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Abstract

Non-blocking loads are a very effective technique for
tolerating the cache-miss latency on data cache references.
In this paper, we describe several methods Jor implement-
ing non-blocking loads. A range of resulting hardware
complexitylperformance tradeoffs are investigated using an
object-code translation and instrumentation system. We
have investigated the SPEC92 benchmarks and have found
that for the integer benchmarks, a simple hit-under-miss
implementation achieves almost all of the available perfor-
mance improvement for relatively little cost. However, for
most of the numeric benchmarks, more expensive im-
plementations are worthwhile. The results also point out
the importance of using a compiler capable of scheduling
load instructions for cache misses rather than cache hits in
non-blocking systems.

1. Introduction

A continuing trend in the design of computer systems is
the widening gap between microprocessor and memory
speeds. This speed discrepancy can significantly impact
the performance obtained from the system if the processor
stalls whenever a data-cache miss occurs. To prevent such
stalls, non-blocking loads and stores can be provided to
allow the processor to continue executing instructions
while a data-cache miss is resolved. Using non-blocking
instructions with sufficient hardware resources, a data-miss
induced stall will only occur if the register target of the
load is used by an instruction before the register is filled.

There are two common methods for implementing non-
blocking stores. The first method entails placing the data to
be stored in a write buffer while the cache fetches the line
into which the data is to be stored. The second method is
to use write policies other than fetch-on-write, such as
write-around, which neither fetch data on a write miss nor
write the new data into the cache; instead the data is written
directly to the next lower level in the memory hierarchy
[6]. Both of these methods do not require very complex
hardware and are becoming common in MiCroprocessors.

To allow the processor to continue to access the data
cache during the processing of a non-blocking load miss, a
lockup-free cache [7] is required. Non-blocking loads have
only recently appeared in microprocessors [3, 9], and often
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these implementations have been fairly restrictive. For ex-
ample, the HP PA7100 [1] allows a maximum of only one
miss outstanding in the cache (i.e., ‘*hit under miss’*). The
only recent appearance of mostly restrictive implemen-
tations is in part due to the more significant hardware com-
plexity required to implement non-blocking loads. Yet
studies of non-blocking loads have often assumed very un-
restricted models. For example, Sohi and Franklin
[12] assumed an 8-way banked cache where each bank
could support four outstanding fetches and several times
more misses. Other studies [2, 5, 11] generally have used
unrestricted models while focusing on other aspects of sys-
tem performance.

In this paper, we investigate the performance obtainable
from a number of practical non-blocking load implemen-
tations and evaluate the performance obtained in the con-
text of the hardware complexity required. Key to our in-
vestigation is careful modeling of the processor and
memory system and judicious accounting for the com-
plexities involved with non-blocking loads. Our results
suggest that a significant portion of the available perfor-
mance improvement can be achieved with implementations
that are not nearly as complex as the unrestricted im-
plementations assumed in many previous studies.

We begin by presenting in Section 2 a brief description
of the hardware implementations considered and in Section
3 an overview of our simulation methodology. We then
present in Section 4 the performance of various hardware
organizations using a baseline system with a 8KB direct
mapped data cache and 32 byte lines. Section 5 considers
the effects from variations in the cache size, the cache line
size, and the miss penalty. Section 6 explains how our
results can be extended to specific processor organizations.
We finish by summarizing our results in Section 7.

2. Hardware Options

To support multiple in-flight (i.e., outstanding) misses,
lockup-free caches require special hardware resources
which we describe below. In discussing non-blocking
loads it is helpful to divide the misses into three categories.
The first miss to a cache block with a given tag is called the
primary miss [7]. Subsequent misses to any of the bytes in
the block that is being fetched may cause a stall depending



on the hardware resources available. If a stall occurs due to
such a structural hazard, the miss causing the stall is called
a structural-stall miss. If, however, a structural-hazard-
induced stall is not required, then the miss is referred to as
a secondary miss [7]. Secondary misses require in-flight-
miss resources while structural-stall misses do not.

The organization of a lockup-free cache with support for
non-blocking loads was first given by Kroft [7]. In Kroft’s
implementation, registers called MSHRs (Miss Status
Holding Registers) are used to hold information on out-
standing misses. The MSHRs save enough information on
a miss so that when a requested cache block arrives from
the next lower level in the memory system, load instruc-
tions for the corresponding block can be completed. One
MSHR is associated with each fetch request outstanding to
the next lower level in the memory hierarchy. A primary
miss and several secondary misses can be merged into a
single fetch request. Kroft’s organization only allows one
miss per word in the cache block being fetched. If two
misses occur to a word while the block is being fetched, the
processor would stall; this second miss is an example of
what we call a structural-stall miss. In the remainder of
this section we consider four organizations of MSHRs:
implicitly addressed, explicitly addressed, in-cache
MSHRs, and an inverted MSHR organization.

2.1. Implicitly Addressed MSHRs

The organization of a typical basic MSHR which is
similar to Kroft’s is shown in Figure 2-1. (The typical bit
width of each field is listed above each field.) Each MSHR
contains a valid bit to signal that it is in use. When a
primary miss occurs, the valid bit and block request address
of a free MSHR are set. (The processor stalls if there is not
a free MSHR.) Assuming a 64 bit virtual address architec-
ture machine with a 48 bit physical address and a 32 byte
line size means that 5 bits are required to address within a
32 byte cache block size, and only 43 bits need to be stored
as the block request address. Each MSHR has its own
comparator so that a collection of MSHRs can be searched
associatively when a new miss occurs to find out whether
the new miss is a primary, structural-stall or secondary
miss. For each word in the block (e.g., four 8 byte words in
a 32 byte cache block) there exists a destination address,
formatting information, and a word valid bit. These fields
are set when a load miss occurs for a particular word so
that when the block returns from the next lower level in the
memory hierarchy, the actions of the load instruction can
be completed. The destination address is typically a full
register address including a bit specifying whether it is a
fixed point or floating-point register. The format infor-
mation gives other information provided by the load op-
code and perhaps low-order bits of the address which are
required for completion of the load instruction. Examples
of these are the width of the load (e.g., 1, 2, 4, or 8 bytes),
byte address bits for byte loads, and a bit saying whether to
sign extend the returning data. Specific instruction set ar-
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chitectures would require additional information. For ex-
ample, the MIPS R4000 architecture [10] has load-word-
left and load-word-right instructions for support of un-
aligned accesses. Information specifying these load op-
codes would need to be saved in the MSHRs as well so that
proper shifting and masking of the data can be performed
when it is placed in a register.

