairs 

Instruction Store Input Buffer 

64 Entries 

1 64K Instructions 

1 
Instruction Store Output Buffer z!; 
Preprocessor Input Buffer 

Preprocessor 

1 

I Preprocessor Output Buffer 
I 

I Function Unit Distribute Buffer 

Details of the remainder of the Manchester prototype machine are 
shown. The Instruction Store comprises a random-access memory and 
two registers. The 1 a-bit virtual instruction addresses have the format 

(segment (6 bits), offset (12 bits)) 

The segment field accesses a 20-bit base address in the segment table 
and checks that the specified offset is within the limits of the segment. 
If it is, the offset is added to the base and used to read the instruction. 
Instructions are formatted in one of the following forms: 

(opcode (10 bits), destination (22 bits)) 
(opcode (10 bits), destination (22 bits), destination (22 bits)) 
(opcode (10 bits), destination (22 bits), literal data (37 bits)) 

The resulting packet is ready for execution and is in the form 

(data (37 bits), data (37 bits), opcode (10 bits), tag (36 bits), destination 
(22 bits), destination (22 bits (optional)), 

marker (1 bit)) 

A small number of instructions are executed in the specialized preproc- 
essor module, but the majority are passed into one of the homogenous 
microcoded function units via the distribution bus. Instructions are exe 
cuted independently in their allotted function unit, and the eventual 
output is merged onto the arbitration bus and thence out of the Proc- 
essing Unit toward the Switch. 

arbitration bus 
(52.4 Mbytes/second max.) 

I 

Function Unit 
I 

L 

0 
I, 

Function Unit b 

(91.;7 Mbytes/second max.) 
distribution bus 

Function Unit Arbitration Buffer 

I 

Processing Unit Output Buffer 

to Switch (52.44 Mbytes/second max.) 7 96-bit tokens 

FIGURE 8. Details of the Instruction Store and Processing Unit 
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The speedup obtained when additional hardware parallelism ized so that Pl = 1 .O. Second, they demonstrate the effi- 
is introduced into the prototype ring by allowing extra func- ciency of utilization of n function units. This rate should ide- 
tion units to participate in executing the program RSIM/l is ally be constant at 100 percent to provide linear speedup as 
shown. The curves are obtained by measuring the execution extra function units are added, but in practice it decreases as 
time (Tn) associated with the use of n function units. They n increases. Third, the curves give the absolute processing 
can be interpreted in several different ways. First, they show rate (in MIPS) achieved by a system with n function units for 
the effective processing rate of n function units (Pn), normal- each program. 

48 Communications of the ACM lanuary 198.5 Volume 28 Number 1 

FIGURE 9. A Plot of the Speedup Performance of the Prototype 



Articles 

linear in n (and where En is thus close to 100 percent), 
followed by a gradual deterioration in utilization until a 
program-constrained limit is reached. In the case of the 
RSIM/l program, avePara is only 15-fold, so the effec- 
tive use of between 8 and 9 function units when 12 are 
active is acceptably efficient. 

It is, of course, possible for a highly parallel program 
to reach a hardware-constrained limit before it runs out 
of program parallelism. The effect of this behavior, 
viewed on speedup curves such as in Figure 9, will be 
similar to the software-limited case described above, 
except that the limit will be imposed by the match rate 
achieved in the Matching Unit, as shown in Table I. 
With the maximum number of function units limited to 
14, program runs did not reach the current maximum 
match rate of around 2 MIPS, and so this effect was not 
observed. 

