Support Vector Machines

Preview

- What is a support vector machine?
- The perceptron revisited
- Kernels
- Weight optimization
- Handling noisy data

What Is a Support Vector Machine?

- 1. A subset of the training examples **x** (the **support vectors**)
- 2. A vector of weights for them α
- 3. A similarity function K(x, x') (the **kernel**)

Class prediction for new example x_q :

$$f(x_q) = \operatorname{sign}\left(\sum_i \alpha_i y_i K(x_q, x_i)\right)$$

 $(y_i \in \{-1, 1\})$

- So SVMs are a form of instance-based learning
- But they're usually presented as a generalization of the perceptron
- What's the relation between perceptrons and IBL?

The Perceptron Revisited

The perceptron is a special case of weighted kNN you get when the similarity function is the **dot product**:

$$f(x_q) = \operatorname{sign}\left[\sum_{j} w_j x_{qj}\right]$$

But

$$w_j = \sum_i \alpha_i y_i x_{ij}$$

So

$$f(x_q) = \operatorname{sign}\left[\sum_{j} \left(\sum_{i} \alpha_i y_i x_{ij}\right) x_{qj}\right] = \operatorname{sign}\left[\sum_{i} \alpha_i y_i (x_q \cdot x_i)\right]$$

Another View of SVMs

- Take the perceptron
- Replace dot product with arbitrary similarity function
- Now you have a much more powerful learner
- Kernel matrix: K(x, x') for $x, x' \in Data$
- If a symmetric matrix K is positive semi-definite (i.e., has non-negative eigenvalues), then K(x, x') is still a dot product, but in a transformed space:

$$K(x, x') = \phi(x) \cdot \phi(x')$$

- Also guarantees convex weight optimization problem
- Very general trick

Examples of Kernels

Linear: $K(x, x') = x \cdot x'$ Polynomial: $K(x, x') = (x \cdot x')^d$ Gaussian: $K(x, x') = \exp(-\frac{1}{2}||x - x'||/\sigma)$

Example: Polynomial Kernel

$$u = (u_1, u_2)$$

 $v = (v_1, v_2)$

$$(u \cdot v)^{2} = (u_{1}v_{1} + u_{2}v_{2})^{2}$$

= $u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2} + 2u_{1}v_{1}u_{2}v_{2}$
= $(u_{1}^{2}, u_{2}^{2}, \sqrt{2}u_{1}u_{2}) \cdot (v_{1}^{2}, v_{2}^{2}, \sqrt{2}v_{1}v_{2})$
= $\phi(u) \cdot \phi(v)$

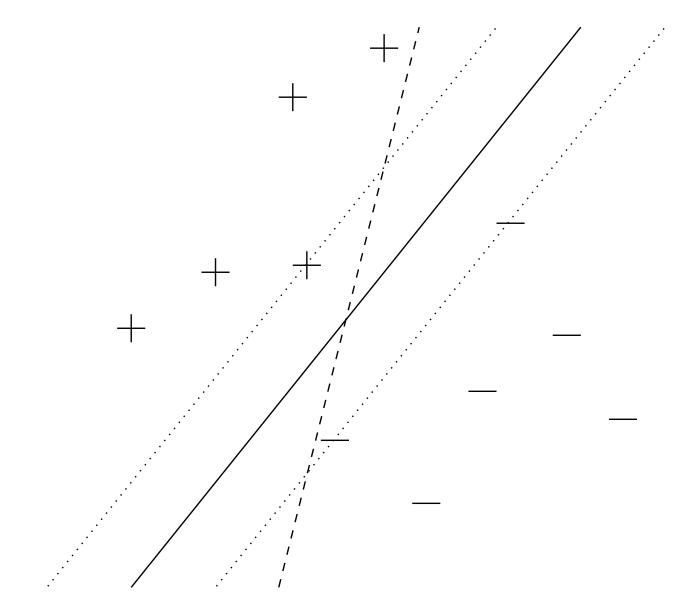
- Linear kernel can't represent quadratic frontiers
- Polynomial kernel can

Learning SVMs

So how do we:

- Choose the kernel? Black art
- Choose the examples? Side effect of choosing weights
- Choose the weights? Maximize the margin

