Rule Induction

Rule Set Hypothesis Space

- Each rule is a conjunction of tests. Each test has the form: \(x_i = v, x_j \leq s, \) or \(x_j \geq s, \) where \(x_i \) is a value for \(x_j \) that appears in the training data.

\[r_1 = \text{Sunny} \land x_2 \leq 70 \implies y = 1 \]

- A rule set is a disjunction of rules. Typically all of the rules are for one class (e.g., \(y = 1 \)). An example is classified into \(y = 1 \) if any rule is satisfied.

\[r_1 = \text{Sunny} \land x_2 \leq 70 \implies y = 1 \]
\[r_2 = \text{Overcast} \implies y = 1 \]
\[r_3 = \text{Rain} \land x_2 \leq 20 \implies y = 1 \]

Relationship to Decision Trees

Any decision tree can be converted into a set of rules. The previous set of rules corresponds to this tree:

```
Sunny  
\|  
\|  
\|  
\|  
\|  
\|  
\|  
\|  
\|  
\|  
\|  
\|  
```

Learning Sets of Rules

Rules are very easy to understand; popular in data mining.

- Variable Size: Any boolean function can be represented.
- Deterministic
- Discrete and Continuous Parameters

Learning algorithms for rule sets can be described as

- Constrained Search: The rule set is built by adding rules; each rule is constrained by adding conditions.
- Eager.
- Batch.
Relationship to Decision Trees

A small set of rules can correspond to a big decision tree, because of the Replication Problem.

\[x_1 \land x_2 \Rightarrow y = 1 \quad x_2 \land x_3 \Rightarrow y = 1 \quad x_1 \land x_2 \Rightarrow y = 1 \]

Learning a Single Rule

We grow a rule by starting with an empty rule and adding tests one at a time until the rule "covers" only positive examples.

\[\text{GrowRule}(S, \emptyset) \]
\[R = \{ \} \]
\[\text{repeat} \]
\[\text{choose best test } \alpha \text{ of } \emptyset \text{ to add to } R \text{, where } \theta \in \{=, \neq, \leq, >\} \]
\[S = S \setminus \text{all examples that do not satisfy } R \cup \{ \alpha \text{ of } \emptyset \} \]
\[\text{until } S \text{ contains only positive examples.} \]

Choosing the Best Test

- Current rule \(R \) covers \(n_0 \) negative examples and \(n_1 \) positive examples.
 \[p = \frac{n_1}{n_0 + n_1} \]
- Proposed rule \(R \cup \{ \alpha \text{ of } \emptyset \} \) covers \(n'0 \) and \(n'_1 \) examples.
 \[p' = \frac{n'_1}{n'_0 + n'_1} \]
- Gain \[\text{Gain} = G = \frac{n_1 n'_0 - (n'_1 p' - n_0 p)}{n_0 n_1} \]

We want to choose our negative size (by the point where we are certain), but we also want the rule to cover as many examples. This formula tries to implement this tradeoff.

Learning a Set of Rules (Separate-and-Conquer)

\[\text{GrowRuleSet}(S) \]
\[A = \{ \} \]
\[\text{repeat} \]
\[A = \text{GrowRuleSet}(S) \]
\[\text{Add } A \text{ to } R \]
\[S = S - \text{all positive examples that satisfy } R. \]
\[\text{until } S \text{ is empty.} \]
\[\text{return } R \]

More Thorough Search Procedures

All of our algorithms can be made greedy algorithms. Finding the smallest set of rules is NP-hard. But there are some more thorough search procedures that may produce better rule sets.

- Round-Robin Replacement. After growing a complete rule set, we compute the set \(R \) of training examples not covered by any rule, and one or more new rules, to cover \(R \). This can be repeated with each of the original rules. This process allows a later rule to "capture" the positive examples of a rule that was learned earlier.
- Backfitting. After each new rule is added to the rule set, we perform a few iterations of Round-Robin Replacement (it typically converges quickly). We repeat this process of growing a new rule and then performing Round-Robin Replacement until all positive examples are covered.
- Beam Search. Instead of growing one new rule, we grow \(B \) new rules. We consider adding each possible test to each rule and keep the best \(B \) resulting rules. When no more tests can be added, we choose the best of the \(B \) rules and add it to the rule set.

Probability Estimates From Small Numbers

When \(n_0 \) and \(n_1 \) are very small, we can end up with
\[P = \frac{n_1}{n_0 + n_1} \]
being very unreliable (or even zero).