1 43 1 6 ~5
Block | Block Word 0 | Word 0 | Word 0
valid |request ||valid |desti- |format
bit address || bit nation

L ] [word1 [Word 1 [word 1

valid | desti- |format

Comparator bit nation

Word n | Word n | Word n
valid desti- | format
bit nation

Figure 2-1: Basic implicitly addressed MSHR fields

Note that all lockup-free caches require information to
be carried along with returning fetch data in order to match
up waiting requests and returning data, unless all data
returns in the order it is requested. For example, if there
are a small number of MSHRs, the MSHR number might
be sent with a fetch request as a tag and then retumned with
the fetched data. However, since in most systems ad-
dresses already need to be sent to the CPU from the
memory system for invalidations when maintaining cache
consistency, if these addresses are sent with returning fetch
data then the MSHRs can be probed with the address of
fetch data on its return.

2.2, Explicitly Addressed MSHRs

Even though the basic MSHR of Figure 2-1 is fairly
large ((4x12)+44=92 bits in the example above, plus a 44
bit comparator and significant control logic) it has two
limitations. First, multiple accesses to the same word while
a fetch of their block is outstanding will cause a stall. Even
in a machine with a 64 bit virtual address architecture, there
may be a fair number of loads and stores of 32 bit data for
many years to come. So instead of providing 64 bit word
granularity in the word area, the number of word records
may need to be doubled by reducing their granularity to 32
bits. This doubling would increase the number of bits in
the word section of our example to 8x12=96 bits, making
each MSHR 140 bits wide in total. However, this increase
still does not allow multiple byte loads to be outstanding to
the same 32 bit word in machines with byte loads and
stores. A second limitation is that multiple loads to the
exact same address will also cause stalls. Therefore, with
this type of MSHR organization it is important for the com-
piler to combine byte operations into word accesses and to
use register moves instead of loading from the same ad-
dress twice.



The word fields of the MSHR in Figure 2-1 are
positionally addressed (i.c., their position specifies their
word address within the block). Another more complicated
MSHR is shown in Figure 2-2. This MSHR has a number
of generic word fields which explicitly give their word ad-
dress. An explicitly addressed MSHR with 4 sets of word
fields could handle four misses to the exact same address
without stalling, or four misses to four bytes within one
word. Yet, even though bits are required to explicitly store
the address within the block, an explicitly addressed MSHR
that can hold 4 misses would be only (4x17)+44=112 bits
wide. This MSHR is smaller than an implicitly addressed
MSHR for 32 byte lines with 4 byte granularity. Explicitly
addressed MSHRs work best when there are only a limited
number of misses to the same block and these references
overlap or are to adjacent bytes or halfwords.

1 43 1 6 ~5 5
Block | Block First First First First
valid | request miss desti- format | address
bit address || valid nation in block

\l, J, Second | Second | Second | Second
miss desti- format | address

Comparator valid nation in block
Last Last Last Last
miss desti- format | address
valid nation in block

Figure 2-2: Explicitly addressed MSHR fields

2.3. In-Cache MSHR Storage

Implementing a large number of MSHRs each with sup-
port for many misses can require large amounts of storage.
Franklin and Sohi [4] have observed that cache lines wait-
ing to be filled on outstanding fetches can be used to store
MSHR information. This can be done by adding a transit
bit 10 each cache line. This bit indicates that the line is in
the process of being fetched, that the address in the cache
tag specifies the address being fetched, and that the data in
the cache line itself gives MSHR information. Using this
technique, many secondary misses could be supported
whether the MSHR fields were addressed implicitly or ex-
plicitly. However, in direct-mapped caches only one in-
flight primary miss per cache set can be supported. One
thing to keep in mind with this method is that if the read
port width of the cache is much smaller than the line size
(e-g., if only 8 bytes of a 32 byte line can be read per
cycle), it may take several cycles to read the entire cache
line when fetch data arrives. Thus it may be advantageous
to limit the length of the MSHR information to the width
that can be read in a single cycle. Also, even though only
one bit is added to each cache line, for very large caches
this may require more area than a simpler distinct set of
MSHRs.
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2.4. Inverted MSHR Organization

A very aggressive lockup-free cache may have many
MSHRs. Even if explicitly addressed MSHRs are used,
when there are many MSHRs in the system, the total num-
ber of MSHR destination pointers provided may exceed the
number of destinations in the machine. Even so, there will
likely be restrictions on the maximum number of misses
outstanding to a single block (e.g., 4 in the explicitly ad-
dressed MSHR above), or to the maximum number of
blocks being fetched (i.e., the number of MSHRs).

As an alternative organization for an aggressive lockup-
free cache, we introduce an inverted MSHR (see Figure
2-3). In an inverted MSHR there is one set of fields for
each possible destination of fetch data, instead of one set of
fields for each outstanding fetch as in a traditional MSHR
organization. The possible destinations of fetch data could
include all the integer and floating-point general purpose
registers in the machine, write buffer entries (for merging
with write data when writing into a write-allocate cache),
the program counter, and an instruction prefetch buffer (if
it exists). Thus a typical inverted MSHR might have be-
tween 65 and 75 entries.

1 43 ~5 5
[Reg #1|Reg #1 [Reg #1 | Reg #1
valid |request Jformat |address
bit address in block
Comparator
Reg #2|Reg #2 [Reg #2 | Reg #2
valid |request |format |address
bit address in block
Com, \l i
parator Match :\ga!chlng
gister
encoder number
PC PC PC PC
valid request |format |address
bit address in block
Comparator

Figure 2-3: Inverted MSHR organization

When a new miss occurs, the inverted MSHR is searched
associatively just like a traditional set of MSHRs. If there
is already an outstanding fetch for that block, one or more
matches will occur. In this case, the miss address is not
sent off-chip, but the inverted MSHR entry corresponding
to the destination of the fetch data is marked valid and its
block request address, formatting information, and address
within the block are writien. In the event there are no
matches, the MSHR entry corresponding to the destination
of the fetch data is still written in the same way, but a fetch
of the requested block from the next lower level in the
memory hierarchy is also begun. When a block of data
returns the inverted MSHR must be probed to identify
those destinations waiting for data from the block. Then
each waiting destination is filled in turn using the infor-



mation contained in the MSHR. This information specifies
the format to be used and indentifies the the portion of the
block which is to be loaded into the the destination.

