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Lecture 10

Clustering
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Preview

! Introduction

! Partitioning methods

! Hierarchical methods

! Model-based methods

! Density-based methods

What is Clustering?

! Cluster: a collection of data objects
! Similar to one another within the same cluster
! Dissimilar to the objects in other clusters

! Cluster analysis
! Grouping a set of data objects into clusters

! Clustering is unsupervised classification: 
no predefined classes

! Typical applications
! As a stand-alone tool to get insight into data 

distribution 
! As a preprocessing step for other algorithms
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Examples of Clustering Applications

! Marketing: Help marketers discover distinct groups in their 
customer bases, and then use this knowledge to develop 
targeted marketing programs

! Land use: Identification of areas of similar land use in an 
earth observation database

! Insurance: Identifying groups of motor insurance policy 
holders with a high average claim cost

! Urban planning: Identifying groups of houses according to 
their house type, value, and geographical location

! Seismology: Observed earth quake epicenters should be 
clustered along continent faults
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What Is a Good Clustering?

! A good clustering method will produce 
clusters with

! High intra-class similarity

! Low inter-class similarity 

! Precise definition of clustering quality is difficult

! Application-dependent

! Ultimately subjective
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Requirements for Clustering 
in Data Mining 

! Scalability

! Ability to deal with different types of attributes

! Discovery of clusters with arbitrary shape

! Minimal domain knowledge required to determine 
input parameters

! Ability to deal with noise and outliers

! Insensitivity to order of input records

! Robustness wrt high dimensionality

! Incorporation of user-specified constraints

! Interpretability and usability
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Similarity and Dissimilarity 
Between Objects

! Same we used for IBL (e.g, Lp norm)

! Euclidean distance (p = 2):

! Properties of a metric d(i,j):
! d(i,j) ≥ 0

! d(i,i) = 0
! d(i,j) = d(j,i)
! d(i,j) ≤ d(i,k) + d(k,j)
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Major Clustering Approaches

! Partitioning: Construct various partitions and then evaluate 

them by some criterion

! Hierarchical: Create a hierarchical decomposition of the set 

of objects using some criterion

! Model-based: Hypothesize a model for each cluster and 

find best fit of models to data

! Density-based: Guided by connectivity and density 

functions
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Partitioning Algorithms

! Partitioning method: Construct a partition of a database D
of n objects into a set of k clusters

! Given a k, find a partition of k clusters that optimizes the 
chosen partitioning criterion

! Global optimal: exhaustively enumerate all partitions

! Heuristic methods: k-means and k-medoids algorithms

! k-means (MacQueen, 1967): Each cluster is 
represented by the center of the cluster

! k-medoids or PAM (Partition around medoids) 
(Kaufman & Rousseeuw, 1987): Each cluster is 
represented by one of the objects in the cluster  
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K-Means Clustering

! Given k, the k-means algorithm consists of 
four steps:
! Select initial centroids at random.
! Assign each object to the cluster with the 

nearest centroid.
! Compute each centroid as the mean of the 

objects assigned to it.
! Repeat previous 2 steps until no change.
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K-Means Clustering (contd.)

! Example

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

12

Comments on the K-Means Method

! Strengths
! Relatively efficient: O(tkn), where n is # objects, k is 

# clusters, and t  is # iterations. Normally, k, t << n.
! Often terminates at a local optimum. The global optimum

may be found using techniques such as simulated
annealing and genetic algorithms

! Weaknesses
! Applicable only when mean is defined (what about 

categorical data?)
! Need to specify k, the number of clusters, in advance
! Trouble with noisy data and outliers
! Not suitable to discover clusters with non-convex shapes
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Hierarchical Clustering

! Use distance matrix as clustering criteria.  This method 
does not require the number of clusters k as an input, 
but needs a termination condition 
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AGNES (Agglomerative Nesting)

! Produces tree of clusters (nodes)

! Initially: each object is a cluster (leaf)

! Recursively merges nodes that have the least dissimilarity

! Criteria: min distance, max distance, avg distance, center 
distance

! Eventually all nodes belong to the same cluster (root)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

