
CSEP 545 Transaction Processing for E-Commerce 2/22/2012

Assignment 6 1

Assignment 6 – Solution

Problem 1. 2005/a6/p3

Suppose a transaction sets an intention-write lock on a file and later sets a write lock on a

record of the file. Is it safe for the transaction to release the intention-write lock before it

commits? Why?

No it’s not safe. Suppose record x is contained in file F. Consider the following

execution:

iwl1[F] wl1[x] w1[x] iwu1[F] rl2[F] r2[x] w1[x] wu1[x] c1 ru2[F] c2

Transaction T1 writes x twice, once before r2[x] and once afterwards, so the result

isn’t serializable.

Problem 2. 2003/a6/p4

The multi-granularity locking protocol requires that if a transaction has a w or iw lock on

a data item x, then it must have an iw lock on x’s parent.

a. Is it correct for a transaction to hold an r lock on x’s parent instead? Either

explain why it’s correct or give an example where it fails.

No, it is incorrect. This would allow transaction T1 to read lock file F (giving it

permission to read every record in F), and T2 to read lock F and write lock a

record in F, such as x. Thus T1 would implicitly have a read lock on x that

conflicts with T2’s write lock on x.

b. Redo question (a), replacing “r lock” by “w lock”.

Yes, it is correct. Assuming the given protocol is correct using iw locks, then w

locks must work too, since a w lock is strictly stronger than an iw lock. By

“stronger,” we mean that any lock type that conflicts with an iw lock also

conflicts with a w lock. You might think it’s incorrect because it needlessly

prevents certain operations from running. This is a performance problem, but not

incorrect, in the sense of breaking a conflict or an ACID property.

c. Assuming the lock graph is a tree, suggest a case where it would be useful to set

such a w lock as in (b) (whether or not it’s correct).

In cases where the data manager would escalate fine-grained w locks to coarse-

grained locks, then using the coarse-grained w as parent will perform slightly

better by avoiding the escalation cost and the cost of needlessly setting the fine-

grained locks before escalating.

Problem 3. 2005/a6/p4

Consider the following database table, which supports a multiversion concurrency

control.

CSEP 545 Transaction Processing for E-Commerce 2/22/2012

Assignment 6 2

TID Previous

TID

Account# Balance

1 Null 10 100

3 1 10 200

1 Null 11 300

4 1 11 400

5 4 11 350

6 Null 12 500

Suppose the commit list contains {1,2,3,4,6} and there are no active transactions.

a. What is the state of the table after running the following transaction?:

TID=8: Increment the balance of account 10 by 100;

 Delete account 12;

 Insert account 13 with balance 700.

The database state after transaction 8 commits:

TID Previous

TID

Account# Balance

1 Null 10 100

3 1 10 200

8 3 10 300

1 Null 11 300

4 1 11 400

5 4 11 350

6 Null 12 500

8 6 12 deleted

8 Null 13 700

b. Suppose a read-only query with TID=7 reads all the accounts. It starts executing

before executing transaction 8 starts executing and finishes after transaction 8

commits (same transaction 8 as part (a)). Which versions of which rows does it

read?

When it started executing, transaction 7 read the following commit list:

{1,2,3,4,6}.

It read the following:

version TID 3 of Account 10,

version TID 4 of Account 11 (because 5 didn’t commit), and

version TID 6 of account 12.

It does not see any of transaction 8’s updates because transaction 8 was not on the

commit list when it started.

CSEP 545 Transaction Processing for E-Commerce 2/22/2012

Assignment 6 3

c. After transactions 7 and 8 have finished and no other transactions are active,

suppose we garbage collect all of the versions that aren’t needed. Assuming

transaction ids increase monotonically with respect time, what does the table

look like after the garbage collection step?

The garbage collector keeps the last committed update of each account:

TID Previous Account# Balance

8 Null 10 300

4 Null 11 400

8 Null 13 700

Problem 4. 2003/a6/p3

Suppose file F contains a sequence of fixed-length records, and F’s descriptor includes a

count of the number of records in F, which is used to find the end of F. Consider the

following two transactions:

 T1:

 Scan F, returning all the records in F

 Read(x)

 T2:

 Insert a record into F

 Write(x)

Data item x is not in F. Both transactions are two-phase locked (locking records in F and

x), but neither transaction locks count.

a. Given an example of a non-serializable execution of T1 and T2. Explain why it’s

non- serializable.

In the following execution, the first two operations imply and T1 precedes T2, but

since they don’t lock count, the first operation doesn’t cause the second one to be

delayed. The third and fifth operations on x conflict, which imply that T2 precedes

T1. So the execution isn’t SR.

1. T1: Scan F, returning all the records in F

2. T2: Insert a record into F

3. T2: Write(x)

4. Commit2

5. T1: Read(x)

b. Explain why this is an example of the phantom problem.

T2’s insertion into F is a phantom record. T1’s scan doesn’t see the record, but

T1’s Read(x) indirectly sees the result in data item x (assuming the value of x is a

function of the records in F).

