1/10/2005 Locking

Chapter 6
Locking

6.1 Introduction

An important property of transactions is that they are isolated. Technically, this means that the execution of

transactions has the same effect as running the transactions serially, one after the next, in sequence, with no
overlap in executing any two of them. Such executions are called serializable, meaning “ has the same effect
as aserial execution.”

The most popular mechanism used to attain serializability is locking. The concept is simple:
e Each transaction reserves access to the data it uses. The reservation is called alock.
e Thereareread locks and write locks'.

e Beforereading a piece of data, a transaction sets aread lock. Before writing the data, it sets awrite
lock.

e Read locks conflict with write locks, and write locks conflict with write locks.

e A transaction can obtain alock only if no other transaction has a conflicting lock on the same data item.
Thus, it can obtain aread lock on x only if no transaction has awrite lock on x. It can obtain awrite lock
on x only if no transaction has aread lock or write lock on x.

Although the concept of locking is simple, its effects on performance and correctness can be complex,
counter-intuitive, and hard to predict. Building robust TP applications requires a solid understanding of
locking.

Locking affects performance. When a transaction sets alock, it delays other transactions that need to set a
conflicting lock. Everything else being equal, the more transactions that are running concurrently, the more
likely that such delays will happen. The frequency and length of such delays can also be affected by
transaction design, database layout, and transaction and database distribution. To understand how to
minimize this performance impact, one must understand locking mechanisms and how they are used, and
how these mechanisms and usage scenarios affect performance.

Locking also affects correctness. Although locking usually strikes people as intuitively correct, not al uses
of locking lead to correct results. For example, reserving access to data before actually doing the access
would seem to eliminate the possibility that transactions could interfere with each other. However, if
serializability is the goal, then simply locking data before accessing it is not quite enough. The timing of
unlock operations aso matters.

Correctness and the Two-Phase Rule

To see how unlock operations affect correctness, consider two transactions, T, and T,, which access two
shared dataitems, x and y. T, reads x and later writesy, and T, reads y and later writes x.2 For example, x
and y could be records that describe financial and personnel aspects of a department. T, reads budget

! Many systems call them “shared” and “exclusive” locks, instead of “read” and “write” locks. However, as
areminder that there is perfect symmetry between operations and lock types, we use the operation names
“read” and “write” instead.

2 The example is a hit contrived, in that each transaction updates a dataitem it didn’t previously read. The
example is designed to illustrate a variety of concurrency control concepts throughout the chapter.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-1

1/10/2005 Locking

information in x and updates the number of open requisitionsiny. T, reads the current head count and
updates the committed salary budget.

To describe executions of these transactions succinctly, we' Il use ri[x] to denote T;'sread of x, wy[y] to
denote T;'swrite of y, and similarly for T,. We'll denote lock operationsin a similar way — rl4[X] to denote
T, ssetting aread lock on x, and ru[x] to denote T,'s unlocking x. Given this notation, consider the
following execution E of T, and T,

B = 11aDd 1D ruylX rloly] roly] wloD wolx] rugly] wupDX] wihs[y] waly] wus[y]

T, reads x T, readsy and writes x T, writesy

In execution E, each
transaction locks each dataitem before accessing it. ('Y ou should check this for each operation.) Yet the
execution isn’t serializable. We can show this by stripping off the lock and unlock operations, producing the
following execution (see Figure 6.1):

E' =4[] ra[y] walX] wi[y]

Figure 6.1 A Non-Serializable Execution, E’, That Uses L ocking The numbers 1 - 4 indicate the order in
which operations execute.

