CSEP 546: Data Mining

Instructor: Pedro Domingos

Program for Today

- Rule induction – Propositional – First-order
- · First project

Rule Induction

Learning Sets of Rules

Rules are very easy to understand; popular in data mining.

- Variable Size. Any boolean function can be represented.
- Deterministic
- Discrete and Continuous Parameters.

Learning algorithms for rule sets can be described as

- Constructive Search. The rule set is built by adding rules; each rule is constructed by adding conditions.
- Eager.
- Batch.

Rule Set Hypothesis Space

• Each rule is a conjunction of tests. Each test has the form $x_j = v$, $x_j \le v$, or $x_j \ge v$, where v is a value for x_j that appears in the training data.

 $x_1 = Sunny \ \land \ x_2 \leq 75\% \Rightarrow y = 1$

• A rule set is a disjunction of rules. Typically all of the rules are for one class (e.g., y = 1). An example is classified into y = 1 if any rule is satisfied.

 $\begin{array}{l} x_1 = Sunny \, \wedge \, x_2 \leq 75\% \, \Rightarrow \, y = 1 \\ \\ x_1 = Overcast \, \Rightarrow \, y = 1 \\ \\ x_1 = Rain \, \wedge \, x_3 \leq 20 \, \Rightarrow \, y = 1 \end{array}$

Learning a Single Rule

We grow a rule by starting with an empty rule and adding tests one at a time until the rule "covers" only positive examples.

GrowRule(S) $R = \{ \}$ repeat

choose best test $x_j \Theta v$ to add to R, where $\Theta \in \{=, \neq, \leq, \geq\}$ S := S - all examples that do not satisfy $R \cup \{x_j \Theta v\}$. **until** S contains only positive examples.

Choosing the Best Test

- Current rule R covers m_0 negative examples and m_1 positive examples. Let $p=\frac{m_1}{m_0+m_1}.$
- Proposed rule R ∪ {x_jΘv} covers m'₀ and m'₁ examples.
- Let $p' = \frac{m'_1}{m'_0 + m'_1}$.
- $Gain = m'_1 \left[(-p \lg p) (-p' \lg p') \right]$

We want to reduce our surprise (to the point where we are *certain*), but we also want the rule to cover many examples. This formula tries to implement this tradeoff.

Learning a Set of Rules (Separate-and-Conquer)

 $\begin{aligned} & \mathsf{GrowRuleSet}(S) \\ & A = \{ \} \\ & \mathsf{repeat} \\ & R := \mathsf{GrowRule}(S) \\ & \mathsf{Add} \; R \text{ to } A \\ & S := S - \text{ all positive examples that satisfy } R. \\ & \mathsf{until} \; S \text{ is empty.} \end{aligned}$

return A

More Thorough Search Procedures

All of our algorithms so far have used greedy algorithms. Finding the smallest set of rules is NP-Hard. But there are some more thorough search procedures that can produce better rule sets.

- Round-Robin Replacement. After growing a complete rule set, we can delete the first rule, compute the set S of training examples not covered by any rule, and one or more new rules, to cover S. This can be repeated with each of the original rules. This process allows a later rule to "capture" the positive examples of a rule that was learned earlier.
- Backfitting. After each new rule is added to the rule set, we perform a few iterations
 of Round-Robin Replacement (it typically converges quickly). We repeat this process
 of growing a new rule and then performing Round-Robin Replacement until all positive
 examples are covered.
- Beam Search. Instead of growing one new rule, we grow B new rules. We consider adding each possible test to each rule and keep the best B resulting rules. When no more tests can be added, we choose the best of the B rules and add it to the rule set.

Learning Rules for Multiple Classes

What if rules for more than one class?

Two possibilities:

- Order rules (decision list)
- Weighted vote (e.g., weight = accuracy \times coverage)

Learning First-Order Rules

Why do that?