Two possible fixes:

- Laplace Estimate. Add 1/2 to the numerator and 1 to the denominator:
 \[P = \frac{n_1 + 0.5}{n_0 + n_1 + 1} \]
 This is essentially saying that in the absence of any evidence, we expect \(p = 1/2 \), but our belief is very weak (equivalent to 1/3 of an example).

- General Prior Estimate. If you have a prior belief that \(p = 0.35 \), you can add any number \(k \) to the numerator and \(1-k \) to the denominator:
 \[P = \frac{n_1 + k}{n_0 + n_1 + 4k} \]
 The larger \(k \), the stronger our prior belief becomes.

Many authors have added 1 to both the numerator and denominator in rule learning cases (weak prior belief that \(p = 1 \)).
Learning Rules for Multiple Classes

What if rules for more than one class?

Two possibilities:
- Order rules (decision list)
- Weighted vote (e.g., weight = accuracy x coverage)

Learning First-Order Rules

Why do that?
- Can learn sets of rules such as
 \[\text{Ancestor}(x, y) \leftarrow \text{Parent}(x, y) \text{\wedge Ancestor}(x, y) \]
- The PROLOG programming language: programs are sets of such rules

First-Order Rule for Classifying Web Pages

[Slattery, 1997]

course(A) :-
 has-word(A, instructor),
 ~ has-word(A, good),
 link-from(A, B),
 has-word(B, assign),
 ~ link-from(B, C)

Train: 31/31, Test: 31/34

FOIL (First-Order Inductive Learner)

Same as propositional separate-and-conquer, except:
- Different candidate specializations (literals)
- Different evaluation function

Specializing Rules in FOIL

Learning rule: \[P(x_1, x_2, \ldots, x_k) \leftarrow L_1 \ldots L_n \]

Candidate specializations add new literal of form:
- \(Q(v_1, \ldots, v_i) \), where at least one of the \(v_i \) in the created literal must already exist as a variable in the rule.
- \(\text{Equal}(x_j, x_k) \), where \(x_j \) and \(x_k \) are variables already present in the rule.
- The negation of either of the above forms of literals

Information Gain in FOIL

\[\text{Gain}(L, R) = t \left(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0} \right) \]

Where
- \(L \) is the candidate literal to add to rule \(R \)
- \(p_0 = \) number of positive bindings of \(R \)
- \(n_0 = \) number of negative bindings of \(R \)
- \(p_1 = \) number of positive bindings of \(R + L \)
- \(n_1 = \) number of negative bindings of \(R + L \)
- \(t = \) no. of positive bindings of \(R \) also covered by \(R + L \)
Induction as Inverted Deduction

Induction is finding h such that

$$(\forall (x_i, f(x_i)) \in D) \ B \land h \land x_i \vdash f(x_i)$$

where
- x_i is ith training instance
- $f(x_i)$ is the target function value for x_i
- B is other background knowledge

So let's design inductive algorithm by inverting operators for automated deduction.

Target function:
- \textit{CanReach}(x,y) true iff directed path from x to y

Instances:
- Pairs of nodes, e.g. $(1,5)$, with graph described by literals \textit{LinkedTo}(0,1), \neg \textit{LinkedTo}(0,8) etc.

Hypothesis space:
- Each $h \in H$ is a set of Horn clauses using predicates \textit{LinkedTo} (and \textit{CanReach})

Induction as Inverted Deduction

"Pairs of people (u, v) such that child of u is v"

$f(x_i) : \ \text{Child}(Bob, Sharon)$

$x_i : \ \text{Male}(Bob), \text{Female}(Sharon), \text{Father}(Sharon, Bob)$

$B : \ \text{Parent}(u, v) \equiv \text{Father}(u, v)$

What satisfies $(\forall (x_i, f(x_i)) \in D) \ B \land h \land x_i \vdash f(x_i)$?

$h_1 : \ \text{Child}(u, v) \equiv \text{Father}(v, u)$

$h_2 : \ \text{Child}(u, v) \equiv \text{Parent}(v, u)$

Induction as Inverted Deduction

We have mechanical \textit{deductive} operators $F(A, B) = C$, where $A \land B \vdash C$

Need inductive operators

$O(B, D) = h$ where $(\forall (x_i, f(x_i)) \in D) \ B \land h \land x_i \vdash f(x_i)$

Induction as Inverted Deduction

Positives:
- Subsumes earlier idea of finding h that "fits" training data
- Domain theory B helps define meaning of "fit" the data $B \land h \land x_i \vdash f(x_i)$
- Suggests algorithms that search H guided by B
Induction as Inverted Deduction