Since execution E has the same read and write operations as execution E' and the operations are in the same
order, E and E’ have the same effect on the database (the only difference between them isthe lock
operations). To show that E’ isn't serializable, let’s compare it to the two possible seria executions of T; and
T, (T.T,and T,T;), and show that neither of them could produce the same result asE':
e Intheseria execution Ty T, = rq[X] wi[y] ro[y] wo[X], T, reads the value of y written by T,

which isn’t what actually happened in E'.
e Intheserial execution T,Ty = rp[y] Wo[X] ra[X] wi[y], T, reads the value of x written by T,

which isn’'t what actually happened in E'.
Since T,T, and T,T; are the only possible serial executions of T; and T,, and E’ doesn’t have the same effect
as either of them, E’ isn’t seriaizable. Since E has the same effect asE/, E isn't serializable either.

Each transaction in E got alock before accessing the corresponding data item. So what went wrong? The
problem isthe timing of T;'s unlock operation on x. It executed too soon. By releasing itslock on x before
getting itslock on'y, T, created a window of opportunity for T, to ruin the execution. T, wrote x after T,
read it (making it appear that T, followed T;) and it read y before T, wrote it (making it appear that T,
preceded T;). Since T, can't both precede and follow T, in aseria execution, the result was not seriaizable.

The locking rule that guarantees serializable executionsin al casesis called two-phase locking. It saysthat a
transaction must get all of itslocks before releasing any of them. Or equivalently, a transaction cannot
release alock and subsequently get alock (as T, did in E). When atransaction obeysthisrule, it has two
phases (hence the name): a growing phase during which it acquires locks, and a shrinking phase during
which it releases them. The operation that separates the two phases is the transaction’ s first unlock
operation, which is the first operation of the second phase.

Two-Phase Locking Theorem If al transactions in an execution are two-phase locked, then the execution
is seridizable.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-2

1/10/2005 Locking

Despite the simple intuition behind locking, there are no simple proofs of the Two-Phase Locking Theorem.
The original proof by Eswaran et a. appeared in 1976 and was severa pages long. The simplest proof we
know of is by Ullman and is presented in the appendix at the end of this chapter.

Transactions I nteract Only Via Reads and Writes

Whether or not you take the time to understand the proof, it isimportant to understand one assumption on
which the proof is based, namely, transactionsinteract only via read and write operations. This assumption
ensures that the only way that transactions can affect each other’ s execution is through operationsthat are
synchronized by locking.

One way to break this assumption isto allow transactions to exchange messages through the communication
system (i.e., as ordinary messages over a communication line or in main memory, not via transactional
queues). For example, consider the following execution: sends[msg] receive,[msg] wi[X] rs[X] where msgis
amessage sent by Ts to T4. Thisexecution isnot serializable: T, received msg that was sent by Ts, making
it appear that T, executed after Ts; but T; read the value of x written by T4, making it appear that T
executed after T,. Obviously, in a seria execution T, cannot run both before and after T, so the execution is
not equivalent to a serial execution and henceis not serializable. Y et two-phase locking would alow this
execution to occur, which can be seen by adding |ocking operations to the execution: sends[msg]
receives[msg] Wia[X] wWa[X] wua[X] rla[X] ra[X] rus[x]. Since w,[X] isthe last operation of T,, itissafefor T,
to unlock X, thereby allowing Ts to read x. So, we have an execution that is two-phase locked but is not
serializable, which seems to contradict the Two-Phase Locking Theorem.

The problem is not that the Theorem iswrong, but rather that the execution broke an assumption on which
the Theorem is based, namely, that transactions interact only via reads and writes. T; and T, interacted via
message passing, and those message passing operations were not locked. Either T; and T4 should not have
exchanged messages, or those messages should have been exchanged via a write operation (to send msg) and
aread operation (to receive msg), which would have been synchronized by locks.

Another way of stating the assumption isthat “all operations by which transactions can interact must be
protected by locks.” In other words, it isall right for transactions to issue send[msg] and receive[msg],
provided that locks are set for these operations in a two-phase manner. Later in the chapter, we will see
examples of other operations besides read and write that are protected by locks. However, until then, for
simplicity, we will assume that reads and writes are the only operations by which transactions can interact
and therefore are the only ones that need to be locked.

