Lecture 10
Clustering

What is Clustering?
- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Grouping a set of data objects into clusters
 - Clustering is an unsupervised classification: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Examples of Clustering Applications
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- Urban planning: Identifying groups of houses according to their house type, value, and geographical location
- Seismology: Observed earthquake epicenters should be clustered along continent faults

What Is a Good Clustering?
- A good clustering method will produce clusters with
 - High intra-class similarity
 - Low inter-class similarity
- Precise definition of clustering quality is difficult
 - Application-dependent
 - Ultimately subjective

Requirements for Clustering in Data Mining
- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal domain knowledge required to determine input parameters
- Ability to deal with noise and outliers
- Insensitivity to order of input records
- Robustness wrt high dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Preview
- Introduction
- Partitioning methods
- Hierarchical methods
- Model-based methods
- Density-based methods
Similarity and Dissimilarity Between Objects
- Same as used for IBL (e.g., L_2 norm)
- Euclidean distance ($p = 2$):
 \[d_{ij} = \sqrt{\sum_{l=1}^{n} (x_{il} - x_{jl})^2} \]
- Properties of a metric d_{ij}:
 - $d_{ij} \geq 0$
 - $d_{ii} = 0$
 - $d_{ij} = d_{ji}$
 - $d_{ij} \leq d_{ik} + d_{kj}$

Major Clustering Approaches
- Partitioning: Construct various partitions and then evaluate them by some criterion
- Hierarchical: Create a hierarchical decomposition of the set of objects using some criterion
- Model-based: Hypothesize a model for each cluster and find best fit of models to data
- Density-based: Guided by connectivity and density functions

Partitioning Algorithms
- Partitioning method: Construct a partition of a database D of n objects into a set of k clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
- k-means (MacQueen, 1967): Each cluster is represented by the center of the cluster
- k-medoids or PAM (Partition around medoids)
 (Kaufman & Rousseeuw, 1987): Each cluster is represented by one of the objects in the cluster

K-Means Clustering
- Given k, the k-means algorithm consists of four steps:
 - Select initial centroids at random.
 - Assign each object to the cluster with the nearest centroid.
 - Compute each centroid as the mean of the objects assigned to it.
 - Repeat previous 2 steps until no change.

K-Means Clustering (contd.)
- Example

Comments on the K-Means Method
- Strengths
 - Relatively efficient: $O(ktn)$, where n is # objects, k is # clusters, and t is # iterations. Normally, $k, t \ll n$.
 - Often terminates at a local optimum. The global optimum may be found using techniques such as simulated annealing and genetic algorithms
- Weaknesses
 - Applicable only when mean is defined (what about categorical data?)
 - Need to specify k, the number of clusters, in advance
 - Trouble with noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes
Hierarchical Clustering

- Use distance matrix as clustering criteria. This method does not require the number of clusters \(k \) as an input, but needs a termination condition.

AGNES (Agglomerative Nesting)

- Produces tree of clusters (nodes)
- Initially: each object is a cluster (leaf)
- Recursively merges nodes that have the least dissimilarity
- Criteria: min distance, max distance, avg distance, center distance
- Eventually all nodes belong to the same cluster (root)

A Dendrogram Shows How the Clusters are Merged Hierarchically

- Decompose data objects into several levels of nested partitioning (tree of clusters), called a dendrogram.
- A clustering of the data objects is obtained by cutting the dendrogram at the desired level. Then each connected component forms a cluster.

DIANA (Divisive Analysis)

- Inverse order of AGNES
- Start with root cluster containing all objects
- Recursively divide into subclusters
- Eventually each cluster contains a single object

Other Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - Do not scale well: time complexity of at least \(O(n^2) \), where \(n \) is the number of total objects
 - Can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - \textbf{BIRCH}: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - \textbf{CURE}: selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction

BIRCH

- \textbf{BIRCH}: Balanced Iterative Reducing and Clustering using Hierarchies (Zhang, Ramakrishnan & Livny, 1996)
- Incrementally construct a CF (Clustering Feature) tree
 - Parameters: max diameter, max children
 - Phase 1: scan DB to build an initial in-memory CF tree (each node: #points, sum, sum of squares)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weaknesses: handles only numeric data, sensitive to order of data records.
Clustering Feature Vector

Clustering Feature: $CF = (N, LS, SS)$

- N: Number of data points
- LS: $\sum_{i=1}^{N} X_i$
- SS: $\sum_{i=1}^{N} \sqrt{X_i^2}$

$CF = (5, (16,30),(54,190))$

$\begin{align*}
(3,4) & \quad (2,6) \\
(4,5) & \quad (4,7) \\
(3,8) &
\end{align*}$

CURE (Clustering Using REpresentatives)

- CURE: non-spherical clusters, robust wrt outliers
 - Uses multiple representative points to evaluate the distance between clusters
 - Stops the creation of a cluster hierarchy if a level consists of k clusters

Cure: The Algorithm

- Draw random sample s
- Partition sample to p partitions with size s/p
- Partially cluster partitions into s/pq clusters
- Cluster partial clusters, shrinking representatives towards centroid
- Label data on disk

Data Partitioning and Clustering

- $s = 50$
- $p = 2$
- $s/p = 25$
- $s/pq = 5$

Drawbacks of Distance-Based Method

- Drawbacks of square-error-based clustering method
 - Consider only one point as representative of a cluster
 - Good only for convex clusters, of similar size and density, and if k can be reasonably estimated
Cure: Shrinking Representative Points

- Shrink the multiple representative points towards the gravity center by a fraction of α.
- Multiple representatives capture the shape of the cluster.