- Can learn sets of rules such as $\begin{aligned} Ancestor(x,y) \leftarrow Parent(x,y) \\ Ancestor(x,y) \leftarrow Parent(x,z) \land Ancestor(z,y) \end{aligned}$
- The PROLOG programming language: programs are sets of such rules

First-Order Rule for Classifying Web Pages

[Slattery, 1997]

 $\begin{array}{l} \operatorname{course}(A) \leftarrow \\ & \operatorname{has-word}(A, \operatorname{instructor}), \\ & \neg \operatorname{has-word}(A, \operatorname{good}), \\ & \operatorname{link-from}(A, B), \\ & \operatorname{has-word}(B, \operatorname{assign}), \\ & \neg \operatorname{link-from}(B, C) \end{array}$

Train: 31/31, Test: 31/34

FOIL (First-Order Inductive Learner)

Same as propositional separate-and-conquer, except: $% \label{eq:separate-and-conquer}%$

- Different candidate specializations (literals)
- Different evaluation function

Specializing Rules in FOIL

Learning rule: $P(x_1, x_2, \ldots, x_k) \leftarrow L_1 \ldots L_n$

Candidate specializations add new literal of form:

- $Q(v_1, \ldots, v_r)$, where at least one of the v_i in the created literal must already exist as a variable in the rule.
- $Equal(x_j, x_k)$, where x_j and x_k are variables already present in the rule
- The negation of either of the above forms of literals

Information Gain in FOIL

Foil_Gain(L, R) $\equiv t \left(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0} \right)$

Where

- $\bullet~L$ is the candidate literal to add to rule R
- p_0 = number of positive bindings of R
- n_0 = number of negative bindings of R
- p_1 = number of positive bindings of R + L
- n_1 = number of negative bindings of R + L
- t = no. of positive bindings of R also covered by R + L

Induction as Inverted Deduction

Induction is finding \boldsymbol{h} such that

 $(\forall \langle x_i, f(x_i) \rangle \in D) \ B \land h \land x_i \vdash f(x_i)$

where

- x_i is *i*th training instance
- $f(x_i)$ is the target function value for x_i
- $\bullet~B$ is other background knowledge

So let's design inductive algorithm by inverting operators for automated deduction.

Induction as Inverted Deduction

"Pairs of people $\langle u,v\rangle$ such that child of u is v "

 $\begin{array}{lll} f(x_i): & Child(Bob,Sharon) \\ x_i: & Male(Bob),Female(Sharon),Father(Sharon,Bob) \\ B: & Parent(u,v) \leftarrow Father(u,v) \end{array}$

What satisfies $(\forall \langle x_i, f(x_i) \rangle \in D) \ B \wedge h \wedge x_i \vdash f(x_i)$?

 $\begin{array}{ll} h_1: & Child(u,v) \leftarrow Father(v,u) \\ h_2: & Child(u,v) \leftarrow Parent(v,u) \end{array}$

Induction as Inverted Deduction

We have mechanical deductive operators F(A,B)=C, where $A\wedge B\vdash C$

Need *inductive* operators

O(B,D)=h where $(\forall \langle x_i,f(x_i)\rangle \in D)~(B \wedge h \wedge x_i) \vdash f(x_i)$

Induction as Inverted Deduction

Positives:

- Subsumes earlier idea of finding h that "fits" training data
- Domain theoryBhelps define meaning of "fit" the data $B \wedge h \wedge x_i \vdash f(x_i)$
- $\bullet\,$ Suggests algorithms that search H guided by B

Negatives:

• Doesn't allow for noisy data. Consider

 $(\forall \langle x_i, f(x_i) \rangle \in D) \ (B \land h \land x_i) \vdash f(x_i)$

- First order logic gives a huge hypothesis space $H \rightarrow$ Overfitting
 - \rightarrow Intractability of calculating all acceptable h 's

Deduction: Resolution Rule

- $\begin{array}{ccc} P & \lor & L \\ \neg L & \lor & R \\ \hline P & \lor & R \end{array}$
- 1. Given initial clauses C_1 and $C_2,$ find a literal L from clause C_1 such that $\neg L$ occurs in clause C_2
- Form the resolvent C by including all literals from C₁ and C₂, except for L and ¬L. More precisely, the set of literals occurring in the conclusion C is