Preserving Transaction Handshakes

A more subtle way for transactions to communicate is via “ brain transport.” For example, suppose a user
reads the output displayed by transaction T; and usesit asinput to T,. The effect hereisthe same asif T;
sent a message to T,. We discussed this example briefly in Chapter 1, Section 1.3, where we were concerned
that T might abort after the user copied its output into T,. We therefore recommended that a user wait until
atransaction (e.g., T3) has committed before using that transaction’ s output as input to another transaction
(e.g., T4). Thisiscalled atransaction handshake. This solved the problem at hand, that a transaction not
read input that later is undone by an abort. However, isit safe, in view of the assumption that transactions
communicate only viareads and writes? After all, even if the user waits for T to commit before using T3's
output asinput to T4, amessage is still effectively flowing from Ts to Ty.

The answer is“yes,” it is safe, because of the following theorem:

Transaction Handshake Theorem® For every two-phase locked execution, there is an equivalent serial
execution that preserves all transaction handshakes. In other words, it's al right for a user to wait for T3 to
finish before starting T, so that she can use T3’ s output asinput to T,. It istrue that sheis breaking the
assumption that transactions only interact via reads and writes. However, this cannot break serializability,

3 The proof isin Bernstein et al. 1979. [Bernstein, P.A., D.W. Shipman, and W.S. Wong, “Formal Aspects
of Serializability in Database Concurrency Control,” |EEE Trans. On Software Engineering SE-5, 3 (May
1979), pp. 203-215.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-3

1/10/2005 Locking

because the direction of information transfer, from Tz to T4, is consistent with the effective serial order in
which the transactions executed.

The Transaction Handshake Theorem seems obvious. To see that it is not, consider the following execution:
ri[X] wo[X] ra[y] wa[y]. This execution is serializable, in the order T3 T, T,. Infact, T3 T, T, istheonly
serial ordering of transactions that is equivalent to the given execution. However, this serial ordering does
not preserve transaction handshakes. In the original execution, transaction T, (consisting of the single
operation w,[X]) finished before T3 (consisting of the single operation rz[y]) started. That is atransaction
handshake. But in the only equivalent serial ordering, Ts precedes T,. Thisisa problemif the user
transferred some of the output of T, into T.

The Transaction Handshake Theorem says that this kind of thing cannot happen when you use two-phase
locking. Therefore, the execution rq[X] Wy[X] ra[y] wy[y] must not be obtainable via two-phase locking. To
check that thisis so, let’stry to add lock operations to the execution. We start by locking x for rq[X]: rl;[x]
ra[X] wo[X] ra[y] wa[y]. Now we need to lock x for wy[X], but we can’t do this unless we first release rl4[X].
Since T, istwo-phase locked, it must get its write lock on y before it releasesit read lock on x. Thus, we
have: rlq[X] ri[X] wiq[y] rug[x] wiz[x] wo[X] wua[y] ra[y] wa[y]. Next, ra[y] must get aread lock onyy, but it
can't because T; still hasitswrite lock ony and it can’t give it up until after wy[y] executes. So thereisno
way r3[y] can run at this point in the execution, which shows that the execution could not have happened if
all transactions were two-phase locked.

Automating L ocking
An important feature of locking isthat it can be hidden from the application programmer. Here's how:

When atransaction issues aread or write operation, the data manager that processes the operation first setsa
read or write lock on the data to be read or written. Thisis done without any special hints from the
transaction program, besides the read or write operation itself.

To ensure the two-phase rule, the data manager holds all locks until the transaction i ssues the Commit or
Abort operation, at which point the data manager knows the transaction is done. Thisis|ater than the rule
requires, but it' s the first time the data manager can be sure the transaction won't issue any more reads or
writes, which would require it to set another lock. That is, if the data manager releases one of the
transaction’ s locks before the transaction terminates, and the transaction subsequently issues aread or write,
the system would have to set alock and thereby break the two-phase rule.

Thus, atransaction program only needs to bracket its transactions. The data manager does the rest.