Model-Based Clustering

- Basic idea: Clustering as probability estimation
- One model for each cluster
- Generative model:
 - Probability of selecting a cluster
 - Probability of generating an object in cluster
- Find max. likelihood or MAP model
- Missing information: Cluster membership
- Use EM algorithm
- Quality of clustering: Likelihood of test objects

Mixtures of Gaussians

- Cluster model: Normal distribution (mean, covariance)
- Assume: diagonal covariance, known variance, same for all clusters
- Max. likelihood: mean = avg. of samples
- But what points are samples of a given cluster?
- Estimate prob. that point belongs to cluster
- Mean = weighted avg. of points, weight = prob.
- But to estimate probs. we need model
- "Chicken and egg" problem: use EM algorithm

EM Algorithm for Mixtures

- Initialization: Choose means at random
- E step:
 - For all points and means, compute Prob(point|mean)
 - Prob(mean|point) = Prob(point)Prob(point|mean) / Prob(point)
- M step:
 - Each mean = Weighted avg. of points
 - Weight = Prob(mean|point)
- Repeat until convergence

EM Algorithm (contd.)

- Guaranteed to converge to local optimum
- K-means is special case

AutoClass

- Developed at NASA (Cheeseman & Stutz, 1988)
- Mixture of Naïve Bayes models
- Variety of possible models for Prob(attribute|class)
- Missing information: Class of each example
- Apply EM algorithm as before
- Special case of learning Bayes net with missing values
- Widely used in practice
COBWEB

- Grows tree of clusters (Fisher, 1987)
- Each node contains: P(cluster), P(attribute|cluster) for each attribute
- Objects presented sequentially
- Options: Add to node, new node; merge, split
- Quality measure: Category utility:
 Increase in predictability of attributes/#Clusters

A COBWEB Tree

Neural Network Approaches

- Neuron = Cluster = Centroid in instance space
- Layer = Level of hierarchy
- Several competing sets of clusters in each layer
- Objects sequentially presented to network
- Within each set, neurons compete to win object
- Winning neuron is moved towards object
- Can be viewed as mapping from low-level features to high-level ones

Competitive Learning

Self-Organizing Feature Maps

- Clustering is also performed by having several units competing for the current object
- The unit whose weight vector is closest to the current object wins
- The winner and its neighbors learn by having their weights adjusted
- SOMs are believed to resemble processing that can occur in the brain
- Useful for visualizing high-dimensional data in 2- or 3-D space

Density-Based Clustering

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Representative algorithms:
 - DBSCAN (Ester et al., 1996)
 - DENCLUE (Hinneburg & Keim, 1998)
Definitions (I)

Two parameters:
- **Eps**: Maximum radius of neighborhood
- **MinPts**: Minimum number of points in an Eps-neighborhood of a point

\[N_{Eps}(p) = \{ q \in D \mid dist(p,q) <= Eps \} \]

Directly density-reachable: A point \(p \) is directly density-reachable from a point \(q \) wrt. **Eps**, **MinPts** if:
1) \(p \) belongs to \(N_{Eps}(q) \)
2) \(q \) is a core point:
 \[|N_{Eps}(q)| >= MinPts \]

Eps = 1 cm
MinPts = 5

Definitions (II)

- Density-reachable:
 - A point \(p \) is density-reachable from a point \(q \) wrt. **Eps**, **MinPts** if there is a chain of points \(p_0, \ldots, p_n \) such that \(p_0 = q \), \(p_n = p \) and \(p_i \) is directly density-reachable from \(p_{i-1} \).

- Density-connected
 - A point \(p \) is density-connected to a point \(q \) wrt. **Eps**, **MinPts** if there is a point \(o \) such that both, \(p \) and \(q \) are density-reachable from \(o \) wrt. **Eps** and **MinPts**.

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points.
- Discovers clusters of arbitrary shape in spatial databases with noise.
- Arbitrarily select a point \(p \).
- Retrieve all points density-reachable from \(p \) wrt. **Eps** and **MinPts**.
- If \(p \) is a core point, a cluster is formed.
- If \(p \) is a border point, no points are density-reachable from \(p \) and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN: The Algorithm

DENCLUE: Using Density Functions

- DENsity-based CLUstEring (Hinneburg & Keim, 1998).
- Major features
 - Good for data sets with large amounts of noise.
 - Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets.
 - Significantly faster than other algorithms (faster than DBSCAN by a factor of up to 45).
 - But needs a large number of parameters.

DENCLUE

- Uses grid cells but only keeps information about grid cells that do actually contain data points and manages these cells in a tree-based access structure.
- Influence function: describes the impact of a data point within its neighborhood.
- Overall density of the data space can be calculated as the sum of the influence function of all data points.
- Clusters can be determined mathematically by identifying density attractors.
- Density attractors are local maxima of the overall density function.
Influence Functions

- Example

\[f_{\text{Gaussian}}(x, y) = e^{-\frac{(x-x_d)^2}{2\sigma^2}} \]

\[f^D_{\text{Gaussian}}(x) = \sum_{i=1}^{N} e^{-\frac{(x-x_i)^2}{2\sigma^2}} \]

\[\nabla f^D_{\text{Gaussian}}(x, x_i) = \sum_{i=1}^{N} (x_i - x) \cdot e^{-\frac{(x-x_i)^2}{2\sigma^2}} \]

Density Attractors

Center-Defined & Arbitrary Clusters

Clustering: Summary

- Introduction
- Partitioning methods
- Hierarchical methods
- Model-based methods
- Density-based methods