In another work,] we have published superimposed 
speedup curves for many of the benchmark programs 
listed in the previous section. These curves show the 
effects of variable instruction mix and variable program 
parallelism. It is noticeable that when floating-point in- 
structions (which are microcoded in the function units 
and hence take much longer to execute than integer 
operations) are used, the potential MIP rate for each 
function unit is correspondingly smaller. However, the 
major pattern to emerge from this study is the impor- 
tance of the parameter avePara in determining the 
shape of the speedup curve for various programs. Pro- 
grams with similar values of avePara exhibit virtually 
identical speedup curves. The higher the value, the 
closer the curve is to the 100 percent utilization rate. 
This seems to indicate that this crude approximation 
the overall average parallelism of a code is all that is 
necessary for an accurate prediction of its speedup 
curve. This annlies regardless of factors such as time 

to 

Gee of parallelism, the source language used, the 
proportion of one-input instructions executed, etc. It is 
surprising that such a simple measure should give such 
a constant indication of the pattern of use of processing 
resources, but it does help to answer the question of 
what nature a program has to have if it is to be suitable 
for execution on this dataflow system. A program is 
suitable if it has a value of avePara in the region of 40 
or more. Significantly, the larger applications codes ex- 
hibit the same patterns as the simpler benchmarks. 

Another noticeable feature of the study is that there 
is an unusable area of potentially high function unit 
utilization above an execution rate of about 1 MIPS. 
Since this occurs for programs with large values of 
avePara, it seems unlikely that this performance area 
has been lost because of a lack of program parallelism, 
and so other causes have been sought. 

One suggestion is that the use of multiple-function 
units in a pipeline causes contention problems in the 
Processing Unit arbitrator and thus leads to perform- 

’ Gurd. J. R.. and Watson, 1. A preliminary evaluation of a prototype dataflow 
computer. In Proceedings of the Ninfh IFIPS World Computer Congress, R.E.A. 
Mason. Ed. Elsevier North-Holland. New York. Sept. 1983. 

ante degradation. Another possibility is that disparate 
execution times in the pipeline stages lead to pipeline 
“starvation,” a well-known cause of performance degra- 
dation. Two experiments were designed to determine 
the actual cause. 

The first experiment confirmed that programs are not 
responsible for restricting available concurrent activity. 
The method adopted was to take a well-understood 
program (the double-recursive SUM code) and force it 
into a highly parallel form by artificially excluding 
those parts known to be serial in nature. In this pro- 
gram the serial sections occur at the start and end of 
each run. They can be eliminated by subtracting the 
run times for two large, but different, data sets. The 
data sets chosen were those that generated individual 
avePara values of 80 and 150. The timing that results is 
for a simulated code that has an overall avePara value 
greater than 700, with no serial sections. 

The second experiment was designed to eliminate 
the effects of pipeline starvation caused by unsatisfied 
match requests in the Matching Unit. This was 
achieved by running a test program with Pby = 1, in 
which all instructions have one input and the Matching 
Unit is always bypassed. In this mode the Matching 
Unit can process tokens at a rate equivalent to nearly 
6 MIPS, and it can be guaranteed that the processing 
rate is limited solely by the number of available func- 
tion units. 

The results of these experiments show three things. 
First, the performance degradation above the l-MIPS 
execution rate occurs even when the effect of serial 
code has been eliminated. Second, programs that al- 
ways bypass the Matching Unit are able to enter the 
“forbidden” zone. Third, where parallelism is limited 
solely by software, the totally flat curves exonerate the 
Processing Unit arbitrator because they show that per- 
formance is never degraded when function units are 
added. 

The implication of these results is that there must be 
a deficiency in the pipeline buffering between the 
Matching Unit and the Processing Unit. The system 
cannot cope with prolonged sequences of unsuccessful 
match operations without starving the function units of 
input. It has subsequently been established that addi- 
tional buffering at the output of the Matching Unit sig- 
nificantly reduces the falloff in speedup curves for 
highly parallel programs. 