Although a data manager can hide locking from the application programmer, it often gives some control over
when locks are set and released. This gives a measure of performance tuning, often at the expense of
correctness. We'll discussthisin more detail later in the chapter.

Notice that we used the term data manager here, instead of the more generic term “resource manager” that
we use elsewhere in this book. Since there is such a strong connotation that locking is used by database
systems, we find it more intuitive to use the terms data manager and data item in this chapter, rather than
resource manager and resource. But thisis just a matter of taste. We use the two terms as synonyms, to mean
a database system, file system, queue manager, etc. — any system that manages access to shared resources.

2. Implementation

Although an application programmer never has to deal directly with locks, it helps to know how locking is
implemented, for two reasons. First, locking can have a dramatic effect on the performance of a TP system.
Most systems offer tuning mechanisms to optimize performance. To use these mechanisms, it’s valuable to
understand their effect on the system’ sinternal behavior. Second, some of those optimizations can violate
correctness. Understanding locking implementation helps to understand when such optimizations are
acceptable and what alternatives are possible.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-4

1/10/2005 Locking

An implementation of locking in a data manager has three aspects: implementing alock manager, setting
and releasing locks, and handling deadl ocks, which we discuss in turn below.

Lock Managers
A lock manager is a component that services the operations

e Lock(transaction-id, data-item, lock-mode) - Set alock with mode lock-mode on behalf of transaction
transaction-id on data-item.

e Unlock(transaction-id, data-item) - Release transaction transaction-id' s lock on data-item.
e Unlock(transaction-id) - Release all of transaction transaction-id’s locks.

It implements these operations by storing locksin alock table. Thisisalow-level data structure in main
memory, much like a control table in an operating system (i.e., not like a SQL table). Lock and unlock
operations cause locks to be inserted into and deleted from the lock table, respectively.

Each entry in the lock table describes the locks on adataitem. It contains alist of al the locks held on that
dataitem and al pending lock requests that can’t be granted yet.

To execute a Lock operation, the lock manager sets the lock if no conflicting lock is held by another
transaction. For example, in Figure 6.2, the lock manager would grant a request by T, for aread lock on z,
and would therefore add [trid,, read] to the list of locks being held on z

If the lock manager receives alock request for which a conflicting lock is being held, the lock manager adds
arequest for that lock, which it will grant after conflicting locks are released. In this case, the transaction
that requires the lock is blocked until itslock request is granted. For example, arequest by T, for awrite
lock on zwould cause [trid, , write] to be added to Z slist of lock requests and T, to be blocked.

Data ltem | List of Locks Being Held \ List of Lock Requests
X [tridy, read], [trid,, read] [trids, write]

y [trid,, write] [trid,, read] [tridy, read]

z [trid,, read]

Figure 6.2 A Lock Table Each entry in alist of locks held or requested is of the form [transaction-id, lock-
mode]

Dataitem identifiers are usually required to be a fixed length, say 32 bytes. It is up to the caller of the lock
manager to compress the name of the object to be locked (e.g., atable, page, or row) into adataitem
identifier of the length supported by the lock manager.

Any data item in a database can be locked, but only a small fraction of them are locked at any one time,
because only asmall fraction of them are accessed at any one time by a transaction that’ s actively executing.
Therefore, instead of allocating arow in the lock table for every possible dataitem identifier value, the lock
table isimplemented as a hash table, whose size is somewhat larger than the maximal number of locks that
are held by active transactions.

Lock operations on each data item must be atomic relative to each other. Otherwise, two conflicting lock
requests might incorrectly be granted at the same time. For example, if two requests to set awrite lock on v
execute concurrently, they might both detect that v is unlocked before either of them set the lock. To avoid
this bad behavior, the lock manager executes each lock or unlock operation on a data item completely before
starting the next one on that dataitem. That is, it executes lock and unlock operations on each dataitem
atomically with respect to each other. Note that lock operations on different data items can safely execute
concurrently.