An inverted MSHR can be built with the same basic
circuits as a fully-associative translation lookaside buffer
(TLB), with the addition of a match entry-number encoder.
(The match entry encoder may already be present in a TLB,
depending on the replacement strategy used.) An inverted
MSHR has the advantage that it has no restrictions on the
number of blocks being fetched or the number of misses
per block being fetched other than the number of possible
destinations of fetch data in the machine.

2.5. Hardware Summary

In this section we have described several mechanisms
that can be used to store information about outstanding
misses. Many other mechanisms would be possible. We
have attempted to list the simplest mechanisms covering a
spectrum of non-blocking support. In the following sec-
tions we present simulation results that could be expected
when using different non-blocking hardware support.

3. Simulation Methodology

The performance achieved with the lockup-free im-
plementations described in the previous section is a func-
tion of the number of in-flight misses that are supported.
To evaluate the complexity versus performance tradeoff for
these implementations, we investigated the performance
achieved when restrictions are imposed on the number and
the type of in-flight misses. For this investigation, we
chose models for the processor and the memory system that
isolate the performance available from various non-
blocking organizations from other aspects of machine per-
formance. This isolation is achieved by structuring the
models so that all processor stalls only relate to data ac-
cesses. As a result, performance is measure using the
average number of memory stall cycles per instruction
(CPI). In Section 6, we describe how the results can be
extended to systems with more complex processors and
memories.

3.1. Processor and Memory Models

The processor model we use has separate data and in-
struction caches, a multistage pipeline and 3 operand in-
structions. Since we are only concerned with the behavior
of the data cache, all instructions are assumed to hit in the
instruction cache. Branch instructions may also introduce
stalls if the branch-delay slot(s) cannot be filled by the
compiler or if the branch is taken. Branch stalls may occur
at the same time as other stalls such as those attributable to
accessing a register before its contents are valid. There-
fore, to take branch stalls into account requires explicitly
modeling them. In addition, the length of a stall is deter-
mined by cache hit rates, memory access delays and code
scheduling. To avoid having to model a complex memory
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system and thereby render our results less general, we
avoid branch induced stalls by assuming that there are no-
branch delay slots and that there is a perfect branch-target
predictor.

To remove the effects of stalls caused by resource con-
flicts, we have chosen to model a single-issue processor
with single cycle instruction latencies. The register file
comprises 32 integer and 32 floating point registers that can
be accessed via 2 read and multiple write ports; the need
for multiple write ports is explained below.

The memory system model assumes a direct mapped
data cache that uses write-around (i.e., no-write-allocate)
and write-through policies, and a write buffer situated be-
tween the data cache and lower levels in the memory
hierarchy. To avoid stalls induced by the write buffer (such
as it being full), no memory cycles are required to retire
writes from the write buffer. Also, to avoid stalls induced
by the main memory, the main memory is assumed to be
fully pipelined. Hence, regardless of other memory ac-
tivity, a constant number of cycles is required to fetch a
cache line from the memory into the cache. Data cache
references that hit in the cache require a single cycle to be
resolved. When a block of data is written into the cache as
a result of a primary miss, all registers waiting for the data
are updated at the same time; that is, all primary, structural-
stall, and secondary misses for a block are simultaneously
resolved. This assumption necessitates multiple write ports
for the register file.

Given the above assumptions, a stall will only occur if
there are too many cache misses outstanding (ie., a
structural-hazard, miss-induced stall) or if a use is made of
a register before a previously issued load completes (i.e., a
true data dependency, miss-induced stall). As all stalls
concern misses, the term miss CPI (MCPI) will be used in
lieu of memory stall CPL.

3.2. Simulation Framework

To perform the simulations for this study, we used an
object-code translation and instrumentation system. This
system emulates the execution of a benchmark as it would
run on a target machine by running the benchmark on an
existing machine. As a result both the functional behavior
and the memory behavior of the application are simulated.
The first step in performing a simulation is to compile the
benchmark using instruction scheduling rules pertaining to
the architecture of the processor to be modeled. We use a
modified version of the Multiflow VLIW Compiler [8] for
this purpose!. Next, the resulting assembly language (i.c.,
object code) is translated into the assembly language of the

IThe compiler was modified to produce RISC-like object code
for a processor with 32 bit addresses, 32 bit integers and 64 bit
floating point numbers. The speculative and predictive code
scheduling options were not used. The compiler uses a common
backend for both C and Fortran code.



machine on which the simulations are run, namely, Alpha
AXP workstations. Instrumentation and modeling code is
then inserted into the translated code. Finally, the aug-
mented, translated binary is linked with run-time libraries
and support routines. The run-time libraries contain
routines (e.g., sin()) that are called from within the
benchmark and as such their execution must also be emu-
lated. Hence, these routines have been compiled and in-
strumented in the same manner as the benchmark.

The instrumentation code is inserted to record the emu-
lated run-time behavior of the benchmark. This code
records various statistics including cache miss rates, the
number of (simulated) instructions executed, and the num-
ber of (simulated) clock cycles. The modeling code is in-
serted to allow the factoring in of the time required to
resolve memory and register accesses. This modeling is
accomplished by inserting before every emulated load and
store instruction a call to a procedure that models the
memory. These calls pass to the procedure the address of
the item being loaded or stored and the procedure returns
the amount of time required to process the access. For
example, for non-blocking loads, this time will be the time
required to launch the load whereas for a blocking-load it
will be the time required to load the data into the cache if it
is missing. A mechanism in the simulator adjusts these
addresses so that they do not reflect the presence of the
simulation infrastructure. Calls to a scoreboard procedure
are also inserted before every emulated instruction that uses
the result of a load. This procedure factors in the time
required to validate the source registers of the instruction.

