
 CSE P548: Computer Architecture
Assignment 3

Due: Wednesday, May 11

This assignment is meant to test your understanding of cache designs and the interaction

between certain cache configuration parameter values and the effect they have on cache
performance.

For this assignment work in teams if you’d like. Try to work with someone you haven’ t
worked with before.

Part I: Cache simulation

Write application programs that enable you to discover the cache size, associativity, line
(block) size and memory update policy of the L1 data cache being simulated in a special version
of the SimpleScalar tool set. Design the programs so that each one determines a particular
configuration parameter. The order in which you run your applications might be important, so
think about this as you are designing the program algorithms.

The cache size, associativity and line size of the L1 data cache will all be powers of 2. The
cache will be no larger than 64KB, the associativity will be no greater than 4-way and the line
size will be a minimum of 4B and no larger than 64B.

You will use a modified version of sim-cache, which is a simpler and faster version of sim-
outorder that only gives cache statistics. The modified version of sim-cache is called secret, and
is located in the bin/ subdirectory of the course directory. secret has been altered so that the cache
configuration parameters of interest have been set to particular values, but are not printed as part
of the output. Use it as follows

 secret myfile arg0 arg1 ...

Since you’ ll only have access to the executable version of secret (if we give you the source,
you obviously will be able to see the cache configuration), you’ ll need to run it on the department
computers. Your application development, testing, data analysis and report writing can all be
done on your own machines, as usual.

To compile your application programs for the SimpleScalar tools, use the ss-gcc compiler that
is located in the simplescalar/bin/ subdirectory of the course directory. ss-gcc works just like the
usual gcc, except that it cross-compiles to the SimpleScalar architecture. You should use a
distinct suffix such as .ss on your cross-compiled binaries to avoid confusion with Linux
executable binaries.

If you are developing the applications on your own machines, you can download the source
code for the ss-gcc compiler and binary tools from the homework web page. There are also
instructions for building ss-gcc. Sim-cache is part of the SimpleScalar tools and is built when
sim-outorder is built.

Secret has been protected from your prying eyes. There are undoubtedly techniques that would
enable you to discover the cache configuration we have used, but it is probably not worth your
time trying. Whether you do or not, the graphs and/or tables you construct from your simulation
output will still have to show data that “proves” that you have discovered the correct
configuration, and your application programs must be able to run with the protected
configuration file. To test your programs, we may run them ourselves, to confirm your output.

The standard version of sim-cache has also been placed in the bin/ subdirectory, and takes
parameters in the same way as sim-outorder. You may use this to verify the configuration
parameter values you have chosen. However, it is not necessary to use this software; it is your
applications that will discover the configurations and your results that will validate your choice.

You can also read about sim-cache in section 4.2 of the SimpleScalar Tool Set documentation,
located at: simplescalar/doc/users_guide_v2.pdf in the course directory.

.

Part II: The report

Your report should follow the guidelines for the last report. Only 2-3 pages of text should be
enough to explain whatever you need to explain (your figures and tables can be extra). You won’ t
need all sections of a normal research paper this time. Instead just include the following
sections: (1) an introduction that simply provides in a nutshell the problem you are trying to
solve, (2) a section that describes the algorithms in your programs, and (3) a results section that
presents your graphs/tables, explains them and analyzes the data. No summary will be needed.
And don’ t forget to clearly state what you think the configuration is!

Learning to write concisely is one of the goals of an assignment like this. We are looking for a
concise description of the techniques you used to discover the cache configuration parameter
values and your analysis of the data that led to this conclusion. If your report is much longer than
the recommended length, we may not read the whole thing.

Part III: Turning it in

Turn in your report via e-mail. Douglas will send out directions for turning in the code if he
wants to see it.

