Lecture 7
Instance-Based Learning

Key idea: Just store all training examples \((x_i, f(x_i))\)

Nearest neighbor:
- Given query instance \(x_q\), first locate nearest training example \(x_n\), then estimate \(\hat{f}(x_q) \approx f(x_n)\)

\(k\)-Nearest neighbor:
- Given \(x_q\), take vote among its \(k\) nearest neighbors (if discrete-valued target function)
- Take mean of \(f\) values of \(k\) nearest neighbors (if real-valued)

\[
\hat{f}(x_q) \approx \frac{1}{k} \sum_{i=1}^{k} f(x_i)
\]

Distance Measures
- Numeric features:
 - Euclidean, Manhattan, \(L^\infty\)-norm:
 \[
 L^n(x_1, x_2) = \sqrt{\sum_{i=1}^{\text{dim}} |x_{1,i} - x_{2,i}|^n}
 \]
 - Normalized by: range, std. deviation
- Symbolic features:
 - Hamming/overlap
 - Value difference measure (VDM):
 \[
 \delta(\text{val}_1, \text{val}_2) = \sum_{i=1}^{\text{#classes}} |P(c_1, \text{val}_1) - P(c_1, \text{val}_2)|^n
 \]
- In general: arbitrary, encode knowledge

Advantages and Disadvantages

Advantages:
- Training is very fast
- Learn complex target functions easily
- Don’t lose information

Disadvantages:
- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes

Voronoi Diagram

\(S\): Training set

Voronoi cell of \(x \in S\):
All points closer to \(x\) than to any other instance in \(S\)

Region of class \(C\):
Union of Voronoi cells of instances of \(C\) in \(S\)
Behavior in the Limit

\(\epsilon^*(x) \): Error of optimal prediction
\(\epsilon_{NN}(x) \): Error of nearest neighbor

Theorem: \(\lim_{n \to \infty} \epsilon_{NN} \leq 2\epsilon^* \)

Proof sketch (2-class case):
\[
\epsilon_{NN} = p_+p_{NNC-} + p_-p_{NNC+} \\
= p_+(1 - p_{NNC+}) + (1 - p_+)p_{NNC+} \\
\lim_{n \to \infty} p_{NNC+} = p_+ \quad \lim_{n \to \infty} p_{NNC-} = p_- \\
\lim_{n \to \infty} \epsilon_{NN} = p_+(1 - p_+) + (1 - p_+)p_+ = 2\epsilon^*(1 - \epsilon^*) \leq 2\epsilon^* \\
\lim_{n \to \infty} \text{(Nearest neighbor)} = \text{Gibbs classifier}
\]

Theorem: \(\lim_{n \to \infty, k \to \infty, \epsilon \to 0} \epsilon_{NN} = \epsilon^* \)

Distance-Weighted \(k \)-NN

Might want to weight nearer neighbors more heavily ...

\[
\hat{f}(x_q) = \sum_{i=1}^{k} \frac{w_i f(x_i)}{\sum_{i=1}^{k} w_i}
\]

where \(w_i = \frac{1}{d(x_q, x_i)^2} \)

and \(d(x_q, x_i) \) is distance between \(x_q \) and \(x_i \)

Notice that now it makes sense to use all training examples instead of just \(k \)

Curse of Dimensionality

- Imagine instances described by 20 attributes, but only 2 are relevant to target function

- **Curse of dimensionality:**
 - Nearest neighbor is easily misled when hi-dim \(X \)
 - Easy problems in low-dim are hard in hi-dim
 - Low-dim intuitions don’t apply in hi-dim

- **Examples:**
 - Normal distribution
 - Uniform distribution on hypercube
 - Points on hypergrid
 - Approximation of sphere by cube
 - Volume of hypersphere

Feature Selection

- **Filter approach:**
 - Pre-select features individually
 - E.g., by info gain

- **Wrapper approach:**
 - Run learner with different combinations of features
 - Forward selection
 - Backward elimination
 - Etc.

FORWARD_SELECTION(FS)

FS: Set of features used to describe examples
Let \(SS = \emptyset \)
Let \(BestEval = 0 \)
Repeat
Let \(BestF = None \)
For each feature \(F \) in \(FS \) and not in \(SS \)
Let \(SS' = SS \cup \{F\} \)
If Eval(\(SS' \)) > BestEval
Then Let \(BestF = F \)
Let \(BestEval = \text{Eval}(SS') \)
If \(BestF \neq None \)
Then Let \(SS = SS \cup \{BestF\} \)
Until \(BestF = None \) or \(SS = FS \)
Return \(SS \)

BACKWARD_ELIMINATION(FS)

FS: Set of features used to describe examples
Let \(SS = FS \)
Let \(BestEval = \text{Eval}(SS) \)
Repeat
Let \(WorstF = None \)
For each feature \(F \) in \(SS \)
Let \(SS' = SS \setminus \{F\} \)
If Eval(\(SS' \)) > BestEval
Then Let \(WorstF = F \)
Let \(BestEval = \text{Eval}(SS') \)
If \(WorstF \neq None \)
Then Let \(SS = SS \setminus \{WorstF\} \)
Until \(WorstF = None \) or \(SS = \emptyset \)
Return \(SS \)
Feature Weighting

• Stretch jth axis by weight z_j, where z_1, \ldots, z_n chosen to minimize prediction error
• Use gradient descent to find weights z_1, \ldots, z_n
• Setting z_j to zero eliminates this dimension altogether