The lock manager could become a bottleneck if lock operations execute for too long. Since lock and unlock
operations are very frequent, they could consume alot of processor time. And since lock operations on a data
item are atomic, lock requests on popular data items might be delayed because another lock operationisin
progress. For these reasons, lock and unlock operations must be very fast, on the order of a hundred machine
language instructions.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-5

1/10/2005 Locking

Setting and Releasing L ocks

It helps to know allittle bit about data manager architecture to understand how locks are set by the data
manager. A typical example is a database system that supports the SQL language. Such a system isusualy
implemented in the following layers (see Figure 6.2):

e Page-oriented files— Thisis the lowest layer of the system, which communicates directly with the disk.
It offers operations to read and write pages in afile. It also implements a buffer pool that caches
recently used pages.

e Access methods— This layer implements record-oriented files by formatting each page as a set of
records, which can be accessed by logical address. It also implementsindexes, to allow records to be
accessed based on field value. Typical operations are GetFirstRecord (based on address or field value)
and GetNextRecord.

e Query Executor — This layer implements the basic relational database operators, such as project, select,
join, update, insert, and delete. It takes as input an expression consisting of one or more of these
operations and, in the case of retrieval expressions, returns a set of records.

Query Optimizer — This layer takes a SQL statement as input, parsesit, and trandatesit into an
optimized expression that is passed to the query executor.

Start,
SQL Ops
Commit, Abort .
— <+—SQL operations
Query Optimizer <«—Relational operations
Database Query Executor <—Record-oriented
System Acc&sg M ethoq operations
(record-oriented files) ;
. - <+—Page-oriented
Page-oriented Files operations

Figure 6.2 SQL Database Architecture A SQL operation issued by atransaction is translated through a
series of layers, each of which has the option to set locks.

The lock manager is obliviousto the size or kind of data being locked. It just takes a dataitem identifier and
lock mode and does its job. It s up to higher levels of the data manager to choose which data itemsto lock,
and to trandlate those data items’ into data item identifiers. For example, in the SQL database architecture,
the page-oriented file layer could set locks on pages, the record-oriented layer could set locks on individual
records, and the query executor or query optimizer layer could set locks on tables or columns of tables. The
choice is atradeoff between the amount of concurrency needed, the overhead of locking operations, and the
software complexity arising from the combination of locks that are used. We will explore this choicein
some detail throughout the chapter. But first, let’ stake a high level view of the main tradeoff: concurrency
vs. locking overhead.

Granularity

The size of dataitems that the data manager locks is called the locking granularity. The data manager could
lock at a coarse granularity such asfiles, at afine granularity, such as records or fields, or at an
intermediate granularity, such as pages. Each approach has its benefits and liabilities.

If it locks at a coarse granularity, the data manager doesn’t have to set many locks, because each lock covers
so much data. Thus, the overhead of setting and releasing locks is low. However, by locking large chunks of
data, the data manager is usually locking more data than a transaction needs. For example, evenif a

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-6

1/10/2005 Locking

transaction T accesses only afew records of afile, a data manager that locks at the granularity of files will
lock the whole file, thereby preventing other transactions from locking any other records of the file, most of
which are not needed by transaction T. This reduces the number of transactions that can run concurrently,
which both reduces the throughput and increases the response time of transactions.

If it locks at afine granularity, the data manager only locks the specific data actually accessed by a
transaction. These locks don't artificially interfere with other transactions, as coarse grain locks do.
However, the data manager must now lock every piece of data accessed by a transaction, which can generate
much locking overhead. For example, if a transaction issues an SQL query that accesses tens of thousands of
records, adata manager that does record granularity locking would set tens of thousands of locks, which can
be quite costly. In addition to the record locks, locks on associated indexes are al so needed, which
compounds the problem.

There isafundamental tradeoff between amount of concurrency and locking overhead, depending on the
granularity of locking. Coarse-grained locking has low overhead but low concurrency. Fine-grained locking
has high concurrency but high overhead.