It is not clear whether an average instruction exe- 
cuted in a dataflow system is more or less powerful 
than an average conventional instruction. This casts 
some doubt on the value of the MIPS rates quoted 
above. Consequently, the relative value of dataflow 
MIPS has been assessed by studying the MIPS/MFLOPS 
ratios obtained for various programs. These ratios have 
been measured for high-speed conventional systems, 
such as the CDC6600, CDC7600, and Cray-1, by users, 
such as Lawrence Livermore National Laboratory, who 
have large floating-point computational requirements. 
It has been discovered that assembly-language program- 
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mers for such systems can achieve between three and 
four MIPS/MFLQPS, whereas good FORTRAN compil- 
ers achieve between five and seven MIPS/MFLOPS. 
The corresponding ratios for the integration program of 
Figures 2 and 3 (2.7 for assembler and 8.1 for SISAL) 
indicate that the measured dataflow MIPS have the po- 
tential to match the power of conventional-sequential 
MIPS. However, ratios for larger SISAL programs are 
often much bigger than this, ranging from 20 to 50. This 
indicates that present compilation techniques require 
considerable improvement. 

This opinion is reinforced by a comparison of the 
dataflow results with the run times achieved for con- 
ventional implementations of some of the benchmark 
programs described above. For example, Table IV com- 
pares the dataflow run times for the RSIM family of 
programs with those obtained for versions written in 
the C language and executed on a VAX11/780 system. 
It can be seen that the current SISAL/dataflow system 
is about five to ten times slower than the C/VAXll/ 
780 system. 

More of these direct comparisons are being made be- 
tween the dataflow system and conventional machines. 
They involve two categories of competitive run-time 
measurement for a range of benchmark programs. The 
first category uses single-source programs, written in 
SISAL, to evaluate different SISAL implementations. 
The second allows rewriting of programs, to assess the 
impact of code optimization in different language sys- 
tems. The most useful comparisons will be with simi- 
lar-sized sequential systems, such as the VAX 11/780. 
The VAX SISAL compiler, expected to be ready in early 
1985, will enable comprehensive single-source tests to 
proceed. Tests in the second category await the transla- 
tion of more programs from conventional languages 
into SISAL. 

FUTURE DIRECTIONS 
For the immediate future, the results presented here 
should provide ample motivation for improving the effi- 
ciency of the generated code for the SISAL/dataflow 
system. This objective will be pursued with a combina- 
tion of software and hardware enhancements to tackle 
inefficiencies in the compiler system and in the ma- 
chine architecture. It is believed that system perform- 
ance will exceed that of conventional language systems 
on the VAX11/780 for a variety of applications within 

TABLE IV. Comparison of VAX and Dataflow Run Times for RSIM 
Programs (all run times in seconds) 

RSIM/l 0.04 1.36 0.16 
RSIM/2 0.10 8.26 0.89 
RSIM/S 0.08 6.12 0.68 
RSIM14 0.28 8.67 , 0.88 

the next year. In the longer term, it should be possible 
to use the extensible nature of the dataflow hardware 
to provide much higher computing rates by building a 
dataflow multiprocessor. We now consider these in- 
tended improvements and the benefits we expect them 
to provide. Implementation of all these various en- 
hancements should significantly improve the SISAL/ 
dataflow system performance reported earlier. 

Improvements to the code generation system are 
being made by letting the SISAL compiler implementa- 
tion influence the design of the dataflow instruction 
set. Frequently occurring combinations of instructions 
are being amalgamated into new “super” instructions, 
with attendant reduction in Sl and Sinf parameters and 
improved execution speed. For example, the introduc- 
tion of the SAZ (set activation name and zero index) 
instruction reduced Codesize and Sl by about 10 per- 
cent for most programs. 

Improvements can also be realized through more 
conventional optimization techniques, such as common 
subexpression elimination, removal of constants from 
loops, etc. Researchers at Lawrence Livermore have im- 
plemented several such optimizations for an intermedi- 
ate phase of the SISAL compiler, and these also reduce 
Codesize and Sl by about 10 percent. 