3.3. Methodology

To explore the performance of the various implemen-
tations, the following software and hardware parameters
were varied:

1. load latency: The load latency is the time in cycles that
the compiler assumes is required to fetch data from the
cache on a cache hit and load it into a register. This
parameter indicates to the compiler how many instruc-
tions it should try to insert between the load instruction
and the first use. In contrast, the simulator always uses
a cache hit load latency of 1. Thus the (scheduled) load
latency parameter gives the degree of cache miss
tolerance that is expected if the compiler successfully
scheduled the code for this latency. It is important to
note that the load latency is a code-scheduling
parameter and not a system parameter.

2.in-flight misses: Both the number of primary and
secondary misses permitted to be outstanding to each
set in the cache, and the number of primary and secon-
dary nllisses permitted to be outstanding to the cache as
a whole.

3. cache parameters: The cache size and the line size.

4. miss penalty: The miss penalty is the time in cycles
required to fill a line in the cache from the next-lower
level in the memory hierarchy.
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We have simulated 18 of the SPEC92 benchmarks for a
wide range of the above parameters. The results we present
below represent over 3700 simulations requiring ap-
proximately 370 days of run-time. This paper discusses in
detail five representative benchmarks of the 18; these five
are listed in Table 3-1 along with some run-time charac-
teristics. The three major columns give breakdowns based
on instruction, load, and store references. The sub-columns
give information about the load latency parameters which
resulted in the minimum and maximum number of instruc-
tions executed. Individual columns give the number of
instructions executed (in millions) and the load latency for
which this maximum or minimum number of instructions
was executed.

Instruction Refs | Data Loads Refs [Data Stores Refs
Bench- Min Max Min Max Min Max
mark # lat| # lat| # lat| # lat| # lat|{ # lat
doduc 1025 1(1035 20| 234 1| 238 20{701 1{703 20
eqntott |1766 2(1768 10{ 219 1| 220 2|239 3{243 2
su2cor |5114 1(5120 6{1095 3|1099 6|521 1{522 20
tomcatv|[1070 6(1091 2| 297 6| 318 1|100 1|108 3
xlisp 5612 1|5667 10| 143 6| 144 3(852 6855 1

Figure 3-1: Benchmark characteristics; references in millions

It is clear from the table that the number of references
can change slightly with the load latency. This result is
expected as the load latency significantly influences the
code scheduling. The compiler tries to meet the specified
load latency using a number of techniques including in-
struction reordering. Because register allocation occurs
after instruction scheduling, code schedules prepared with
different load latencies are likely to have different register-
use profiles. Hence, the number of register spills to
memory may vary thereby changing the number of data and
instruction references.

Note that the references presented in the table do not
include those generated by the operating system as we
could not instrument operating system routines.

4. Baseline Performance Investigations

In this section, we explore the performance and the cost
effectiveness of non-blocking load implementations for our
baseline cache configuration of a 8 Kbyte direct mapped
cache with 32 byte lines and a 16 cycle miss penalty. In
the ensuing discussion, it is important to remember that the
only stalls that can occur are those attributable to true data
dependencies or structural hazards.

We begin with doduc which best illustrates many of the
characteristics common to all benchmarks. The MCPI in-
curred by doduc with several of the simpler non-blocking
implementations is shown in Figure 4-1. In this figure,
each curve corresponds to a specific cache implementation
and the curves show how the MCPI varies with the
scheduled load latency. The upper two curves correspond
to lockup caches and are given for sake of comparison.
These curves have labels that include the term ‘‘mc=0".



This term indicates that the implementations allow zero
outstanding misses to a cache without stalling the proces-
sor, or in other words, are lockup. The term “‘+wma’’
included in the label of the upper-most curve indicates that
in addition to being lockup, the cache used write-miss
allocate, and the processor stalls until misses caused by
writes have been serviced. The bottom-most curve, labeled
“‘no restrict’’ shows the MCPI incurred with a lockup-free
cache using an inverted MSHR. The other curves cor-
respond to more restricted and lower cost lockup-free im-
plementations.

Emc=0+wma ®mc=0 *mc=1 [Jfe=1 Ame=2 Ofc=2 Onorestrict

Boss
E o.sj —
045 |
04—
035 —| //\,///
03 |
025
02 —| -
0.15 | \A//A
01 ]
o S T R A R SR N

load latency

Figure 4-1: Baseline Miss CPI for doduc

The curve labeled ‘‘mc=1"" {one outstanding miss to the
cache) corresponds to a hit-under-miss scheme im-
plemented using a single MSHR with one explicitly ad-
dressed field. A simple modification to this scheme is to
employ an additional MSHR with only one destination ad-
dress; this scheme allows two in-flight misses, one or both
of which can be primary misses. The MCPI for this
scheme is given by the curve “‘mc=2"". To support mul-
tiple secondary misses but only one fetch operation, the
hit-under-miss hardware could be replaced with a single
explicitly-addressed MSHR with many destination ad-
dresses. The MCPI incurred with this implementation is
given by the curve labeled “‘fc=1"" (one fetch outstanding
to a cache), since one primary miss and many secondary
misses can be outstanding, but they must all be satisfied by
the same cache line refill. For now we assume an infinite
number of fields in the MSHR thereby supporting an un-
limited number of secondary misses; we will consider the
effects from limiting the number later. The final curve
corresponds to an implementation with two such MSHRs
and is the most complex of the restricted implementations.

Note that all the lockup-free implementations achieve
very similar MCPIs for a load latency of 1. This fact, as
will be discussed below, is a consequence of the algorithm
used to schedule the code. The lockup-free implemen-
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tations, however, achieve different MCPIs for load
latencies bigger than the cache-hit latency. The simplest,
hit-under-miss, incurs 2.9 times the MCPI of the un-
restricted cache for a scheduled load latency of 10. If the
hit-under-two-miss scheme is employed, this factor drops
to 1.7, a significant improvement yet one which incurs little
additional hardware complexity.

