Instance-Based Learning

Preview

- *K*-nearest neighbor
- Other forms of IBL
- Collaborative filtering

Instance-Based Learning

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest neighbors (if discrete-valued target function)
- Take mean of f values of k nearest neighbors (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^k f(x_i)$$

Advantages and Disadvantages

Advantages:

- Training is very fast
- Learn complex target functions easily
- Don't lose information

Disadvantages:

- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes

Distance Measures

• Numeric features:

– Euclidean, Manhattan, L^n -norm:

$$L^{n}(\mathbf{x}_{1},\mathbf{x}_{2}) = \sqrt[n]{\sum_{i=1}^{\# \text{dim}} |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|^{n}}$$

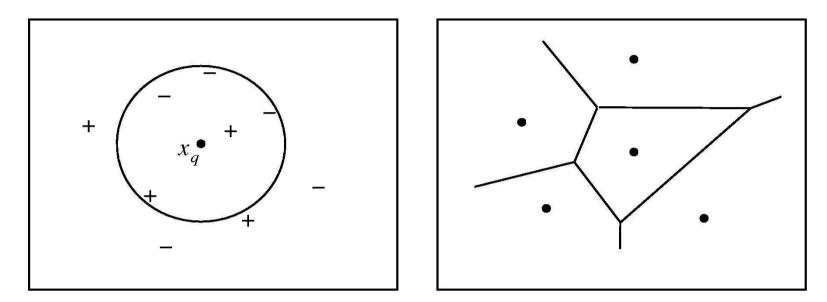
- Normalized by: range, std. deviation

- Symbolic features:
 - Hamming/overlap
 - Value difference measure (VDM): $\delta(wal_{ab}) = \sum_{l=1}^{l} \frac{P(a_{ab}|wal_{ab})}{P(a_{ab}|wal_{ab})} = P(a_{ab}|wal_{ab})$

 $\delta(val_i, val_j) = \sum_{h=1}^{\text{\#classes}} |P(c_h | val_i) - P(c_h | val_j)|^n$

• In general: arbitrary, encode knowledge

Voronoi Diagram



S: Training set

Voronoi cell of $\mathbf{x} \in S$: All points closer to \mathbf{x} than to any other instance in S

Region of class C: Union of Voronoi cells of instances of C in S

Behavior in the Limit

 $\epsilon^*(\mathbf{x})$: Error of optimal prediction $\epsilon_{NN}(\mathbf{x})$: Error of nearest neighbor

Theorem: $\lim_{n\to\infty} \epsilon_{NN} \leq 2\epsilon^*$

Proof sketch (2-class case):

$$\epsilon_{NN} = p_+ p_{NN\in-} + p_- p_{NN\in+}$$
$$= p_+ (1 - p_{NN\in+}) + (1 - p_+) p_{NN\in+}$$
$$\lim_{n \to \infty} p_{NN\in+} = p_+, \quad \lim_{n \to \infty} p_{NN\in-} = p_-$$
$$\lim_{n \to \infty} \epsilon_{NN} = p_+ (1 - p_+) + (1 - p_+) p_+ = 2\epsilon^* (1 - \epsilon^*) \le 2\epsilon^*$$
$$\lim_{n \to \infty} (\text{Nearest neighbor}) = \text{Gibbs classifier}$$
$$\text{Theorem: } \lim_{n \to \infty, \ k \to \infty, \ k/n \to 0} \epsilon_{kNN} = \epsilon^*$$

Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily ...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv rac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Notice that now it makes sense to use *all* training examples instead of just k

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function
- Curse of dimensionality:
 - Nearest neighbor is easily misled when hi-dim X
 - Easy problems in low-dim are hard in hi-dim
 - Low-dim intuitions don't apply in hi-dim

• Examples:

- Normal distribution
- Uniform distribution on hypercube
- Points on hypergrid
- Approximation of sphere by cube
- Volume of hypersphere

Feature Selection

• Filter approach:

Pre-select features individually

- E.g., by info gain
- Wrapper approach: Run learner with different combinations of features
 - Forward selection
 - Backward elimination
 - Etc.

FORWARD_SELECTION(FS)

FS: Set of features used to describe examples Let $SS = \emptyset$ Let BestEval = 0Repeat Let Best F = NoneFor each feature F in FS and not in SSLet $SS' = SS \cup \{F\}$ If Eval(SS') > BestEvalThen Let Best F = FLet BestEval = Eval(SS')If $BestF \neq None$ Then Let $SS = SS \cup \{BestF\}$ Until BestF = None or SS = FSReturn SS

BACKWARD_ELIMINATION(FS)

```
FS: Set of features used to describe examples
Let SS = FS
Let BestEval = Eval(SS)
Repeat
  Let WorstF = None.
  For each feature F in SS
     Let SS' = SS - \{F\}
     If Eval(SS') \geq BestEval
        Then Let WorstF = F
              Let BestEval = Eval(SS')
  If WorstF \neq None
     Then Let SS = SS - \{WorstF\}
Until WorstF = None or SS = \emptyset
Return SS
```

Feature Weighting

- Stretch *j*th axis by weight z_j , where z_1, \ldots, z_n chosen to minimize prediction error
- Use gradient descent to find weights z_1, \ldots, z_n
- Setting z_j to zero eliminates this dimension altogether