One popular compromise isto lock at the file and page granularity. This gives a moderate degree of
concurrency with a moderate amount of locking overhead. It works well in systems that don’t need to run at
high transaction rates, and hence are unaffected by the reduced concurrency, or ones where transactions
frequently access many records per page (such as engineering design applications), so that page locks are not
artificially locking more data than transactions actually access. It also simplifies the recovery agorithms for
Commit and Abort, aswe'll seein Chapter 8. However, for high performance TP, record locking is needed,
because there are too many cases where concurrent transactions need to lock different records on the same

page.

Multigranularity Locking

Most data managers need to lock data at different granularities, such as file and page granularity, or
database, file, and record granularity. For transactions that access a large amount of data, the data manager
locks coarse grain units, such as files or tables. For transactions that access a small amount of data, it locks
fine grain units, such as pages or records.

The trick to this approach is in detecting conflicts between transactions that set conflicting locks at different
granularity, such as one transaction that locks afile and another transaction that locks pagesin thefile. This
requires special treatment, because the lock manager has no idea that locks at different granularities might
conflict. For example, it treats alock on afile and alock on a page in that file as two completely
independent locks, and therefore would grant write locks on them by two different transactions. The lock
manager doesn’t recognize that these locks “logically” conflict.

The technique used for coping with different locking granularitiesis called multigranularity locking. In this
approach, transactions set ordinary locks at a fine granularity and intention locks at coarse granularity. For
example, before read-locking a page, a transaction sets an intention-read lock on the file that contains the
page. Each coarse grain intention lock warns other transactions that lock at coarse granularity about potential
conflicts with fine grain locks. For example, an intention-read lock on the file warns other transactions not to
write-lock the file, because some transaction has aread lock on a page in the file. Details of this approach
are described in Section 6.9.

There is some guesswork involved in choosing the right locking granularity for a transaction. For example, a
data manager may start locking individual records accessed by a transaction, but after the transaction has
accessed hundreds of records, the data manager may conclude that a coarser granularity would work better.
Thisiscalled lock escalation, and is commonly supported by database systems.

Some data managers give the transactions the option of overriding the mechanism that automatically
determines lock granularity. For example, in Microsoft SQL Server, atransaction can use the keyword
PAGLOCK toinsist that the system use a page lock when it would otherwise use atable lock. Similarly, it
can use TABLOCK or TABLOCKX toinsist that the system use aread or write lock, respectively, until the

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-7

1/10/2005 Locking

end of the command or transaction, depending where the keyword is used. Similarly, in IBM DB2 UDB, you
can use the LOCK TABLE statement to set aread or write lock on the entire table. Such overrides are useful
when tuning an application whose performance is lacking due to inappropriate automatic selection of lock
granularity by the system.

6.3 Deadlocks

When two or more transactions are competing for the same lock in conflicting modes, some of them will
become blocked and have to wait for others to free their locks. Sometimes, a set of transactions are all
waiting for each other; each of them is blocked and in turn is blocking other transactions. In this case, if
none of the transactions can proceed unless the system intervenes, we say the transactions are deadl ocked.

For example, reconsider transactions T, and T, that we discussed earlier in execution E' = r{[X] r,[y] wo[X]
wi[y] (see Figure 6.4). Suppose T, getsaread lock on x (Fig. 6.3a) and then T, getsaread lock ony (Fig.
6.4b). Now, when T; requests awrite lock ony, it's blocked, waiting for T, to releaseitsread lock (Fig.
6.4c). When T, requests awrite lock on x, it too is blocked, waiting for T; to releaseitsread lock (Fig. 6.4d).
Since each transaction is waiting for the other one, neither transaction can make progress, so the transactions
are deadlocked.