Consider the relative position of the ‘“‘fc=1"" and
“mc=2"" curves. This ordering indicates that doduc
benefits more from allowing two primary misses to be in-
flight than from allowing unlimited secondary misses to a
single block being fetched. This fact is true for many of the
other benchmarks. Finally, if the ‘‘fc=2"" implementation
was used instead, the MCPI incurred would be only 1.3
times the MCPI of the unrestricted implementation.

The curves in Figure 4-1 show two peculiarities that are
attributable to the load latency. The first concerns the
similar performance at a load latency of 1. With a load
latency of 1, the compiler often schedules the instruction
that uses the target register of a load immediately after the
load instruction. Hence, it is rare for there to be more than
one outstanding load and thus there is little to differentiate
the lockup-free implementations. For doduc, we can com-
pute the percent of the run-time that there is more than one
miss outstanding from the numbers in Figure 4-2. This
figure presents the in-flight miss and in-flight fetch his-
tograms for doduc for each load latency and for a 16 cycle
miss penalty. For a load latency of 1, there is at least one
in-flight miss 27% of the time (the column labeled MIF),
while for 92% of this time, there is only one miss. Thus for
only 27% x (100% — 92%) =2% of the run-time is there
more than a single miss outstanding.

load [ % time with |in-flight | % of MIF for # in flight
lat- | >0 misses in 1 2 3456 7+ |max#
ency | flight (MIF)
1 27 misses (92 8 0000 0 12
fetches |95 5 000 0 0 5
2 25 misses (69 18 54 2 1 1 16
fetches (80 14 3111 0 13
3 27 misses (64 20 6 5 1 1 3 16
fetches (80 15 3110 0 14
6 22 misses (54 25 96 2 1 3 16
fetches (75 18 4210 0 13
10 22 misses (51 23 10 9 3 1 3 16
fetches |70 20 6 21 1 0 14
20 26 misses (53 22 10 8 3 1 3 16
fetches (73 18 522 0 0 14

Figure 4-2: Histogram of in-flight misses and fetches for doduc.

When longer load latencies are used, the compiler tries
10 insert instructions between the load-use pair and fre-
quently these are load instructions. Hence, there will likely
be more in-flight loads and hence more in-flight misses.
This increase in outstanding misses and fetches can be seen
in Figure 4-2. At a load latency of 20, for 12% of the run
time there is more than one in-flight miss, which is 6 times




more often than for a load latency of 1. The final column
in the figure gives the maximum number of in-flight misses
and fetches for the entire run of the benchmark. The max-
imum number of fetches never exceeds 16 since only one
load can be issued in a cycle and the miss penalty is 16.
The histograms for doduc represent an average case among
the 18 benchmarks.

Because the compiler tries to increase the distance be-
tween the load and the first instruction to use its result, with
longer load latencies there will be a decrease in true-data
dependency stalls and a possible increase in the number of
structural hazard stalls. This tradeoff is illustrated in
Figure 4-3 which shows the portion of the MCPI that is
attributable to structural-hazard induced stalls. This per-
centage is higher for longer load latencies. Note that when
a compiler schedules for a load hit on a machine that can
issue multiple instructions per cycle and has a cache-hit
latency longer than one cycle, the compiler is already
scheduling for load latencies greater than one. (More
details on scaling our results to multi-issue machines is
given in Section 6.)
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Figure 4-3: Stail cycle breakdown for doduc

The second peculiarity concems the dip in the MCPIs
that occurs at a load latency of 6. This dip occurs mainly
because the primary and secondary cache miss rate also
decreases at this value. This decrease is shown in Figure
4-4 which gives the combined primary and secondary miss
rate as well as the secondary miss rate for the various im-
plementations. The rate changes are attributable to the in-
struction movement and the grouping of load instructions
which the compiler performs when trying to schedule for
longer load latencies. When several misses are scheduled
in close proximity, it is possible that some of these will
access data that maps to the same line in the cache. Hence,
while the compiler is trying to schedule the code to better
tolerate cache misses, the conflict-miss rate may increase.
The dip seen at a load latency of 6 corresponds to a code
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schedule that contains fewer conflict misses. Such discon-
tinuities also exist with many of the other benchmarks.
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Figure 4-4: Baseline Miss rate for doduc

The MCPI graph for doduc suggests that doduc is able to
take advantage of the more sophisticated lockup-free im-
plementations. However, the more sophisticated im-
plementations are not always necessary as the results for
xlisp illustrate. Figure 4-5 shows the equivalent graph to
Figure 4-1 for xlisp. The proximity of the curves for the
lockup-free cache implementations suggests that the simple
hit-under-miss implementation achieves near-optimal per-
formance. In fact, compared to the unrestricted implemen-
tation, it incurs only 1.06 times the MCPI for a load latency
of 10. The increasing MCPI beyond scheduled load
latencies of 2 is primarily due to the conflict-miss problem
described above. When the effect of conflicts is removed
by using a fully associative cache, the curves become flat
(see Figure 4-6). Note that the absolute MCPI is reduced
by a factor of two to three by using a fully-associative
cache in comparison to the direct-mapped case, due to the
high percentage of conflict misses in Figure 4-5. Nonethe-
less, the same ordering of the MCPI incurred by the non-
blocking implementations is maintained.

Another benchmark that does not require a more com-
plex implementation than hit-under-miss is egntotr. The
MCPI graph for egntott is presented in Figure 4-7. As
suggested by the small difference in the MCPI incurred by
the different implementations, egntott’s MCPI is dominated
by true data dependency stalls; structural hazard induced
stalls account for less than 1% of the MCPI. The discon-
tinuity at a load latency of 3 is another manifestation of the
effect that produces the dip at a load latency of 2 for xiisp.

As shown in Figure 4-8, the tomcatv benchmark incurs
MCPI values that are an order of magnitude larger than
those incurred by egntort. The relative ordering of the
curves for the various implementations is the same as those
for the benchmarks presented above. Unlike doduc,
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however, tomcatv incurs an almost constant MCPI for load
latencies 6 and larger. Tomcatv contains two nested loops
which are unrolled many times by the compiler, and for
load latencies of 6 and larger, the resulting code schedules
are nearly identical. The performance for tomcatv as the
load latency is varied corresponds to what intuition sug-
gests would occur, namely, the MCPI monatomically
decreases and the rate of decrease is smaller as the load
latency becomes larger. This intuitive behavior is usually
not exhibited by the other benchmarks, due to changes in
the in-flight load profile brought about by changes in the
load latency.