Negatives:
- Doesn’t allow for noisy data. Consider
 \(\forall (x_i, f(x_i)) \in D \) \((B \land B \land x_i) \vdash f(x_i) \)
- First order logic gives a huge hypothesis space \(H \)
 - Overfitting
 - Intractability of calculating all acceptable \(h \)'s

Deduction: Resolution Rule

\[
P \lor \neg L \lor R \\
\neg L \lor P \lor R
\]

1. Given initial clauses \(C_1 \) and \(C_2 \), find a literal \(L \) from clause \(C_1 \) such that \(\neg L \) occurs in clause \(C_2 \)
2. Form the resolvent \(C \) by including all literals from \(C_1 \) and \(C_2 \), except for \(L \) and \(\neg L \). More precisely, the set of literals occurring in the conclusion \(C \) is
 \[
 C = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\neg L\})
 \]
 where \(\cup \) denotes set union, and \(\setminus \) is set difference

Inverting Resolution

[Diagram of inverting resolution]

1. Given initial clauses \(C_1 \) and \(C_2 \), find a literal \(L \) that occurs in clause \(C_1 \), but not in clause \(C_2 \)
2. Form the second clause \(C_2 \) by including the following literals
 \[
 C_2 = (C \setminus (C_1 \setminus \{L\})) \cup (\neg L)
 \]

Inverted Resolution (Propositional)

1. Given initial clauses \(C_1 \) and \(C_2 \), find a literal \(L \) that occurs in clause \(C_1 \), but not in clause \(C_2 \)
2. Form the second clause \(C_2 \) by including the following literals
 \[
 C_2 = (C \setminus (C_1 \setminus \{L\})) \cup (\neg L)
 \]

First-Order Resolution

1. Find a literal \(L_1 \) from clause \(C_1 \), literal \(L_2 \) from clause \(C_2 \) and substitution \(\theta \) such that \(L_1 \theta = \neg L_2 \theta \)
2. Form the resolvent \(C \) by including all literals from \(C_1 \theta \) and \(C_2 \theta \), except for \(L_1 \theta \) and \(\neg L_2 \theta \). More precisely, the set of literals occurring in the conclusion \(C \) is
 \[
 C = (C_1 \setminus \{L_1\}) \theta \cup (C_2 \setminus \{L_2\}) \theta
 \]

Inverting First-Order Resolution

\[
C_2 = (C \setminus (C_1 \setminus \{L_1\}) \theta \setminus \{\neg L_1 \theta \}) \cup (\neg L_1 \theta \setminus \{L_2 \theta \})
\]
First Project: Clickstream Mining

Overview
- The Gazelle site
- Data collection
- Data pre-processing
- KDD Cup
- Hints and findings

The Gazelle Site
- Gazelle.com was a legwear and legcare web retailer.
- Soft-launch: Jan 30, 2000
- Hard-launch: Feb 29, 2000 with an Ally McBeal TV ad on 28th and strong $10 off promotion
- Training set: 2 months
- Test sets: one month (split into two test sets)

Rule Induction: Summary
- Rule grown by adding one antecedent at a time
- Rule set grown by adding one rule at a time
- Propositional or first-order
- Alternative: inverse resolution

Cigol

Prolog

PROLOG: Reduce comb explosion by generating the most specific acceptable h

1. User specifies H by stating predicates, functions, and forms of arguments allowed for each
2. PROLOG uses sequential covering algorithm. For each \(\langle x_i, f(x_i) \rangle \)
 - Find most specific hypothesis \(h_i \) s.t.
 \[B \land h_i \land \pi \vdash f(x_i) \]
 - actually, considers only k-step entailment
3. Conduct general-to-specific search bounded by specific hypothesis \(h_i \), choosing hypothesis with minimum description length
Data Collection

- Site was running Blue Martini’s Customer Interaction System version 2.0
- Data collected includes:
 - Clickstreams
 - Session: date/time, cookie, browser, visit count, referrer
 - Page views: URL, processing time, product, assortment (assortment is a collection of products, such as back to school)
 - Order information
 - Order header: customer, date/time, discount, tax, shipping.
 - Order line: quantity, price, assortment
 - Registration form: questionnaire responses

Data Pre-Processing

- Acxiom enhancements: age, gender, marital status, vehicle type, own/rent home, etc.
- Keynote records (about 250,000) removed. They hit the home page 3 times a minute, 24 hours.
- Personal information removed, including: Names, addresses, login, credit card, phones, host name/IP, verification question/answer. Cookie, e-mail obfuscated.
- Test users removed based on multiple criteria (e.g., credit card) not available to participants
- Original data and aggregated data (to session level) were provided

