

Data warehousing and OLAP

Source Materials

- Jiawei Han & Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, 2001.
- Tom Mitchell, *Machine Learning*, McGraw-Hill, 1997.
- Papers

What is Data Mining?

- Data mining is the process of identifying valid, novel, useful and understandable patterns in data.
- Also known as KDD (Knowledge Discovery in Databases).
- "We're drowning in information, but starving for knowledge." (John Naisbett)

Related Disciplines

- Machine learning
- Databases
- Statistics
- Information retrieval
- Visualization
- High-performance computing
- Etc.

Applications of Data Mining

- E-commerce
- Marketing and retail
- Finance
- Telecoms
- Drug design
- Process control
- Space and earth sensing
- Etc.

The Data Mining Process

- Understanding domain, prior knowledge, and goals
- Data integration and selection
- Data cleaning and pre-processing
- Modeling and searching for patterns
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop

Data Mining Tasks Classification Regression Probability estimation Clustering

- Association detection
- Summarization
- Trend and deviation detection
- Etc.

Inductive Learning

- Inductive learning or Prediction:
 - **Given** examples of a function (X, F(X))
 - **Predict** function *F(X)* for new examples *X*
- Discrete F(X): Classification
- Continuous F(X): Regression
- F(X) = Probability(X): Probability estimation

Widely-used Approaches

- Decision trees
- Rule induction
- Bayesian learning
- Neural networks
- Genetic algorithms
- Instance-based learning
- Etc.

Requirements for a Data Mining System

- Data mining systems should be
 - Computationally sound
 - Statistically sound
 - Ergonomically sound

Components of a Data Mining System Representation Evaluation Search Data management User interface

Topics for this Quarter (Slide 1 of 2)

- Data warehousing and OLAP
- Decision trees
- Rule induction
- Bayesian learning
- Neural networks
- Genetic algorithms

Data Warehousing and OLAP

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Extensions of data cubes
- From data warehousing to data mining

What is a Data Warehouse? Defined in many different ways, but not rigorously. A decision support database that is maintained separately from the organization's operational database Support information processing by providing a solid platform of consolidated, historical data for analysis. "A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decision-making process."—W. H. Inmon Data warehousing:

 The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - Operational database: current value data.
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element".

Data Warehouse-Non-Volatile

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data.

Data Warehouse vs. Heterogeneous DBMS

- Traditional heterogeneous DB integration:
 - Build wrappers/mediators on top of heterogeneous databases
 Query driven approach
 - When a query is posed to a client site, a meta-dictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set
 - Complex information filtering, compete for resources
- Data warehouse: update-driven, high performance
 Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis

Data Warehouse vs. Operational DBMS

OLTP (on-line transaction processing)

- Major task of traditional relational DBMS
- Day-to-day operations: purchasing, inventory, banking,
- manufacturing, payroll, registration, accounting, etc.
- OLAP (on-line analytical processing)
 - Major task of data warehouse system
 - Data analysis and decision making
- Distinct features (OLTP vs. OLAP):
 - User and system orientation: customer vs. market
 - Data contents: current, detailed vs. historical, consolidated
 - Database design: ER + application vs. star + subject
 View: current, local vs. evolutionary, integrated
 - Access antene, local vs. evolutionally, integrated
 - Access patterns: update vs. read-only but complex queries

OLIFY	S. OLAF	
	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Conceptual Modeling of Data Warehouses

Modeling data warehouses: dimensions & measures
 <u>Star schema</u>: A fact table in the middle connected to a set of dimension tables
 <u>Snowflake schema</u>: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake

 Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

- reorient the cube, visualization, 3D to series of 2D plane.
 Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its backend relational tables (using SQL)

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Extensions of data cubes
- From data warehousing to data mining

Data Warehouse Design Process Choose the *grain* (*atomic level of data*) of the business process Choose a business process to model, e.g., orders, invoices, etc. Choose the dimensions that will apply to each fact table record Choose the measure that will populate each fact table record

Data Warehousing and OLAP

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Extensions of data cubes
- From data warehousing to data mining

Efficient Processing of OLAP Queries

- Determine which operations should be performed on the available cuboids:
 - transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g, dice = selection + projection
- Determine to which materialized cuboid(s) the relevant operations should be applied.
- Exploring indexing structures and compressed vs. dense array structures in MOLAP

- Data related to system performance
- Business data
 - business terms and definitions, ownership of data, charging policies

Data Warehouse Back-End Tools and Utilities

ata extraction:

get data from multiple, heterogeneous, and external sources

- Data cleaning: detect errors in the data and rectify them when possible
- Data transformation:
- convert data from legacy or host format to warehouse format
- Load:
 - sort, summarize, consolidate, compute views, check integrity, and build indicies and partitions
- Refresh
 - propagate the updates from the data sources to the warehouse

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Extensions of data cubes
- From data warehousing to data mining

Discovery-Driven Exploration of Data Cubes

- Hypothesis-driven: exploration by user, huge search space
- Discovery-driven (Sarawagi et al.'98)
 - pre-compute measures indicating exceptions, guide user in the data analysis, at all levels of aggregation
 - Exception: significantly different from the value anticipated, based on a statistical model
 - Visual cues such as background color are used to reflect the degree of exception of each cell
 - Computation of exception indicator (modeling fitting and computing SelfExp, InExp, and PathExp values) can be overlapped with cube construction

Data Warehousing and OLAP

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Extensions of data cubes
- From data warehousing to data mining

Differences among the three tasks

Architecture of OLAM