The above discussion focused on the baseline perfor-
mance for five of the 18 SPEC benchmarks we inves-
tigated. These five were chosen to illustrate typical MCPI
trends. The performance data for the various hardware
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Figure 4-8: Baseline Miss CPI for tomcatvy

organizations for all 18 SPEC92 benchmarks is presented
in Table 4-9. This table gives the MCPI for each hardware
organization and the ratio of this MPCI value to that for the
‘““no restriction’’ organization. (The MCPI for the no
restriction organization is given in the column labeled
“‘e0’”} As can be seen from the table, for a large number of
the benchmarks, very good performance is obtained with
the simpler implementations.

4.1. Implicit vs. Explicit Addressing

In the MCPI figures shown above, the curves labeled
““fc=1"" and “‘fc=2"" correspond to lockup-free caches sup-
porting an infinite number of in-flight secondary misses.
However, implicitly addressed MSHRs limit the number of
outstanding misses to one per sub-block where a sub-block
is the number of bytes of the cache line for which there is



mc=0 mc=1 me=2 fc=1 fc=2

00

mepi X [mcpi X [mcpi X [mepi x |mepi X | mepr

alvinn 0.494 1.4]0.398 1.1[0.371 1.0[0.394 1.1|0.367 1.0|0.365
doduc 0.346 4.1(0.245 2.9/0.147 1.7(0.197 2.4]|0.109 1.3|0.084
ear 0.094 2.0{0.067 1.5]|0.050 1.1/0.067 1.5[0.050 1.1]0.048
fpppp 0.434 7.1{0.234 3.8/0.119 1.9(0.197 3.2(0.091 1.5]0.062
hydro2d [0.708 3.7]|0.466 2.5(0.246 1.3|0.457 2.4|0.242 1.3 0.189
mdljdp2 [0.314 1.9/0.231 1.4(0.193 1.2{0.227 1.4(0.190 1.1 0.167
mdljsp2 |0.154 3.4/0.088 1.9(0.057 1.2|0.070 1.5/0.052 1.1]|0.046
nasa?7 1.865 3.6]1.452 2.8/0.753 1.5/1.360 2.6/0.670 1.3]0.519
ora 1.000 1.0/1.000 1.0|1.000 1.0]1.000 1.0]1.000 1.0]|1.000
su2cor 1.266 14)1.055 11(0.437 4.7{1.002 10(0.394 4.2/0.093
swm256 |0.297 4.4]/0.110 1.6(0.070 1.0/0.109 1.6(0.069 1.0/0.067
spice2g6 [1.092 1.2[0.958 1.1/0.903 1.0/0.945 1.1/0.896 1.0 0.891
tomcatv [1.140 17(0.714 11]0.310 4.7|0.649 9.8]/0.219 3.3]0.066
wave5 0.277 2.60.194 1.8/0.132 1.2{0.183 1.7/0.126 1.2|0.107
compress | 0.453 1.3]0.354 1.0{0.349 1.0{0.351 1.0[0.348 1.0]0.348
eqntott |0.108 1.5(0.078 1.1|0.073 1.0|/0.078 1.1]/0.073 1.0/0.073
espresso 10.209 1.2(0.176 1.0{0.170 1.0(0.174 1.0]0.170 1.0]/0.169
xlisp 0.211 1.2]0.185 1.1[0.176 1.0(0.181 1.0{0.176 1.0|0.176

Figure 4-9: Baseline MCPI for 18 SPEC92 benchmarks.

one destination tag. On the other hand, explicitly-
addressed MSHRs allow several misses per sub-block, but
have only one sub-block per line. Simulations of doduc
and tomcatv were performed to investigate the performance
tradeoffs between these two types of MSHRs; simulations
of egniott and xlisp were not undertaken as both of these
incur near optimal MCPI values with the hit-under-miss
implementation. Figure 4-10 presents the results of the
simulations for doduc. This table gives the MCPI incurred
and the ratio of the MCPI to that of the unrestricted cache
for several implementations of the baseline cache and a
scheduled load latency of 10; the MCPI for the unrestricted
cache is given in the row marked by the symbol for in-
finity. The first column in the table corresponds to a cache
using an implicitly-addressed MSHR whereas the first row
corresponds to the use of an explicitly-addressed MSHR;
non-edge entries correspond to a hybrid of these two.

number misses per sub-block
of 1 2 4
sub-blocks [ MCPI ratio | MCPI ratioc | MCPI ratio
1 0.150 1.79 | 0.114 1.36 | 0.085 1.01
2 0.144 1.72 | 0.086 1.03
4 0.091 1.09
8 0.084 1.00
0o 0.084 1.00

Figure 4-10: Explicit, implicit, and hybrid MSHRs for doduc

As can be seen in Figure 4-10, doduc incurs a MCPI
within 1% of the unrestricted cache for caches employing
either an explicitly-addressed MSHR with 4 misses per
line, or an implicitly-addressed MSHR with 8 sub-blocks
per line. This 8 sub-block per line granularity corresponds
to an entry for every 4 bytes of the cache line. Using the
hardware configurations given in Figures 2-1 and 2-2, the
hardware costs for a MSHR using 8 implicit addresses is
44+(8x12)=140 bits plus a comparator and control logic.
For the 4-entry explicitly addressed MSHR, it is
44+(4x17)=112 bits plus a comparator and control logic.
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The hybrid approach given in the table (sub-blocks=2,
misses=2) offers slightly worse performance but at a cost of
44+(4x16)=106 bits plus a comparator and control logic.
(The hybrid organization needs one less address bit in its
"address in block” field because it is supplied by the im-
plicit subblock location.)

