Needless to Say, We Need Machine Learning for Big Data

6 Billion
Flickr Photos

28 Million
Wikipedia Pages

1 Billion
Facebook Users

72 Hours a Minute
YouTube

“…data a new class of economic asset, like currency or gold.”
CPUs Stopped Getting Faster…

The graph illustrates the trend in processor speed from 1988 to 2010. Initially, the speed increased exponentially, but starting around 2004, it became constant.
ML in the Context of Parallel Architectures

- But scalable ML in these systems is hard, especially in terms of:
 1. Programmability
 2. Data distribution
 3. Failures
Programmability Challenge 1: Designing Parallel programs

- SGD for LR:
 - For each data point $\mathbf{x}^{(t)}$:
 \[
 w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(\mathbf{x}^{(t)})[y^{(t)} - P(Y = 1|\phi(\mathbf{x}^{(t)}, \mathbf{w}^{(t)})]\right\}
 \]
Programmability Challenge 2: Race Conditions

- We are used to sequential programs:
 - Read data, think, write data, read data, think, write data…

- But, in parallel, you can have non-deterministic effects:
 - One machine reading data will other is writing

- Called a race-condition:
 - Very annoying
 - One of the hardest problems to debug in practice:
 - because of non-determinism, bugs are hard to reproduce
Data Distribution Challenge

- Accessing data:
 - Main memory reference: 100ns (10^{-7}s)
 - Round trip time within data center: 500,000ns (5 * 10^{-4}s)
 - Disk seek: 10,000,000ns (10^{-2}s)

- Reading 1MB sequentially:
 - Local memory: 250,000ns (2.5 * 10^{-4}s)
 - Network: 10,000,000ns (10^{-2}s)
 - Disk: 30,000,000ns (3*10^{-2}s)

- Conclusion: Reading data from local memory is much faster ➔ Must have data locality:
 - Good data partitioning strategy fundamental!
 - “Bring computation to data” (rather than moving data around)
Robustness to Failures Challenge

- From Google’s Jeff Dean, about their clusters of 1800 servers, in first year of operation:
 - 1,000 individual machine failures
 - thousands of hard drive failures
 - one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
 - 20 racks will fail, each time causing 40 to 80 machines to vanish from the network
 - 5 racks will “go wonky,” with half their network packets missing in action
 - the cluster will have to be rewired once, affecting 5 percent of the machines at any given moment over a 2-day span
 - 50% chance cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2 days to recover

- How do we design distributed algorithms and systems robust to failures?
 - It’s not enough to say: run, if there is a failure, do it again… because you may never finish
Move Towards Higher-Level Abstraction

- Distributed computing challenges are hard and annoying!
 1. Programmability
 2. Data distribution
 3. Failures

- High-level abstractions try to simplify distributed programming by hiding challenges:
 - Provide different levels of robustness to failures, optimizing data movement and communication, protect against race conditions…
 - Generally, you are still on your own WRT designing parallel algorithms

- Some common parallel abstractions:
 - Lower-level:
 - Pthreads: abstraction for distributed threads on single machine
 - MPI: abstraction for distributed communication in a cluster of computers
 - Higher-level:
 - Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
 - GraphLab: for graph-structured distributed problems
Simplest Type of Parallelism: Data Parallel Problems

- You have already learned a classifier
 - What’s the test error?
- You have 10B labeled documents and 1000 machines

- Problems that can be broken into independent subproblems are called data-parallel (or embarrassingly parallel)
- Map-Reduce is a great tool for this…
 - Focus of today’s lecture
 - but first a simple example
Data Parallelism (MapReduce)

Solve a huge number of independent subproblems, e.g., extract features in images
Counting Words on a Single Processor

- (This is the “Hello World!” of Map-Reduce)
- Suppose you have 10B documents and 1 machine
- You want to count the number of appearances of each word on this corpus
 - Similar ideas useful, e.g., for building Naïve Bayes classifiers and computing TF-IDF
- Code:
Naïve Parallel Word Counting

