Lecture 7

Instance-Based Learning

Preview

- \bullet k-Nearest Neighbor
- Other forms of IBL
- Collaborative filtering
- \bullet Second project

Instance-Based Learning

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest neighbors (if discrete-valued target function)
- • Take mean of f values of k nearest neighbors (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^k f(x_i)$$

Advantages and Disadvantages

Advantages:

- Training is very fast
- Learn complex target functions easily
- Don't lose information

Disadvantages:

- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes

Distance Measures

- Numeric features:
 - $-\,$ Euclidean, Manhattan, $L^n\text{-norm}:$

$$L^{n}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \sqrt[n]{\sum_{i=1}^{\#\text{dim}} |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|^{n}}$$

- Normalized by: range, std. deviation
- Symbolic features:
 - Hamming/overlap
 - $-\,$ Value difference measure (VDM):

$$\delta(val_i, val_j) = \sum_{h=1}^{\text{\#classes}} |P(c_h|val_i) - P(c_h|val_j)|^n$$

 \bullet In general: arbitrary, encode knowledge

Voronoi Diagram

S: Training set

Voronoi cell of $x \in S$:

All points closer to ${\bf x}$ than to any other instance in S

Region of class C:

Union of Voronoi cells of instances of C in S

Behavior in the Limit

 $\begin{array}{l} \epsilon^*(\mathbf{x}) \colon \text{Error of optimal prediction} \\ \epsilon_{NN}(\mathbf{x}) \colon \text{Error of nearest neighbor} \\ \\ \textbf{Theorem: } \lim_{n \to \infty} \epsilon_{NN} \leq 2\epsilon^* \\ \\ \textit{Proof sketch (2-class case)} \colon \\ \epsilon_{NN} = p_+ p_{NN \in -} + p_- p_{NN \in +} \\ = p_+ (1 - p_{NN \in +}) + (1 - p_+) p_{NN \in +} \\ \lim_{n \to \infty} p_{NN \in +} = p_+, \quad \lim_{n \to \infty} p_{NN \in -} = p_- \\ \lim_{n \to \infty} \epsilon_{NN} = p_+ (1 - p_+) + (1 - p_+) p_+ = 2\epsilon^* (1 - \epsilon^*) \leq 2\epsilon^* \\ \lim_{n \to \infty} (\text{Nearest neighbor}) = \text{Gibbs classifier} \\ \\ \textbf{Theorem: } \lim_{n \to \infty, \ k \to \infty, \ k/n \to 0} \epsilon_{kNN} = \epsilon^* \\ \end{array}$

Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily \dots

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv \frac{1}{d(x_a, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Notice that now it makes sense to use all training examples instead of just k

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function
- Curse of dimensionality:
 - $-\,$ Nearest neighbor is easily misled when hi-dim X
 - Easy problems in low-dim are hard in hi-dim
 - Low-dim intuitions don't apply in hi-dim
- Examples:
 - Normal distribution
 - Uniform distribution on hypercube
 - Points on hypergrid
 - Approximation of sphere by cube
 - Volume of hypersphere

Feature Selection

\bullet Filter approach:

Pre-select features individually

- E.g., by info gain
- \bullet Wrapper approach:

Run learner with different combinations of features

- Forward selection
- Backward elimination
- Etc.

```
FORWARD_SELECTION(FS)
FS: Set of features used to describe examples
Let SS = \emptyset
Let BestEval = 0
Repeat
Let BestF = None
For each feature F in FS and not in SS
Let SS' = SS \cup \{F\}
If Eval(SS') > BestEval
Then Let BestF = F
Let BestEval = Eval(SS')
If BestF \neq None
Then Let SS = SS \cup \{BestF\}
Until BestF = None or SS = FS
Return SS
```

```
Backward_Elimination(FS)

FS: Set of features used to describe examples

Let SS = FS

Let BestEval = Eval(SS)

Repeat

Let WorstF = None.

For each feature F in SS

Let SS' = SS - \{F\}

If Eval(SS') \geq BestEval

Then Let WorstF = F

Let BestEval = Eval(SS')

If WorstF \neq None

Then Let SS = SS - \{WorstF\}

Until WorstF = None or SS = \emptyset

Return SS
```

Feature Weighting

- Stretch jth axis by weight z_j , where z_1,\ldots,z_n chosen to minimize prediction error
- ullet Use gradient descent to find weights z_1,\dots,z_n
- $\bullet\,$ Setting z_j to zero eliminates this dimension altogether

Reducing Computational Cost

- Efficient retrieval: k-D trees (only work in low dimensions)
- Efficient similarity comparison:
 - Use cheap approx. to weed out most instances
 - Use expensive measure on remainder
- Form prototypes
- Edited k-NN:

Remove instances that don't affect frontier

Edited k-Nearest Neighbor

$$\begin{split} & \text{Edited}_{-}k\text{-NN}(S) \\ & S \text{: Set of instances} \\ & \text{For each instance } \mathbf{x} \text{ in } S \\ & \text{If } \mathbf{x} \text{ is correctly classified by } S - \{\mathbf{x}\} \\ & \text{Remove } \mathbf{x} \text{ from } S \end{split}$$
 Return S

$$\begin{split} & \text{Edited}_k\text{-NN}(S) \\ & S\text{: Set of instances} \\ & T = \emptyset \\ & \text{For each instance } \mathbf{x} \text{ in } S \\ & \text{If } \mathbf{x} \text{ is } \mathbf{not} \text{ correctly classified by } T \\ & \text{Add } \mathbf{x} \text{ to } T \end{split}$$
 Return T

Overfitting Avoidance

- ullet Set k by cross-validation
- Form prototypes
- Remove noisy instances
 - E.g., remove ${\bf x}$ if all of ${\bf x}$'s k nearest neighbors are of another class

Locally Weighted Regression

k-NN forms local approx. to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_o ?