 $C = (C_1 - \{L\}) \cup (C_2 - \{\neg L\})$

where \cup denotes set union, and "—" is set difference

First-Order Resolution

- 1. Find a literal L_1 from clause C_1 , literal L_2 from clause C_2 , and substitution θ such that $L_1\theta = \neg L_2\theta$
- **2.** Form the resolvent C by including all literals from $C_1\theta$ and $C_2\theta$, except for $L_1\theta$ and $\neg L_2\theta$. More precisely, the set of literals occurring in the conclusion C is

$$C = (C_1 - \{L_1\})\theta \cup (C_2 - \{L_2\})\theta$$

Inverting First-Order Resolution

$$C_2 = (C - (C_1 - \{L_1\})\theta_1)\theta_2^{-1} \cup \{\neg L_1\theta_1\theta_2^{-1}\}$$

Rule Induction: Summary

- Rule grown by adding one antecedent at a time
- Rule set grown by adding one rule at a time
- Propositional or first-order
- Alternative: inverse resolution

Overview

- The Gazelle site
- Data collection
- · Data pre-processing
- KDD Cup
- · Hints and findings

Data Collection

- Site was running Blue Martini's Customer Interaction System version 2.0
- Data collected includes:
 - Clickstreams
 - · Session: date/time, cookie, browser, visit count, referrer
 - Page views: URL, processing time, product, assortment (assortment is a collection of products, such as back to school)
 - Order information
 - Order header: customer, date/time, discount, tax, shipping.
 - Order line: quantity, price, assortment
 - Registration form: questionnaire responses

Data Pre-Processing

- Acxiom enhancements: age, gender, marital status, vehicle type, own/rent home, etc.
- Keynote records (about 250,000) removed. They hit the home page 3 times a minute, 24 hours.
- Personal information removed, including: Names, addresses, login, credit card, phones, host name/IP, verification question/answer. Cookie, e-mail obfuscated.
- Test users removed based on multiple criteria (e.g., credit card) not available to participants
- Original data and aggregated data (to session level) were provided

KDD Cup Questions

- 1. Will visitor leave after this page?
- 2. Which brands will visitor view?
- 3. Who are the heavy spenders?
- 4. Insights on Question 1
- 5. Insights on Question 2

KDD Cup Statistics

- 170 requests for data
- 31 submissions
- 200 person/hours per submission (max 900)
- Teams of 1-13 people (typically 2-3)

- Each insight was given a weight
- Each participant was scored on all insights
- Additional factors: presentation quality, correctness

Insight: Who Leaves (III)

- People who register see 22.2 pages on average compared to 3.3 (3.7 without crawlers)
- Free Gift and Welcome templates on first three pages encouraged visitors to stay at site
- Long processing time (>12 seconds) implies high abandonment Actionable
- Users who spend less time on the first few pages (session time) tend to have longer session lengths

Insights (IV) · Referrers - establish ad policy based on conversion rates, not clickthroughs - Overall conversion rate: 0.8% (relatively low) - MyCoupons had 8.2% conversion rate, but low spenders FashionMall and ShopNow brought 35,000 visitors Only 23 purchased (0.07% conversion rate!) What about Winnie-Cooper? Winnie Cooper is a 31-year-old guy who wears pantyhose and has a pantyhose site. 8,700 visitors came from his site (!). Actions:

how hard it is for men to buy in stores · Personalize for XL sizes

- Insights need support Rules with high confidence are meaningless when they apply to 4 people
- Dig deeper Many "interesting" insights with interesting explanations were simply identifying periods of the site. For example:
 - "93% of people who responded that they are purchasing for others are heavy purchasers.' True, but simply identifying people who registered prior
 - to 2/28, before the form was changed.
 - Similarly, "presence of children" (registration form) implies heavy spender.

Example

- · Agreeing to get e-mail in registration was claimed to be predictive of heavy spender
- · It was mostly an indirect predictor of time (Gazelle changed default for on 2/28 and back on 3/16)

Question: Brand View

- Given set of page views, which product brand will visitor view in remainder of the session? (Hanes, Donna Karan, American Essentials, or none)
- · Good gains curves for long sessions (lift of 3.9, 3.4, and 1.3 for three brands at 10% of data).
- · Referrer URL is great predictor
 - FashionMall, Winnie-Cooper are referrers for Hanes, Donna Karan - different population segments reach these sites MyCoupons, Tripod, DealFinder are referrers for American Essentials - AE contains socks, excellent for coupon users
- · Previous views of a product imply later views
- Few realized Donna Karan only available > Feb 26

Project

- Use Weka
- Apply to first question (Who leaves?)
- Improve accuracy
- Report insights
- Good luck and have fun!