- Simple data parallelism approach:
 - Merging hash tables: annoying, potentially not parallel → no gain from parallelism???
Counting Words in Parallel & Merging Hash Tables in Parallel

- Generate pairs (word,count)
- Merge counts for each word in parallel
 - Thus parallel merging hash tables
Map-Reduce Abstraction

Map:
- Data-parallel over elements, e.g., documents
- Generate (key, value) pairs
 - “value” can be any data type

Reduce:
- Aggregate values for each key
- Must be commutative-associate operation
- Data-parallel over keys
- Generate (key, value) pairs

Map-Reduce has long history in functional programming
- But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context) throws <stuff> {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 context.write(word, one);
 }
 }
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 context.write(key, new IntWritable(sum));
 }
}
Map-Reduce Parallel Execution
Map-Reduce – Execution Overview

Map Phase

M1
(k1,v1)
(k2,v2)
...

M2
(k1',v1')
(k2',v2')
...

M1000
(k1''',v1''')
(k2''',v2''')
...

Reduce Phase

M1
(k1,v1)
(k2,v2)
...

M2
(k3,v3)
(k4,v4)
...

M1000
(k5,v5)
(k6,v6)
...

Shuffle Phase

Assign tuple (ki,vi) to machine h[ki]
Map-Reduce – Robustness to Failures 1: Protecting Data: **Save To Disk Constantly**

Big Data

Map Phase

<table>
<thead>
<tr>
<th>M1</th>
<th>(k₁, v₁)</th>
<th>(k₂, v₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M2</th>
<th>(k₃, v₃)</th>
<th>(k₄, v₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Shuffle Phase

<table>
<thead>
<tr>
<th>M1</th>
<th>(k₅, v₅)</th>
<th>(k₆, v₆)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Reduce Phase

<table>
<thead>
<tr>
<th>M2</th>
<th>(k₇, v₇)</th>
<th>(k₈, v₈)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Distributed File Systems

- Saving to disk locally is not enough ➔ If disk or machine fails, all data is lost
- Replicate data among multiple machines!

- Distributed File System (DFS)
 - Write a file anywhere ➔ automatically replicated
 - Can read a file anywhere ➔ read from closest copy
 - If failure, try next closest copy

- Common implementations:
 - Google File System (GFS)
 - Hadoop File System (HDFS)

- Important practical considerations:
 - Write large files
 - Many small files ➔ becomes way too slow
 - Typically, files can’t be “modified”, just “replaced” ➔ makes robustness much simpler
Map-Reduce – Robustness to Failures 2: Recovering From Failures: **Read from DFS**

- Communication in initial distribution & shuffle phase “automatic”
 - Done by DFS
- If failure, don’t restart everything
 - Otherwise, never finish
- Only restart Map/Reduce jobs in dead machines

©Carlos Guestrin 2013-2014
Improving Performance: Combiners

Naïve implementation of M-R very wasteful in communication during shuffle:

- **Combiner**: Simple solution, perform reduce locally before communicating for global reduce
 - Works because reduce is commutative-associative
(A few of the) Limitations of Map-Reduce

- Too much synchrony
 - E.g., reducers don’t start until all mappers are done

- “Too much” robustness
 - Writing to disk all the time

- Not all problems fit in Map-Reduce
 - E.g., you can’t communicate between mappers

- Oblivious to structure in data
 - E.g., if data is a graph, can be much more efficient
 - For example, no need to shuffle nearly as much

- Nonetheless, extremely useful; industry standard for Big Data
 - Though many many companies are moving away from Map-Reduce (Hadoop)

©Carlos Guestrin 2013-2014
What you need to know about Map-Reduce

- Distributed computing challenges are hard and annoying!
 1. Programmability
 2. Data distribution
 3. Failures

- High-level abstractions help a lot!