Reducing Computational Cost

- Efficient retrieval: k-D trees (only work in low dimensions)
- Efficient similarity comparison:
 - Use cheap approx. to weed out most instances
 - Use expensive measure on remainder
- Form prototypes
- Edited *k*-NN:

Remove instances that don't affect frontier

Edited k-Nearest Neighbor

```
EDITED_k-NN(S)
    S: Set of instances
For each instance \mathbf{x} in S
   If x is correctly classified by S - \{\mathbf{x}\}
       Remove \mathbf{x} from S
Return S
EDITED_k-NN(S)
   S: Set of instances
T = \emptyset
For each instance \mathbf{x} in S
   If \mathbf{x} is not correctly classified by T
       Add \mathbf{x} to T
Return T
```

Overfitting Avoidance

- Set k by cross-validation
- Form prototypes
- Remove noisy instances
 - E.g., remove **x** if all of **x**'s k nearest neighbors are of another class

Locally Weighted Regression

k-NN forms local approx. to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q ?

- Fit linear function to k nearest neighbors
- Fit quadratic, ...
- \bullet Produces "piecewise approximation" to f

Several choices of error to minimize:

• Squared error over k nearest neighbors

$$E_1(x_q) \equiv \sum_{x \in kNN(x_q)} (f(x) - \hat{f}(x))^2$$

• Distance-weighted squared error over all neighbors

$$E_2(x_q) \equiv \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

• . . .

Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

Radial Basis Function Networks f(x)W₀ W $a_1(x) \quad a_2(x) \qquad \qquad a_n(x)$

where $a_i(x)$ are the attributes describing instance x, and

$$f(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

Common choice for K_u : $K_u(d(x_u, x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u, x)}$

Training Radial Basis Function Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Use training instances (reflects distribution)
- Cluster instances and use centroids
- **Q2:** How to train weights (assume here Gaussian K_u)
 - First choose variance (and perhaps mean) for each K_u - E.g., use EM
 - Then hold K_u fixed, and train linear output layer - Efficient methods to fit linear function
 - Or use backpropagation

Case-Based Reasoning

Can apply instance-based learning even when $X \neq \Re^n \to \text{Need different "distance" measure}$

Case-based reasoning is instance-based learning applied to instances with symbolic logic descriptions

Widely used for answering help-desk queries

```
((user-complaint error53-on-shutdown)
(cpu-model PentiumIII)
(operating-system Windows2000)
(network-connection Ethernet)
(memory 128MB)
(installed-applications Office PhotoShop VirusScan)
(disk 10GB)
(likely-cause ???))
```

Case-Based Reasoning in CADET

CADET: Database of mechanical devices

- Each training example: (qualitative function, mechanical structure)
- New query: desired function
- Target value: mechanical structure for this function

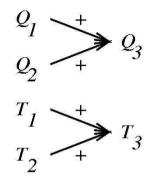
Distance measure: match qualitative function descriptions

A stored case: T-junction pipe

Structure:

$$Q_{1}, T_{1} \qquad T = \text{temperature} \\ Q = \text{waterflow} \\ Q_{2}, T_{2} \\ Q_{2}, T_{2} \\ Q_{2}, T_{2} \\ C = Q_{3}, T_{3} \\ C = Q_$$

Function:

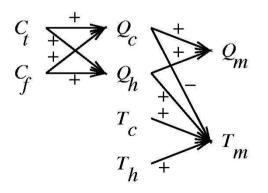


A problem specification: Water faucet

 $\boldsymbol{\epsilon}$

Structure:

Function:



Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Lazy vs. Eager Learning

Lazy: Wait for query before generalizing

• k-nearest neighbor, case-based reasoning

Eager: Generalize before seeing query

• ID3, FOIL, Naive Bayes, neural networks, ...

Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider H = linear functions)

Collaborative Filtering

(AKA Recommender Systems)

• Problem:

Predict whether someone will like a Web page, newsgroup posting, movie, book, CD, etc.

- **Previous approach:** Look at content
- Collaborative filtering:
 - Look at what similar users liked
 - Similar users = Similar likes & dislikes

Collaborative Filtering

- Represent each user by vector of ratings
- Two types:
 - Yes/No
 - Explicit ratings (e.g., 0 * * * *)
- Predict rating:

$$\hat{R}_{ik} = \overline{R}_i + \alpha \sum_{X_j \in \mathbf{N}_i} W_{ij} (R_{jk} - \overline{R}_j)$$

• Similarity (Pearson coefficient):

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_i)(R_{jk} - \overline{R}_j)}{\sqrt{\sum_{k} (R_{ik} - \overline{R}_i)^2 (R_{jk} - \overline{R}_j)^2}}$$

Fine Points

• Primitive version:

$$\hat{R}_{ik} = \alpha \sum_{X_j \in \mathbf{N}_i} W_{ij} R_{jk}$$

- $\alpha = (\sum |W_{ij}|)^{-1}$
- N_i can be whole database, or only k nearest neighbors
- $R_{jk} =$ Rating of user j on item k
- \overline{R}_j = Average of all of user j's ratings
- Summation in Pearson coefficient is over all items rated by *both* users
- In principle, any prediction method can be used for collaborative filtering

Example

	R_1	R_2	R_3	R_4	R_5	R_6
Alice	2	_	4	4	-	5
Bob	1	5	4	3 3	3	4
Chris	5	2	-	2	1	-
Diana	3	-	2	2	-	4