Reducing Computational Cost

• Efficient retrieval: k-D trees (only work in low dimensions)
• Efficient similarity comparison:
 – Use cheap approx. to weed out most instances
 – Use expensive measure on remainder
• Form prototypes
• Edited k-NN:
 - Remove instances that don’t affect frontier

Edited k-Nearest Neighbor

EDITED-K-NN(S)
S: Set of instances
For each instance x in S
 If x is correctly classified by $S - \{x\}$
 Remove x from S
Return S

EDITED-K-NN(S)
S: Set of instances
$T = \emptyset$
For each instance x in S
 If x is not correctly classified by T
 Add x to T
Return T

Overfitting Avoidance

• Set k by cross-validation
• Form prototypes
• Remove noisy instances
 – E.g., remove x if all of x’s k nearest neighbors are of another class

Locally Weighted Regression

k-NN forms local approx. to f for each query point x_q

Why not form an explicit approximation $f(x)$ for region surrounding x_q?
• Fit linear function to k nearest neighbors
• Fit quadratic, …
• Produces “piecewise approximation” to f

Several choices of error to minimize:

• Squared error over k nearest neighbors
 $E_1(x_q) = \sum_{x \in kNN(x_q)} (f(x) - \hat{f}(x))^2$
• Distance-weighted squared error over all neighbors
 $E_2(x_q) = \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$
• …
Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

Radial Basis Function Networks

$$f(x) = w_0 + \sum_{i=1}^{n} w_i K_i(d(x_i, x))$$
where $a_i(x)$ are the attributes describing instance x_i, and $K_i(d(x_i, x))$

Common choice for K_i: $K_i(d(x_i, x)) = e^{-\frac{1}{\sigma^2_i}d(x_i, x)}$

Training Radial Basis Function Networks

Q1: What x_a to use for each kernel function $K_a(d(x_a, x))$
- Scatter uniformly throughout instance space
- Use training instances (reflects distribution)
- Cluster instances and use centroids

Q2: How to train weights (assume here Gaussian K_a)
- First choose variance (and perhaps mean) for each K_a
 - E.g., use EM
- Then hold K_a fixed, and train linear output layer
- Efficient methods to fit linear function
- Or use backpropagation

Case-Based Reasoning

Can apply instance-based learning even when $X \neq \mathbb{R}^n$
- Need different "distance" measure

Case-based reasoning is instance-based learning applied to instances with symbolic logic descriptions

Widely used for answering help desk queries
- (user-complaint error53-on-shutdown)
- (CPU-model PentiumIII)
- (operating-system Windows2000)
- (network-connection Ethernet)
- (memory 128MB)
- (installed-applications Office PhotoShop VirusScan)
- (disk 10GB)
- (likely-cause ???)

Case-Based Reasoning in CADET

CADET: Database of mechanical devices
- Each training example: (qualitative function, mechanical structure)
- New query: desired function
- Target value: mechanical structure for this function
Distance measure: match qualitative function descriptions
Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Lazy vs. Eager Learning

Lazy:
Wait for query before generalizing
- k-nearest neighbor, case-based reasoning

Eager:
Generalize before seeing query
- ID3, FOIL, Naïve Bayes, neural networks, ...

Does it matter?
- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same \(H \), lazy can represent more complex functions (e.g., consider \(H = \text{linear functions} \))

Collaborative Filtering

(aka Recommender Systems)

- Problem:
 Predict whether someone will like a Web page, newsgroup posting, movie, book, CD, etc.

- Previous approach:
 Look at content

- Collaborative filtering:
 - Look at what similar users liked
 - Similar users = Similar likes & dislikes

Collaborative Filtering

- Represent each user by vector of ratings
- Two types:
 - Yes/No
 - Explicit ratings (e.g., 0 - * * * * *)
- Predict rating:
 \[
 \hat{R}_{ik} = \bar{R}_i + \alpha \sum_{j : j \neq i} W_{ij} (R_{jk} - \bar{R}_j)
 \]
- Similarity (Pearson coefficient):
 \[
 W_{ij} = \frac{\sum_k (R_{ik} - \bar{R}_i)(R_{jk} - \bar{R}_j)}{\sqrt{\sum_k (R_{ik} - \bar{R}_i)^2 (R_{jk} - \bar{R}_j)^2}}
 \]

Fine Points

- Primitive version:
 \[
 \hat{R}_{ik} = \alpha \sum_{j : j \neq i} W_{ij} R_{jk}
 \]
- \(\alpha = (\sum |W_{ij}|)^{-1} \)
- \(N_i \) can be whole database, or only \(k \) nearest neighbors
- \(R_{jk} \) = Rating of user \(j \) on item \(k \)
- \(\bar{R}_j \) = Average of all of user \(j \)'s ratings
- Summation in Pearson coefficient is over all items rated by both users
- In principle, any prediction method can be used for collaborative filtering

Example

<table>
<thead>
<tr>
<th></th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(R_5)</th>
<th>(R_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Chris</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Diana</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>
Second Project

- Implement collaborative filtering algorithm
- Apply to (subset of) Netflix Prize data
 - 1821 movies, 28,978 users, 3.25 million ratings (* - *****)
 - To date: 11,615 submissions from 1960 teams
- Try to improve predictions
- Optional: Add your ratings & get recommendations

Instance-Based Learning: Summary

- k-Nearest Neighbor
- Other forms of IBL
- Collaborative filtering
- Second project