- Data-parallel problems & Map-Reduce

- Map:
 - Data-parallel transformation of data
 - Parallel over data points

- Reduce:
 - Data-parallel aggregation of data
 - Parallel over keys

- Combiner helps reduce communication

- Distributed execution of Map-Reduce:
 - Map, shuffle, reduce
 - Robustness to failure by writing to disk
 - Distributed File Systems
Parallel K-Means on Map-Reduce

Machine Learning – CSEP546
Carlos Guestrin
University of Washington
February 24, 2014
Some Data
K-means

1. Ask user how many clusters they’d like.
 (e.g. $k=5$)
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations
K-means

1. Ask user how many clusters they’d like. (e.g. \(k=5\))

2. Randomly guess \(k\) cluster Center locations

3. Each datapoint finds out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)
K-means

1. Ask user how many clusters they’d like.
\((e.g. \ k=5)\)

2. Randomly guess \(k\) cluster Center locations

3. Each datapoint finds out which Center it’s closest to.

4. Each Center finds the centroid of the points it owns
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to.

4. Each Center finds the centroid of the points it owns…

5. …and jumps there

6. …Repeat until terminated!
K-means

- Randomly initialize k centers
 - $\mu^{(0)} = \mu_1^{(0)}, \ldots, \mu_k^{(0)}$

- **Classify**: Assign each point $j \in \{1, \ldots, m\}$ to nearest center:
 - $z^j \leftarrow \arg \min_i \|\mu_i - x^j\|^2$

- **Recenter**: μ_i becomes centroid of its point:
 - $\mu_i^{(t+1)} \leftarrow \arg \min_\mu \sum_{j: z^j = i} \|\mu - x^j\|^2$
 - Equivalent to $\mu_i \leftarrow$ average of its points!
Map-Reducing One Iteration of K-Means

- **Classify**: Assign each point \(j \in \{1, \ldots, m\} \) to nearest center:
 \[z^j \leftarrow \arg\min_i \|\mu_i - x^j\|_2^2 \]

- **Recenter**: \(\mu_i \) becomes centroid of its point:
 \[\mu_i^{(t+1)} \leftarrow \arg\min_\mu \sum_{j: z^j = i} \|\mu - x^j\|_2^2 \]
 \[\text{Equivalent to } \mu_i \leftarrow \text{average of its points!} \]

- **Map**:

- **Reduce**:
Classification Step as Map

- **Classify**: Assign each point \(j \in \{1, \ldots, m\} \) to nearest center:
 \[z^j \leftarrow \arg \min_i ||\mu_i - x^j||_2^2 \]

- **Map:**
Recenter Step as Reduce

- **Recenter**: μ_i becomes centroid of its point:

 $\mu_{i}^{(t+1)} \leftarrow \arg \min_{\mu} \sum_{j: z^j = i} \| \mu - x^j \|^2_2$

 Equivalent to $\mu_i \leftarrow$ average of its points!

- **Reduce:**
Some Practical Considerations

- K-Means needs an iterative version of Map-Reduce
 - Not standard formulation

- Mapper needs to get data point and all centers
 - A lot of data!
 - Better implementation: mapper gets many data points
What you need to know about Parallel K-Means on Map-Reduce

- K-Means = EM for mixtures of spherical Gaussians with hard assignments

- Map: classification step; data parallel over data point

- Reduce: recompute means; data parallel over centers
Graph-Parallel Problems

Synchronous v. Asynchronous Computation

Machine Learning – CSEP546
Carlos Guestrin
University of Washington
February 24, 2014

©Carlos Guestrin 2013-2014
Issues with Map-Reduce Abstraction

- Often all data gets moved around cluster
 - Very bad for iterative settings

- Definition of Map & Reduce functions can be unintuitive in many apps
 - Graphs are challenging

- Computation is synchronous
SGD for Matrix Factorization in Map-Reduce?

\[
\begin{bmatrix}
L_{u(t+1)} \\
R_{v(t+1)}
\end{bmatrix}
\leftarrow
\begin{bmatrix}
(1 - \eta_t \lambda_u) L_{u(t)} - \eta_t \epsilon_t R_{v(t)} \\
(1 - \eta_t \lambda_v) R_{v(t)} - \eta_t \epsilon_t L_{u(t)}
\end{bmatrix}
\]

\[\epsilon_t = L_{u(t)} \cdot R_{v(t)} - r_{uv}\]

- Map and Reduce functions???