KDD Cup Questions

1. Will visitor leave after this page?
2. Which brands will visitor view?
3. Who are the heavy spenders?
4. Insights on Question 1
5. Insights on Question 2

KDD Cup Statistics

- 170 requests for data
- 31 submissions
- 200 person/hours per submission (max 900)
- Teams of 1-13 people (typically 2-3)

Evaluation Criteria

- Accuracy (or score) was measured for the two questions with test sets
- Insight questions judged with help of retail experts from Gazelle and Blue Martini
- Created a list of insights from all participants
 - Each insight was given a weight
 - Each participant was scored on all insights
 - Additional factors: presentation quality, correctness
Question: Who Will Leave

- Given set of page views, will visitor view another page on site or leave?
 Hard prediction task because most sessions are of length 1.
 Gains chart for sessions longer than 5 is excellent.

Insight: Who Leaves

- Crawlers, bots, and Gazelle testers
 - Crawlers hitting single pages were 16% of sessions
 - Gazelle testers: distinct patterns, referrer file://c:...
- Referring sites: mycoupons have long sessions, shopnow.com are prone to exit quickly
- Returning visitors’ prob. of continuing is double
- View of specific products (Oroblue, Levante) causes abandonment - Actionable
- Replenishment pages discourage customers. 32% leave the site after viewing them - Actionable

Insight: Who Leaves (II)

- Probability of leaving decreases with page views
 Many many “discoveries” are simply explained by this.
 E.g.: “viewing 3 different products implies low abandonment”
- Aggregated training set contains clipped sessions
 Many competitors computed incorrect statistics

Insight: Who Leaves (III)

- People who register see 22.2 pages on average compared to 3.3 (3.7 without crawlers)
- Free Gift and Welcome templates on first three pages encouraged visitors to stay at site
- Long processing time (> 12 seconds) implies high abandonment - Actionable
- Users who spend less time on the first few pages (session time) tend to have longer session lengths

Question: “Heavy” Spenders

- Characterize visitors who spend more than $12 on an average order at the site
- Small dataset of 3,465 purchases / 1,831 customers
- Insight question - no test set
- Submission requirement:
 - Report of up to 1,000 words and 10 graphs
 - Business users should be able to understand report
 - Observations should be correct and interesting
 average order tax > $2 implies heavy spender
 is not interesting nor actionable

Time is a major factor

Total Sales, Discounts, and “Heavy Spenders”

- Soft Launch
- Ally McBeal ad
- $10 off promotion
- Steady state

Percent heavy — Discount — Order amount
Insights (II)

Factors correlating with heavy purchasers:
- Not an AOL user (defined by browser)
- Came to site from print-ad or news, not friends & family
- Very high and very low income
- Older customers (Acxiom)
- High home market value, owners of luxury vehicles (Acxiom)
- Geographic: Northeast U.S. states
- Repeat visitors (four or more times) - loyalty, replenishment
- Visits to areas of site - personalize differently
 (lifestyle assortments, leg-care vs. leg-ware)

Insights (III)

Referring site traffic changed dramatically over time.
Graph of relative percentages of top 5 sites

Common Mistakes

- Insights need support
 Rules with high confidence are meaningless when they apply to 4 people
- Dig deeper
 Many “interesting” insights with interesting explanations were simply identifying periods of the site. For example:
 “93% of people who responded that they are purchasing for others are heavy purchasers.”
 True, but simply identifying people who registered prior to 2/28, before the form was changed.
 Similarly, “presence of children” (registration form) implies heavy spender.

Example

- Agreeing to get e-mail in registration was claimed to be predictive of heavy spender
- It was mostly an indirect predictor of time
 (Gazelle changed default for on 2/28 and back on 3/16)

Question: Brand View

- Given set of page views, which product brand will visitor view in remainder of the session?
 (Hanes, Donna Karan, American Essentials, or none)
- Good gains curves for long sessions
 (lift of 3.9, 3.4, and 1.3 for three brands at 10% of data).
- Referrer URL is great predictor
 - FashionMall, Winnie-Cooper are referrers for Hanes, Donna Karan - different population segments reach these sites
 - MyCoupons, Tripod, DealFinder are referrers for American Essentials - AE contains socks, excellent for coupon users
- Previous views of a product imply later views
- Few realized Donna Karan only available > Feb 26
Project

- Implement decision tree learner
- Apply to first question (Who leaves?)
- Improve accuracy by refining data
- Report insights
- Good luck and have fun!