15

A Dendrogram Shows How the
Clusters are Merged Hierarchically

Decompose data objects into several levels of nested
partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the
dendrogram at the desired level. Then each connected
component forms a cluster.
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DIANA (Divisive Analysis)

! Inverse order of AGNES

! Start with root cluster containing all objects

! Recursively divide into subclusters

! Eventually each cluster contains a single object
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Other Hierarchical Clustering Methods

! Major weakness of agglomerative clustering methods
! Do not scale well: time complexity of at least O(n2), 

where n is the number of total objects
! Can never undo what was done previously

! Integration of hierarchical with distance-based clustering
! BIRCH: uses CF-tree and incrementally adjusts the 

quality of sub-clusters
! CURE: selects well-scattered points from the cluster and 

then shrinks them towards the center of the cluster by a 
specified fraction
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BIRCH

! BIRCH: Balanced Iterative Reducing and Clustering using 
Hierarchies (Zhang, Ramakrishnan & Livny, 1996)

! Incrementally construct a CF (Clustering Feature) tree

! Parameters: max diameter, max children

! Phase 1: scan DB to build an initial in-memory CF tree 
(each node: #points, sum, sum of squares)

! Phase 2: use an arbitrary clustering algorithm to cluster 
the leaf nodes of the CF-tree 

! Scales linearly: finds a good clustering with a single scan 
and improves the quality with a few additional scans

! Weaknesses: handles only numeric data, sensitive to order 
of data records.
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Clustering Feature Vector

Clustering Feature: CF = (N, LS, SS)

N: Number of data points

LS: ∑N
i=1 Xi

SS: ∑N
i=1 Xi
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CF Tree
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CURE (Clustering Using REpresentatives)

! CURE: non-spherical clusters, robust wrt outliers

! Uses multiple representative points to evaluate 
the distance between clusters 

! Stops the creation of a cluster hierarchy if a 
level consists of k clusters
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Drawbacks of Distance-Based 
Method

! Drawbacks of square-error-based clustering method  

! Consider only one point as representative of a cluster

! Good only for convex clusters, of similar size and 
density, and if k can be reasonably estimated
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Cure: The Algorithm

! Draw random sample s

! Partition sample to p partitions with size s/p

! Partially cluster partitions into s/pq clusters

! Cluster partial clusters, shrinking 

representatives towards centroid

! Label data on disk

24

Data Partitioning and Clustering
! s = 50
! p = 2
! s/p = 25
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Cure: Shrinking Representative Points

! Shrink the multiple representative points towards the 
gravity center by a fraction of α.

! Multiple representatives capture the shape of the cluster
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Model-Based Clustering

! Basic idea: Clustering as probability estimation
! One model for each cluster
! Generative model:

! Probability of selecting a cluster
! Probability of generating an object in cluster

! Find max. likelihood or MAP model
! Missing information: Cluster membership
! Use EM algorithm
! Quality of clustering: Likelihood of test objects
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Mixtures of Gaussians

! Cluster model: Normal distribution (mean, covariance)
! Assume: diagonal covariance, known variance,            

same for all clusters
! Max. likelihood: mean = avg. of samples
! But what points are samples of a given cluster?
! Estimate prob. that point belongs to cluster
! Mean = weighted avg. of points, weight = prob.
! But to estimate probs. we need model
! �Chicken and egg� problem: use EM algorithm
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EM Algorithm for Mixtures

! Initialization: Choose means at random
! E step:

! For all points and means, compute Prob(point|mean)
! Prob(mean|point) =

Prob(mean) Prob(point|mean) / Prob(point)
! M step:

! Each mean = Weighted avg. of points
! Weight = Prob(mean|point)

! Repeat until convergence
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EM Algorithm (contd.)