- Map-Reduce:
 - Data-parallel over all mappers
 - Data-parallel over reducers with same key

- Here, one update at a time!
Matrix Factorization as a Graph

- Women on the Verge of a Nervous Breakdown
- The Celebration
- City of God
- Wild Strawberries
- La Dolce Vita
Flashback to 1998

First Google advantage:

* a Graph Algorithm & a System to Support it!
Social Media Science Advertising Web

Graphs encode the relationships between:

People Products Ideas
 Facts Interests

Big: 100 billions of vertices and edges and rich metadata
- Facebook (10/2012): 1B users, 144B friendships
- Twitter (2011): 15B follower edges
Facebook Graph

Data model

Objects & Associations

- 8636146 (user)
- 18429207554 (page)
- 604191769 (user)
- 6205972929 (story)

- fan
- admin
- friend
- liked by
- likes

name: Barack Obama
birthday: 08/04/1961
website: http://...
verified: 1
...
Label a Face and Propagate
Pairwise similarity not enough...

Not similar enough to be sure

Who????

©Carlos Guestrin 2013-2014
Propagate Similarities & Co-occurrences for Accurate Predictions
Example: *Estimate Political Bias*
Topic Modeling (e.g., LDA)

Cat
Apple
Growth
Hat
Plant
ML Tasks Beyond Data-Parallelism

Data-Parallel

Map Reduce

Feature Extraction
Cross Validation
Computing Sufficient Statistics

Graph-Parallel

Graphical Models
Gibbs Sampling
Belief Propagation
Variational Opt.

Semi-Supervised Learning
Label Propagation
CoEM

Collaborative Filtering
Tensor Factorization

Graph Analysis
PageRank
Triangle Counting

©Carlos Guestrin 2013-2014
Example of a Graph-Parallel Algorithm
PageRank

What's the rank of this user?

Depends on rank of who follows her

Depends on rank of who follows them...

Loops in graph → Must iterate!
PageRank Iteration

\[R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} w_{ji} R[j] \]

- \(\alpha \) is the random reset probability
- \(w_{ji} \) is the prob. transitioning (similarity) from \(j \) to \(i \)

©Carlos Guestrin 2013-2014
Properties of Graph Parallel Algorithms

Dependency Graph

Local Updates

Iterative Computation

My Rank

Friends Rank

©Carlos Guestrin 2013-2014
Addressing Graph-Parallel ML

Data-Parallel

Map Reduce

Graph-Parallel

Feature Extraction
Cross Validation
Computing Sufficient Statistics

Graph-Parallel Abstraction

Graphical Models
- Gibbs Sampling
- Belief Propagation
- Variational Opt.

Semi-Supervised Learning
- Label Propagation
- CoEM

Collaborative Filtering
- Tensor Factorization

Data-Mining
- PageRank
- Triangle Counting
Graph Computation:

* Synchronous
 v.
 Asynchronous
Bulk Synchronous Parallel Model: Pregel (Giraph)

[Valiant ‘90]

©Carlos Guestrin 2013-2014
Map-Reduce – Execution Overview

Map Phase

Big Data

M1

M2

M1000

(k₁₁, v₁₁)

(k₂₁, v₂₁)

...

(k₁₂, v₁₂)

(k₂₂, v₂₂)

...

(k₁₉, v₁₉)

(k₂₉, v₂₉)

...

(k₁₁₀₀₀, v₁₁₀₀₀)

(k₂₁₀₀₀, v₂₁₀₀₀)

...

(k₁mn, v₁mn)

(k₂mn, v₂mn)

...

(k₁ₙ, v₁ₙ)

(k₂ₙ, v₂ₙ)

...

Reduce Phase

Split data across machines

Assign tuple (kᵢ, vᵢ) to machine h[kᵢ]

M1

M2

M1000

(k₁₁, v₁₁)

(k₂₁, v₂₁)

...

(k₁₂, v₁₂)

(k₂₂, v₂₂)

...