4.2, In-cache MSHR Storage

Consider the effect of allowing more than one in-flight
primary miss per cache set. A direct-mapped in-cache
MSHR storage implementation is limited to one primary
miss per cache set because the set itself is used to store the
MSHR information. However, implementations based on
conventional discrete MSHRs can support more than one
fetch for a particular cache set once there is more than one
MSHR. While many benchmarks, such as those discussed
above, achieve a nearly optimal MCPI with only 1 fetch per
set, other benchmarks do not. Typical of those that do not
is su2cor. Figure 4-11 presents the baseline cache con-
figuration simulations for su2cor. In this figure, the curves
labeled ‘‘fs="" correspond to lockup-free implementations
that support the specified number of in-flight fetches to a
cache set. Thus, for our baseline system with an 8KB data
cache and 32 byte line size, “‘fs=1"" would allow up to 256
fetches outstanding, but only one per set in the cache. For
a load latency of 10, allowing one fetch per set incurs 2.3
times the MCPI of the unrestricted non-blocking im-
plementation whereas two fetches per set incurs 1.3 times
the MCPL. It is clearly advantageous to support multiple
fetches per cache set for su2cor. By implementing the
in-cache MSHR storage method in a set-associative cache,
more than one fetch per set could be in progress simul-
taneously. However, by implementing a set-associative
cache, most of these concurrent conflict misses might be
eliminated in the first place.
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Figure 4-11: Baseline Miss CPI for su2cor



5. Variations on the Baseline Configuration

In this section we consider the effects of variations in
cache size, cache line size, and miss penalty over the
baseline cache configuration performance.

5.1. Variations in Cache Size

The previous results have been for a first-level data
cache size of 8KB. In this section we consider the question
of how a larger cache size affects the relative benefits of
supporting more outstanding primary and secondary
misses. Cache miss rates decrease with increases in cache
size, resulting in a reduction in the miss CPI incurred by all
machine configurations. This reduction might significantly
reduce the clustering of misses. If this is true, there may
not be significant enough clustering of misses to result in
any performance improvement due to more aggressive non-
blocking organizations.

Figure 5-1 shows the simulation results for doduc with a
64KB cache with 32 byte lines and 16 cycle miss penalty.
Although the miss CPI has been reduced by about a factor
of five in comparison to the results for 8KB caches in
Figure 4-1, the graphs look remarkably similar. This obser-
vation indicates that there is still about the same percentage
of misses that can be overlapped, even if the total number
of misses has been much reduced. Thus, although the ab-
solute performance improvement due to each non-blocking
load organization is about a factor of five smaller, more
aggressive organizations still provide additional benefits
over simpler organizations.
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Figure 5-1: Miss CPI for doduc with a 64KB data cache

We have also looked at the performance of the other
benchmarks with 64KB caches. In general the overall
shape of the graphs for the other benchmarks are also
similar to those for 8KB caches, although the absolute miss
CPIs may be much lower. We have not looked at cache
sizes larger than 64KB, since we are limiting our studies to
first-level cache configurations which are feasible for on-
chip implementation.
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5.2. Variations in Cache Line Size

We have also investigated the effects of variations in the
cache line size. One would expect that for larger line sizes,
organizations that provide an unlimited number of secon-
dary misses per line being fetched will do better in com-
parison to organizations that only support one miss per
cache line. Similarly, for smaller cache line sizes, one
would expect systems that support more primary misses at
the expense of reduced support for secondary misses to
perform relatively better. In our simulations, we have seen
these effects, but their magnitude was smaller than we had
anticipated.

For our comparisons we assumed a pipelined memory
system with 14 cycles for the return of the first 16 bytes on
a miss and 2 cycles per additional 16 bytes. Thus the miss
penalty for systems with 16 byte lines was 14 cycles, and
the miss penalty for systems with 32 byte lines was 16
cycles. Figure 5-2 shows the miss CPI for doduc with a 16
byte line size. Some differences can be seen between this
figure and Figure 4-1, which uses 32 byte lines. First, the
miss CPI increases slightly for all configurations using 16
byte lines because the 32 byte line size is a better choice
given the pipelined memory system. However, the ab-
solute values of the CPI should be ignored for the purposes
of this comparison. Instead, looking at the relative perfor-
mance of “mc=1"", ““mc=2"’, and ‘‘fc=1"’, in Figure 4-1,
the ““fc=1"" case is about midway between the ‘‘mc=1"’
and ““‘mc=2"’ cases. If 16 byte lines are used (Figure 5-2),
the miss CPI incurred by ‘‘fc=1"" moves closer to ‘‘mc=1"’
than ““mc=2"" (i.e., gets relatively worse). This is to be
expected since the cache lines are smaller, so the benefit
from supporting an unlimited number of secondary misses
to a given cache line is less. In the limit as the cache line
size is reduced to a single word, the ‘‘fc=1"" organization
will have the same miss CPI as the ““mc=1"" organization.
We have seen this curve-movement effect when simulating
the other benchmarks as well.

5.3. Variations in Miss Penalty

The above discussions have assumed a constant miss
penalty of 16. Changing the miss penalty can affect the
MCPI incurred by the benchmarks through two
mechanisms.  First, with longer miss penalties, there is
likely to be a larger number of load instructions executed
during the time required to service a miss, and thus there is
a larger potential number of in-flight misses. With more
in-flight misses, more structural stalls may occur. Second,
longer miss penalties increase both the likelihood and the
length of true-data-dependency stalls, while shorter
latencies decrease both. To illustrate how the miss penalty
affects the MCPI, we shall present some data for tomcatv
which best illustrates the changes. Table 5-3 gives the miss
CPI when using a scheduled load latency of 10 cycles.
(Scheduling for load latencies greater than 10 has little ef-
fect, as Figure 4-8 shows.) The important thing to note is
that for non-blocking organizations, the increase in miss
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Figure 5-2: Miss CPI for doduc with 16 byte lines

CPI when moving from a small miss penalty to a large miss
penalty is highly non-linear. This is especially true for the
most aggressive implementations,  For small miss
penalties, virtually all of the miss penalty can be over-
lapped with computation, so the miss CPI remains very
small. As the miss penalty is increased to large values, a
higher and higher percentage of each miss penalty increase
directly affects the miss CPI because the amount of pos-
sible overlap between misses and computation becomes ex-
hausted. For example, for the unrestricted case when
moving from a miss penalty of 16 cycles to 32 cycles (a
factor of 2 increase), the miss CPI increases by almost a
factor of five. In contrast, the blocking organization’s
(mc=0) miss CPI is strictly a lincar function of the miss
penalty.

miss penalty
4 8 16 32 64 128
mc=0+wma | 0.483 0.967 1.934 | 3.868 7.736 15472
me=0 0.285 0.570 1.140 { 2.280 4.561 9.122
mc=1 0.127 0.300 0.714 | 1.596 3.494  7.469
fe=1 0.111 0.258 0649 | 1.511 3.408 7.381
mc=2 0.030 0.097 0.310 | 0.803 1.939 4.376
fe=2 0.021 0.069 0.219 | 0.641 1.676 3.866
no restrict 0.001 0.013 0.066 | 0.300 0.928 2.226

Figure 5-3: MCPI as a function of the miss penalty for tomcatv.