! Guaranteed to converge to local optimum
! K-means is special case
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AutoClass

! Developed at NASA (Cheeseman & Stutz, 1988)
! Mixture of Naïve Bayes models
! Variety of possible models for 

Prob(attribute|class)
! Missing information: Class of each example
! Apply EM algorithm as before
! Special case of learning Bayes net with        

missing values
! Widely used in practice
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COBWEB

! Grows tree of clusters (Fisher, 1987)
! Each node contains:                           

P(cluster), P(attribute|cluster) for each attribute
! Objects presented sequentially
! Options: Add to node, new node; merge, split
! Quality measure: Category utility:

Increase in predictability of attributes/#Clusters
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A COBWEB Tree
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Neural Network Approaches

! Neuron = Cluster = Centroid in instance space
! Layer = Level of hierarchy
! Several competing sets of clusters in each layer
! Objects sequentially presented to network
! Within each set, neurons compete to win object
! Winning neuron is moved towards object
! Can be viewed as mapping from low-level 

features to high-level ones
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Competitive Learning
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Self-Organizing Feature Maps

! Clustering is also performed by having several 
units competing for the current object

! The unit whose weight vector is closest to the 
current object wins

! The winner and its neighbors learn by having 
their weights adjusted

! SOMs are believed to resemble processing that 
can occur in the brain

! Useful for visualizing high-dimensional data in 
2- or 3-D space
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Density-Based Clustering

! Clustering based on density (local cluster criterion), 
such as density-connected points

! Major features:
! Discover clusters of arbitrary shape
! Handle noise
! One scan
! Need density parameters as termination condition

! Representative algorithms:
! DBSCAN (Ester et al., 1996)
! DENCLUE (Hinneburg & Keim, 1998)
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Definitions (I)

! Two parameters:

! Eps: Maximum radius of neighborhood

! MinPts: Minimum number of points in an Eps-
neighborhood of a point

! NEps(p) ={q Є D | dist(p,q) <= Eps}

! Directly density-reachable: A point p is directly density-
reachable from a point q wrt. Eps, MinPts iff 

! 1) p belongs to NEps(q)

! 2) q is a core point:

|NEps (q)| >= MinPts

p
q

MinPts = 5

Eps = 1 cm
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Definitions (II)

! Density-reachable: 

! A point p is density-reachable from 
a point q wrt. Eps, MinPts if there 
is a chain of points p1, …, pn, p1 = 
q, pn = p such that pi+1 is directly 
density-reachable from pi

! Density-connected

! A point p is density-connected to a 
point q wrt. Eps, MinPts if there is 
a point o such that both, p and q
are density-reachable from o wrt. 
Eps and MinPts.

p

q
p1

p q

o
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DBSCAN: Density Based Spatial 
Clustering of Applications with Noise

! Relies on a density-based notion of cluster:  A cluster is 
defined as a maximal set of density-connected points

! Discovers clusters of arbitrary shape in spatial databases 
with noise

Core

Border

Outlier

Eps = 1cm

MinPts = 5
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DBSCAN: The Algorithm

! Arbitrarily select a point p

! Retrieve all points density-reachable from p wrt Eps
and MinPts.

! If p is a core point, a cluster is formed.

! If p is a border point, no points are density-reachable 
from p and DBSCAN visits the next point of the 
database.

! Continue the process until all of the points have been 
processed.
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DENCLUE: Using Density Functions

! DENsity-based CLUstEring (Hinneburg & Keim, 1998)

! Major features

! Good for data sets with large amounts of noise

! Allows a compact mathematical description of arbitrarily 
shaped clusters in high-dimensional data sets

! Significantly faster than other algorithms               
(faster than DBSCAN by a factor of up to 45)

! But needs a large number of parameters
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! Uses grid cells but only keeps information about grid 
cells that do actually contain data points and manages 
these cells in a tree-based access structure.

! Influence function: describes the impact of a data point 
within its neighborhood.

! Overall density of the data space can be calculated as 
the sum of the influence function of all data points.

! Clusters can be determined mathematically by 
identifying density attractors.

! Density attractors are local maxima of the overall 
density function.

DENCLUE
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Influence Functions

! Example
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Density Attractors
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Center-Defined & Arbitrary Clusters
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Clustering: Summary

! Introduction

! Partitioning methods

! Hierarchical methods

! Model-based methods

! Density-based methods