(k₁₉, v₁₉)

(k₂₉, v₂₉)

...

(k₁ₚ, v₁ₚ)

(k₂ₚ, v₂ₚ)

...

(k₁ₖ, v₁ₖ)

(k₂ₖ, v₂ₖ)

...

(k₁ₙ, v₁ₙ)

(k₂ₙ, v₂ₙ)

...

(k₁ₙₚ, v₁ₙₚ)

(k₂ₙₚ, v₂ₙₚ)

...

(k₁ₙₖ, v₁ₙₖ)

(k₂ₙₖ, v₂ₙₖ)

...

(k₁ₙₙ, v₁ₙₙ)

(k₂ₙₙ, v₂ₙₙ)

...

(k₁ₙₙₖ, v₁ₙₙₖ)

(k₂ₙₙₖ, v₂ₙₙₖ)

...

(k₁ₙₙₙ, v₁ₙₙₙ)

(k₂ₙₙₙ, v₂ₙₙₙ)

...

(k₁ₙₙₙₖ, v₁ₙₙₙₖ)

(k₂ₙₙₙₖ, v₂ₙₙₙₖ)

...

(k₁ₙₙₙₙ, v₁ₙₙₙₙ)

(k₂ₙₙₙₙ, v₂ₙₙₙₙ)

...

(k₁ₙₙₙₙₖ, v₁ₙₙₙₙₖ)

(k₂ₙₙₙₙₖ, v₂ₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙ, v₁ₙₙₙₙₙ)

(k₂ₙₙₙₙₙ, v₂ₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₖ, v₁ₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₖ, v₂ₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₙₖ, v₁ₙₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₙₖ, v₂ₙₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₙₙₖ, v₁ₙₙₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₙₙₖ, v₂ₙₙₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₙₙₙₖ, v₁ₙₙₙₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₙₙₙₖ, v₂ₙₙₙₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₙₙₙₙₖ, v₁ₙₙₙₙₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₙₙₙₙₖ, v₂ₙₙₙₙₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₙₙₙₙₙₖ, v₁ₙₙₙₙₙₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₙₙₙₙₙₖ, v₂ₙₙₙₙₙₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₙₙₙₙₙₙₖ, v₁ₙₙₙₙₙₙₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₙₙₙₙₙₙₖ, v₂ₙₙₙₙₙₙₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙₙₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙₙₙₙₙₙₙ)

...

(k₁ₙₙₙₙₙₙₙₙₙₙₙₙₖ, v₁ₙₙₙₙₙₙₙₙₙₙₙₙₖ)

(k₂ₙₙₙₙₙₙₙₙₙₙₙₙₖ, v₂ₙₙₙₙₙₙₙₙₙₙₙₙₖ)

...

(k₁ₙₙₙₙₙₙₙₙₙₙₙₙₙ, v₁ₙₙₙₙₙₙₙₙ₉ₙₙₙₙₙ)

(k₂ₙₙₙₙₙₙₙₙₙₙₙₙₙ, v₂ₙₙₙₙₙₙₙₙₙₙₙₙₙ)
BSP – Execution Overview

Compute Phase

M1
(vid₁, vid₁', v₁)
(vid₂, vid₂', v₂)
...

M2
(vid₁', vid₁'', v₁''
(vid₂', vid₂'', v₂''
...

Communicate Phase

Message machine for every edge (vid, vid', val)

Split graph across machines

Big Graph

©Carlos Guestrin 2013-2014
Bulk synchronous parallel model provably inefficient for some ML tasks
Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

Priority Queue
Smart Scheduling

focus here

important influence
Asynchronous Belief Propagation

Challenge = Boundaries

Synthetic Noisy Image

Cumulative Vertex Updates

Algorithm identifies and focuses on hidden sequential structure
BSP ML Problem: Synchronous Algorithms can be \textit{Inefficient}

Bulk Synchronous (e.g., Pregel)

Asynchronous Splash BP

\textbf{Theorem:}
Bulk Synchronous BP $O(\#\text{vertices})$ slower than Asynchronous BP
Synchronous v. Asynchronous