- Fit linear function to k nearest neighbors
- Fit quadratic, ...
- ullet Produces "piecewise approximation" to f

Several choices of error to minimize:

 \bullet Squared error over k nearest neighbors

$$E_1(x_q) \equiv \sum_{x \in \ kNN(x_q)} (f(x) - \hat{f}(x))^2$$

 $\bullet\,$ Distance-weighted squared error over all neighbors

$$E_2(x_q) \equiv \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

• ...

Radial Basis Function Networks

- \bullet Global approximation to target function, in terms of linear combination of local approximations
- $\bullet~$ Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

Radial Basis Function Networks

where $a_i(x)$ are the attributes describing instance x, and

$$f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x))$$

Common choice for K_u : $K_u(d(x_u,x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u,x)}$

Training Radial Basis Function Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Use training instances (reflects distribution)
- Cluster instances and use centroids

Q2: How to train weights (assume here Gaussian K_u)

- \bullet First choose variance (and perhaps mean) for each K_u - E.g., use EM
- Then hold K_u fixed, and train linear output layer
 - Efficient methods to fit linear function
- Or use backpropagation

Case-Based Reasoning

Can apply instance-based learning even when $X \neq \Re^n$

→ Need different "distance" measure

Case-based reasoning is instance-based learning applied to instances with symbolic logic descriptions

Widely used for answering help-desk queries

((user-complaint error53-on-shutdown)

(cpu-model PentiumIII)

(operating-system Windows2000)

(network-connection Ethernet)

(memory 128MB)

(installed-applications Office PhotoShop VirusScan) (disk 10GB)

(likely-cause ???))

Case-Based Reasoning in CADET

CADET: Database of mechanical devices

- Each training example: $\langle {\rm qualitative~function,~mechanical~structure} \rangle$
- New query: desired function
- Target value: mechanical structure for this function

Distance measure: match qualitative function descriptions

Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Lazy vs. Eager Learning

Lazy: Wait for query before generalizing

ullet k-nearest neighbor, case-based reasoning

 ${f Eager:}$ Generalize before seeing query

• ID3, FOIL, Naive Bayes, neural networks, . . .

Does it matter?

- Eager learner must create global approximation
- \bullet Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider H = linear functions)

Collaborative Filtering

(AKA Recommender Systems)

• Problem:

Predict whether someone will like a Web page, newsgroup posting, movie, book, CD, etc.

• Previous approach:

Look at content

- \bullet Collaborative filtering:
 - Look at what similar users liked
 - Similar users = Similar likes & dislikes

Collaborative Filtering

- Represent each user by vector of ratings
- $\bullet\,$ Two types:
 - Yes/No
 - Explicit ratings (e.g., 0 * * * * *)
- Predict rating:

$$\hat{R}_{ik} = \overline{R}_i + \alpha \sum_{X_j \in \mathbf{N}_i} W_{ij} (R_{jk} - \overline{R}_j)$$

• Similarity (Pearson coefficient):

$$W_{ij} = \frac{\sum_{k} (R_{ik} - \overline{R}_i)(R_{jk} - \overline{R}_j)}{\sqrt{\sum_{k} (R_{ik} - \overline{R}_i)^2 (R_{jk} - \overline{R}_j)^2}}$$

Fine Points

• Primitive version:

$$\hat{R}_{ik} = \alpha \sum_{X_j \in \mathbf{N}_i} W_{ij} R_{jk}$$

- $\alpha = (\sum |W_{ij}|)^{-1}$
- • N_i can be whole database, or only k nearest neighbors
- $R_{jk} = \text{Rating of user } j \text{ on item } k$
- \overline{R}_j = Average of all of user j's ratings
- \bullet Summation in Pearson coefficient is over all items rated by both users
- In principle, any prediction method can be used for collaborative filtering

Example

	R_1	R_2	R_3	R_4	R_5	R_6
Alice	2	-	4	4	-	5
Bob	1	5	4	-	3	4
Chris	5	2	-	2	1	-
Diana	3	-	2	2	-	4

Second Project

- Implement collaborative filtering algorithm
- Apply to (subset of) Netflix Prize data
 - 1821 movies, 28,978 users, 3.25 million ratings (* *****)
 - To date: 11,615 submissions from 1960 teams
- Try to improve predictions
- Optional: Add your ratings & get recommendations
- Paper: Breese, Heckerman & Cadie, "Empirical Analysis of Predictive Algorithms for Collaborative Filtering" (UAI-98)

Instance-Based Learning: Summary

- \bullet k-Nearest Neighbor
- \bullet Other forms of IBL
- Collaborative filtering
- \bullet Second project