Experience with the larger benchmark programs in- 
dicates that the overhead associated with storing data 
structures in the Matching Unit is excessive. Each 
stored token carries its tag and destination individually, 
which leads to replication of information that should be 
compacted. Two schemes have been proposed to alle- 
viate this waste. The first involves the creation of a 
matching store hierarchy, using a scheme analogous to 
a conventional paging system. This is difficult to design 
unless it proves consistently feasible to identify areas of 
locality in dataflow programs. With the present state of 
knowledge, this cannot be guaranteed. Consequently, 
an alternative scheme involving the construction of a 
specialized Structure Store Unit has been adopted. This 
unit will be attached to the processing ring by a second 
Switch module located between the Processing Unit 
and the I/O Switch. A prototype implementation 
should be operational early in 1985. 

The effect of a Structure Store Unit on system per- 
formance has been studied using an enhanced version 
of the simulator described in the Program Characteris- 
tics section. The programs used were compiled from the 
SISAL language using a modified compiler. For a typical 
program, Sl is reduced by about 40 percent. Much of 
this improvement results from the removal of spurious 
parallelism, causing the overall parallelism to drop 
slightly. 

Unfortunately, the amounts of Matching Unit and 
Token Queue store used are high, whether or not the 
Structure Store Unit is used. It is therefore important to 
assess matching store usage and to optimize the han- 
dling of Matching Unit overflows. Studies in this area 
are hampered by the slow speed of the current host 
system and overflow processor interfaces, and so up- 
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graded versions of these are being installed. A longer- 
term project would involve investigating more general 
ways of reducing the amount of matching store and 
Token Queue store required for a computation. This 
would require the design of an “intelligent” Token 
Queue that could schedule sections of highly parallel 
programs in such a way as to minimize these storage 
requirements. Preliminary studies of recursive divide- 
and-conquer algorithms indicate that there are enor- 
mous potential savings in this area. 

It is not feasible to add extra function units to the 
Processing Unit indefinitely, since the match rate in the 
Matching Unit will eventually limit the processing rate. 
An important objective of research into dataflow archi- 
tecture is thus to establish techniques for constructing 
and utilizing multiprocessor systems in which the 
matching process is distributed. In a dataflow multipro- 
cessor, a number of processing rings are connected to- 
gether via an interconnection network. The network 
allows any ring to send results to any other ring. The 
choice of network is critical to large system perform- 
ance. Some networks have an equal delay for all com- 
munications; other networks penalize some transfers 
more than others. There is also a relationship between 
the power of each processor and the total size of the 
network. Some systems emphasize simplicity of proces- 
sor design and thus require large communications nets. 
Other systems have powerful processors and therefore 
need smaller networks to achieve the same overall 
computing power. The Manchester system falls into the 
latter category. 

There are no present plans to construct a Manchester 
multiprocessor using the present system design and 
technology. However, such a system would be attrac- 
tive if the basic processing ring could be implemented 
in a higher density VLSI technology. Consequently, 
simulation of a multiprocessor based on the existing 
processing ring has been undertaken. Performance re- 
sults for systems containing up to 64 processing rings 
have shown respectable speedups for some of the 
benchmark programs reported above. 

The key requirement for high performance in any 
multiprocessor structure is uniform distribution of 
work across the processors. This can be achieved at 
compile/link time, but often requires intervention from 
the applications programmer and always requires 
knowledge of the system configuration. It is more desir- 
able to achieve the distribution automatically, whereby 
the compiler/linker would not need to know the con- 
figuration. The fine grain of parallelism in dataflow 
would facilitate this, although other substantial prob- 
lems persist. Various load/run-time “split functions” 
have been investigated to distribute the work load. 
These use hashing techniques similar to those used in 
the pseudoassociative Matching Unit. 

It should be noted that the ability to use this kind of 
“randomizing,” postcompilation split function consti- 
tutes the major advantage of dataflow over more con- 
ventional, coarse-grain multiprocessors. In the latter 

system it is necessary for the programmer to direct the 
distribution of code across the processors, since load- 
time splitting is currently too inefficient and expensive. 
It may be that future research will uncover automatic 
coarse-grain split methods, but it is by no means clear 
that this can be achieved. 