Bulk synchronous processing:
- Computation in phases
 - All vertices participate in a phase
 - Though OK to say no-op
 - All messages are sent
- Simpler to build, like Map-Reduce
 - No worries about race conditions, barrier guarantees data consistency
 - Simpler to make fault-tolerant, save data on barrier
- Slower convergence for many ML problems
- In matrix-land, called Jacobi Iteration
- Implemented by Google Pregel 2010

Asynchronous processing:
- Vertices see latest information from neighbors
 - Most closely related to sequential execution
- Harder to build:
 - Race conditions can happen all the time
 - Must protect against this issue
 - More complex fault tolerance
 - When are you done?
 - Must implement scheduler over vertices
- Faster convergence for many ML problems
- In matrix-land, called Gauss-Seidel Iteration
- Implemented by GraphLab 2010, 2012
The **GraphLab Goals**

- Know how to solve ML problem on 1 machine
- Efficient parallel predictions

©Carlos Guestrin 2013-2014
Data Graph

Data associated with vertices and edges

Graph:
• Social Network

Vertex Data:
• User profile text
• Current interests estimates

Edge Data:
• Similarity weights

©Carlos Guestrin 2013-2014
How do we *program graph* computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]
Update Functions

User-defined program: applied to \textit{vertex} transforms data in \textit{scope} of vertex

\begin{verbatim}
pagerank(i, scope){

}
\end{verbatim}
Update Function Example:
Connected Components
Update Function Example: Connected Components
The scheduler determines order vertices are updated.
Example Schedulers

- Round-robin
- Selective scheduling (skipping):
 - round robin but jump over un-scheduled vertex
- FIFO
- Prioritize scheduling
 - Hard to implement in a distributed fashion
 - Approximations used (each machine has its own priority queue)
Ensuring Race-Free Code

How much can computation overlap?

©Carlos Guestrin 2013-2014
Need for Consistency?

Higher Throughput
(#updates/sec)

No Consistency

Potentially Slower Convergence of ML
GraphLab Ensures **Sequential Consistency**

For each parallel execution, there exists a sequential execution of update functions which produces the same result.
Consistency in Collaborative Filtering

Netflix data, 8 cores

©Carlos Guestrin 2013-2014
The GraphLab Framework

Graph Based Data Representation

Update Functions User Computation

Scheduler

Consistency Model

©Carlos Guestrin 2013-2014
Triangle Counting in Twitter Graph

Total:
34.8 Billion Triangles

40M Users
1.2B Edges

Hadoop
1536 Machines
423 Minutes

GraphLab
64 Machines, 1024 Cores
1.5 Minutes

©Carlos Guestrin 2013-2014

Hadoop results from [Suri & Vassilvitskii '11]
CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is “Dog” an animal?
Is “Catalina” a place?

- dog
- <X> ran quickly

- Australia
- travelled to <X>

- Catalina Island
- <X> is pleasant
Never Ending Learner Project (CoEM)

Vertices: 2 Million
Edges: 200 Million

<table>
<thead>
<tr>
<th>System</th>
<th>Cores/Machines</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop</td>
<td>95 Cores</td>
<td>7.5 hrs</td>
</tr>
<tr>
<td>Distributed GraphLab</td>
<td>32 EC2 machines</td>
<td>80 secs</td>
</tr>
</tbody>
</table>
What do I recommend???

- Women on the Verge of a Nervous Breakdown
- The Celebration
- City of God
- Wild Strawberries
- La Dolce Vita

©Carlos Guestrin 2013-2014
Interpreting Low-Rank Matrix Completion (aka Matrix Factorization)

\[X = LR' \]

Movie topic i “romance”

Movie topic i “much” user u likes topic i

Movie topic i “much” movie v is about topic i
Matrix Completion as a Graph

\[X = \]

\(X_{ij} \) known for black cells
\(X_{ij} \) unknown for white cells
Rows index users
Columns index movies
Coordinate Descent for Matrix Factorization: Alternating Least-Squares

\[
\min_{L,R} \sum_{(u,v): r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2
\]