6. Applying the Results to Specific Machines

The processor and memory models we employ (see Sec-
tion 3.1) were chosen to isolate the performance obtainable
with non-blocking hardware from other machine-specific
issues. It is possible to interpret our results in the context
of specific machines by scaling the input parameters and
adjusting the resulting CPI.

For machines with a limited number of write ports, the
MCPI values may need to be increased. With a limited
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number of write ports, more time may be required to com-
plete a line fill once the block is returned to the cache. This
additional time might affect performance by increasing the
length of true data dependency stalls or may increase the
number of structural hazard induced stalls. Such an in-
crease could occur because the MSHR may be in use for
longer amounts of time. The correction factor should take
into account these effects and would be based on the ratio
of secondary to primary misses. Note that this correction
would only be a first-order approximation because the
presence of other stalls changes the load-miss profile. In
practice, this correction factor is probably not significant
enough to be included. Our simulations of the 18
benchmarks have shown that most of the time there is only
a few misses outstanding. This fact is illustrated by the
in-flight miss and fetch histograms for doduc which are
shown in Figure 4-2.

To interpret the results for superscalar machines, the
simulation parameters can be scaled based on the average
number of instructions issued per cycle (IPC) in the super-
scalar machine. The miss penalties of the superscalar
machine should be multiplied by the average IPC of the
superscalar machine to get the miss penalties corresponding
to this study. Similarly, the latencies for which loads are
scheduled for the superscalar machine should be multiplied
by the average IPC to get load latencies corresponding to
our results. Then the results we have presented for the
scaled miss penalty and load latency can be used as a first-
order approximation for the MCPI for the multi-issue
machine.

To gauge the accuracy of this scaling, we compared
simulations of the 18 benchmarks on a dual-issue machine?
to those on a single-issue machine. This comparison was
performed by first simulating the execution of each
benchmark on the dual-issue machine using a load latency
of 10 and a miss penalty of 16. These parameters were then
scaled usirig the average IPC for each benchmark and a
single-issue machine simulation was done using the new
parameters. Because it was not convenient to compile the
code for all values of the load latency, we used the load
latency from the set {1,2,3,6,10,20) that was closest to the
scale value; the miss penalty was rounded to the nearest
whole number.

The results from this comparison for several of the
benchmarks are presented in Table 6-1 for four non-
blocking load implementations. In general, the scaling
results in a good first-order approximation. This is espe-
cially true when considering the coarseness of the ap-
proximation.

2This processor could dual issue all instructions except for
branches and all instructions had a single cycle latency.



IPC led ed dual-i MCPI and difference

load miss| mc=0 | mc=1 fc=2 | no rest.

lat. pen.|mcpi % |mepi % |mcpi Yo [mepi %0

doduc |1.59(15.9 25.5]0.59 -10/0.50 -7(0.23 -6(0.20 -8
eqntott |1.16/11.7 18.6{0.13 -2|0.10 1}0.09 1{0.09 2
su2cor (1.76{17.6 28.1|2.21 1|2.00 5|0.82 10022 21
tomcatv|1.82|18.2 29.1{2.08 1{148 4|0.59 7(0.27 28
xlisp 1.30(13.0 209 |1.24 -14]|1.21 -14|1.20 -14|1.20 -14
average [1.53]15.3 24.5(1.25 -5[1.08 -2[0.59 0]|040 @

Figure 6-1: Dual and single issue MCPI scaling comparison.

7. Conclusions

We have studied a wide range of techniques for im-
plementing non-blocking loads. These techniques have
ranged from organizations that allow only one outstanding
miss to organizations which allow as many misses as there
are possible load destinations in the machine. Non-
blocking loads are a very powerful technique for tolerating
cache miss latency. In our baseline system configuration
with a 8KB direct-mapped data cache, 32 byte lines, and a
16 cycle miss penalty, non-blocking load implementations
can reduce the miss stall CPI of integer benchmarks by up
to a factor of two, and can reduce the miss stall CPI of
many numeric benchmarks by a factor of 4 to 10.

For integer benchmarks, a simple hit-under-miss or-
ganization is the most cost effective as it achieves a perfor-
mance comparable to organizations that allow an un-
bounded number of in-flight misses. On the other hand, the
most cost-effective organizations for many of the numeric
benchmarks are those that permit several in-flight primary
and secondary misses. For some benchmarks, when using
a direct-mapped cache it is worthwhile to support multiple
misses to different addresses which map to the same cache
set.

Surprisingly, we see very similar relative improvements
with the addition of non-blocking loads to larger caches.
Even though the miss rates may be significantly reduced by
using larger caches, the remaining misses are still clustered
enough that supporting many simultaneously outstanding
misses results in large proportional changes in the miss stall
CPI for numeric programs.

As we expected, with 16 byte cache lines rather than 32
byte lines, more benefit is obtained from supporting a
greater number of primary misses than secondary misses;
the opposite is true for cache lines larger than 32 bytes.
Regardless of the cache line size, for lockup-free caches,
the miss stall CPI varies non-linearly with the miss penalty.

Finally, our results point out the importance in non-
blocking systems of scheduling load instructions wherever
possible for cache misses instead of cache hits. An aggres-
sive compiler that uses trace-scheduling and/or other tech-
niques for increasing instruction-level parallelism is crucial
to getting enough flexibility to schedule for the longer
cache miss latencies.
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