CONCLUSIONS 
The Manchester project has constructed an operational 
tagged-token dataflow processor large enough to tackle 
realistic applications. A small range of benchmark pro- 
grams has been written and executed on the hardware 
to provide evaluation data. The preliminary evaluation 
has returned several important results: _First, it has es- 
tablished that a wide variety of programs contains suffi- 
cient parallelism to exhibit impressive speedup in rela- 
tion to the number of active function units in a single- 
ring system. Second, it has been established that the 
crude measure, Sl/Sinf, of program parallelism is in 
practice a useful indicator of the suitability of a pro- 
gram for the architecture, regardless of the time vari- 
ance of the parallelism. Third, a weakness in the pres- 
ent pipeline implementa=has been identified, the 
rectification of which provides better speedup charac- 
teristics. Fourth, the effectiveness of the supporting 
software systkm has been improved by studying the 
ratio of instructions executed for each useful floating- 
point operation in certain large computations. Finally, 
the need for a Structure Store Unit has been ez 
lished and specifications for its design have been deter- 
mined. 

It is important, however, to note that this is only an 
initial attempt at evaluation. In particular, more work 
is required to determine the behavior of programs that 
cause matching store overflow. There is also a need to 
study techniques for parallel algorithm design and 
transformation and low-level code optimization. In 
highly parallel programs there is a need to control the 
amount of active computation by scheduling work 
within the Token Queue so that matching store re- 
quirements are minimized. There also remains the 
study of multiring systems, in particular the investiga- 
tin and evaluation of suitable split functions. 

The major long-term interest in dataflow techniques 
will be in the construction and performance of multi- 
processor systems. It is particularly important to know 
how dataflow systems should be designed for imple- 
mentation in VLSI, and to be certain that effective soft- 
ware techniques are available for utilizing the hard- 
ware. An important advance in this area is the an- 
nouncement by NEC of a dataflow image-processing 
chip, the uPD7281 Image Pipeline Processor, which was 
to be on the market toward the end of 1984. 
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Further Reading. The first four items will serve as 
useful introductory material for the nonspecialist. On a 
more specific level, the earliest reference to graphical 
programming appeared in an obscure internal report 
within the National Cash Register Corporation in 1958 
[5]; a similar idea was published at an MIT Conference 
in 1962 [6]. The first comprehensive theory for a graph- 
ical model of computation, and the most frequently ref- 
erenced pioneer dataflow paper, was published in 1966 
[i’]. This was followed by the publication of two influ- 
ential theses on dataflow computation models at Stan- 
ford [8] and MIT [9]. The term “dataflow” was coined 
in the first of these theses. 

There followed a phase of prolific work at MIT by 
Jack Dennis, who is usually regarded as the instigator of 
the concepts of dataflow computers as they are now 
understood. His Computation Structures Group has 
been responsible for most of the theoretical and devel- 
opment work for static dataflow systems [lo-121. Sub- 
sequent static systems have been constructed at CERT- 
ONERA in Toulouse [13] and Texas Instruments [14]. 

One of Dennis’ early papers [ll] suggested the notion 
of dynamic dataflow. This idea was refined at MIT (in 
the form of code-copying systems) [15], at Utah by Al 
Davis [16], and at UC1 and MIT by Arvind (in the form 
of tagged-token systems) [17]. The development of 
tagged-token dataflow occurred at Manchester simulta- 
neously and independently [18]. 

The principles of single-assignment programming 
languages were first published in 1968 [19]. The term 
“single assignment” was coined by Chamberlin in 1972 
[20]. These ideas have subsequently been incorporated 
into dataflow projects, culminating with the design of 
the SISAL language in 1983 [21]. 
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