- Fix movie factors, optimize for user factors
 - Independent least-squares over users
 \[
 \min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2
 \]

- Fix user factors, optimize for movie factors
 - Independent least-squares over movies
 \[
 \min_{R_v} \sum_{u \in U_v} (L_u \cdot R_v - r_{uv})^2
 \]

- System may be underdetermined:

- Converges to
Alternating Least Squares Update Function

\[
\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2 \quad \min_{R_v} \sum_{u \in U_v} (L_u \cdot R_v - r_{uv})^2
\]
SGD for Matrix Factorization in Map-Reduce?

\[\epsilon_t = L^{(t)}_u \cdot R^{(t)}_v - r_{uv} \]

\[
\begin{bmatrix}
L^{(t+1)}_u \\
R^{(t+1)}_v
\end{bmatrix}
\leftarrow
\begin{bmatrix}
(1 - \eta_t \lambda_u) L^{(t)}_u - \eta_t \epsilon_t R^{(t)}_v \\
(1 - \eta_t \lambda_v) R^{(t)}_v - \eta_t \epsilon_t L^{(t)}_u
\end{bmatrix}
\]
GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

Key: Exploit non-volatile memory (starting with SSDs and HDs)

©Carlos Guestrin 2013-2014
GraphChi – disk-based GraphLab

Challenge: Random Accesses

Novel GraphChi solution: Parallel sliding windows method ➔ minimizes number of random accesses

©Carlos Guestrin 2013-2014
Naive Graph Disk Layouts

- Symmetrized adjacency file with values,

<table>
<thead>
<tr>
<th>vertex</th>
<th>in-neighbors</th>
<th>out-neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3:2.3, 19: 1.3, 49: 0.65,...</td>
<td>781: 2.3, 881: 4.2..</td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3: 1.4, 9: 12.1, ...</td>
<td>5: 1.3, 28: 2.2, ...</td>
</tr>
</tbody>
</table>

- ... or with file index pointers

<table>
<thead>
<tr>
<th>vertex</th>
<th>in-neighbor-ptr</th>
<th>out-neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3: 882, 9: 2872, ...</td>
<td>5: 1.3, 28: 2.2, ...</td>
</tr>
</tbody>
</table>

©Carlos Guestrin 2013-2014
Parallel Sliding Windows Layout

Shard: in-edges for subset of vertices; sorted by source_id

Shards small enough to fit in memory; balance size of shards
Parallel Sliding Windows Execution

Load subgraph for vertices 1..100

- Vertices 1..100
 - Shard 1
 - in-edges for vertices 1..100 sorted by source_id

- Vertices 101..700
 - Shard 2
 - Load all in-edges in memory

- Vertices 701..1000
 - Shard 3

- Vertices 1001..10000
 - Shard 4

What about out-edges?
Arranged in sequence in other shards!
And sequential writes!
Parallel Sliding Windows Execution

Load subgraph for vertices 101..700

Vertices 1..100
Vertices 101..700
Vertices 701..1000
Vertices 1001..10000

Shard 1
Shard 2
Shard 3
Shard 4

Load all in-edges in memory

in-edges for vertices 1..100
sorted by source_id

Only $O(P^2)$ random reads per pass on entire graph

©Carlos Guestrin 2013-2014
Triangle Counting on Twitter Graph

40M Users
1.2B Edges

Total: 34.8 Billion Triangles

Hadoop
1636 Machines
423 Minutes

GraphChi
59 Minutes, 1 Mac Mini!

GraphLab2
64 Machines, 1024 Cores
1.5 Minutes

©Carlos Guestrin 2013-2014

Hadoop results from [Suri & Vassilvitskii '11]
Release 2.2 available now
http://graphlab.org
Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http://graphchi.org
What you need to know…

- Data-parallel versus graph-parallel computation
- Bulk synchronous processing versus asynchronous processing
- GraphLab system for graph-parallel computation
 - Data representation
 - Update functions
 - Scheduling
 - Consistency model