Maximizing the Margin



The Weight Optimization Problem

- Margin = min $y_i(w \cdot x_i)$
- Easy to increase margin by increasing weights!
- Instead: Fix margin, minimize weights
- Minimize $w \cdot w$ Subject to $y_i(w \cdot x_i) \ge 1$, for all i

Constrained Optimization 101

- Minimize f(w)Subject to $h_i(w) = 0$, for i = 1, 2, ...
- At solution w^* , $\nabla f(w^*)$ must lie in subspace spanned by $\{\nabla h_i(w^*): i = 1, 2, ...\}$
- Lagrangian function:

$$L(w,\beta) = f(w) + \sum_{i} \beta_{i} h_{i}(w)$$

- The β_i s are the Lagrange multipliers
- Solve $\nabla L(w^*, \beta^*) = 0$

Primal and Dual Problems

- Problem over w is the **primal**
- Solve equations for w and substitute
- Resulting problem over β is the **dual**
- If it's easier, solve dual instead of primal
- In SVMs:
 - Primal problem is over feature weights
 - Dual problem is over instance weights

Inequality Constraints

- Minimize f(w)Subject to $g_i(w) \le 0$, for i = 1, 2, ... $h_i(w) = 0$, for i = 1, 2, ...
- Lagrange multipliers for inequalities: α_i
- KKT Conditions:

$$\nabla L(w^*, \alpha^*, \beta^*) = 0$$

$$\alpha_i^* \ge 0$$

$$g_i(w^*) \le 0$$

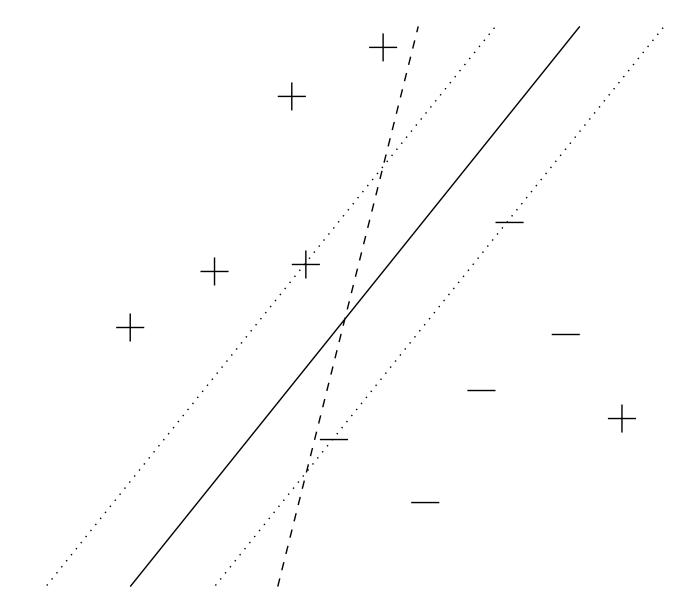
$$\alpha_i^* g_i(w^*) = 0$$

- Complementarity: Either a constraint is active $(g_i(w^*) = 0)$ or its multiplier is zero $(\alpha_i^* = 0)$
- In SVMs: Active constraint \Rightarrow Support vector

Solution Techniques

- Use generic quadratic programming solver
- Use specialized optimization algorithm
- E.g.: SMO (Sequential Minimal Optimization)
 - Simplest method: Update one α_i at a time
 - But this violates constraints
 - Iterate until convergence:
 - 1. Find example x_i that violates KKT conditions
 - 2. Select second example x_j heuristically
 - 3. Jointly optimize α_i and α_j

Handling Noisy Data



Handling Noisy Data

- Introduce slack variables ξ_i
- Minimize $w \cdot w + C \sum_{i} \xi_{i}$ Subject to $y_{i}(w \cdot x_{i}) \geq 1 - \xi_{i}$, for all i

Bounds

Margin bound:

Bound on VC dimension decreases with margin

Leave-one-out bound:

$$E[error_{\mathcal{D}}(h)] \le \frac{E[\# \text{ support vectors}]}{\# \text{ examples}}$$

Support Vector Machines: Summary

- What is a support vector machine?
- The perceptron revisited
- Kernels
- Weight optimization
- Handling noisy data