(] 1,[x] ryly] 1, [X] ry[y] wi,[x]-{blocked} 1,[X] r,[y] wl,[x]-{blocked} wl, [y]-{blocked}
Data | Locks Locks Data | Locks Locks Data | Locks Locks Data | Locks Locks
Item | Held | Requested Item | Held | Requested Item | Held | Requested Item | Held | Requested
X T,read X T,.read X Tread| T,write X | Tyread| T,write
y y T,read y T,read y | T,read| T, write
@ (b) (©) (@)

Figure 6.3 Execution Leading to a Deadlock Each step of the execution isillustrated by the operations
executed so far, with the corresponding state of the lock table below it.

Deadlock is how two-phase locking detects nonserializable executions. At the time deadlock occurs, thereis
no possible execution order of the remaining operations that will lead to a serializable execution. In the
previous example, after T, and T, have obtained their read locks, we have the partial execution ry[X] r,[y].
There are only two ways to complete the execution, ri[X] ra[y] wily] wo[X] or rq[X] ro[y] wa[x] wi[y], both of
which are nonserializable.

Once a deadlock occurs, the only way for the deadl ocked transactions to make progressis for at least one of
them to give up its lock that is blocking another transaction. Once a transaction rel eases a lock, the two-
phase locking rule says that it can’t obtain any more locks. But since each transaction in a deadlock must
obtain at least one lock (otherwise it wouldn’t be blocked), by giving up alock it is bound to break the two-
phase locking rule. So there's no point in having a transaction just release one lock. The data manager might
as well abort the transaction entirely. That is, the only way to break a deadlock is to abort one of the
transactions involved.

Deadlock Prevention

In some areas of software, such as operating systems, it is appropriate to prevent deadlocks by never
granting alock request that can lead to a deadlock. For transaction processing, thisis too restrictive, because
it would overly limit concurrency. The reason is that transaction behavior is unpredictable. For example, in
the execution in Figure 6.4b, once the system grants T’ s request for aread lock on x and T,'srequest for a
read lock on'y, deadlock is unavoidable; it doesn’t matter in which order T, and T, request their second lock.
The only way to avoid deadlock isto delay granting T,’ s request to read lock y. Thisisvery restrictive. This
amounts to requiring that T; and T, run serially; T; must get al of itslocks before T, gets any of itslocks. In
this case, aserial execution of T, and T, is the only serializable execution. But usualy, transactions can be
interleaved afair bit and still produce a serializable execution.

The only way to prevent deadlocks and still allow some concurrency isto explait prior knowledge of
transaction access patterns. All operating system techniques to prevent deadlock have this property. In

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-8

1/10/2005 Locking

general-purpose TP, it is inappropriate to exploit prior knowledge. It either overly restricts the way
transactions are programmed (e.g., by requiring that data be accessed in a predefined order) or overly
restricts concurrency (e.g., by requiring atransaction to get all of itslocks before it runs). For thisreason, al
commercia TP products that use locking allow deadlocks to occur. That is, they allow transactionsto get
locks incrementally by granting each lock request as long as it doesn’t conflict with an existing lock, and
they detect deadlocks when they occur.

Deadlock Detection

There are two techniques that are commonly used to detect deadlocks: timeout-based detection and graph-
based detection. Timeout-based detection guesses that a deadlock has occurred whenever a transaction has
been blocked for too long. It uses atimeout period that is much larger than most transactions’ execution time
(e.g., 15 seconds) and aborts any transaction that is blocked longer than this amount of time. The main
advantages of this approach are that it is smple, and hence easy to implement, and it works in a distributed
environment with no added complexity or overhead. However, it does have two disadvantages. First, it may
abort transactions that aren’t really deadlocked. This mistake adds delay to the transaction that is
unnecessarily aborted, since it now has to restart from scratch. This sounds undesirable, but aswe'll see later
when we discuss locking performance, this may not be a disadvantage. Second, it may allow a deadlock to
persist for too long. For example, a deadlock that occurs after one second of transaction execution will be
undetected until the timeout period expires.

The alternative approach, called graph-based detection, explicitly tracks waiting situations and periodically
checks them for deadlock. Thisis done by building a waits-for graph, whose nodes model transactions and
whose edges model waiting situations. That is, if transaction T; is unable to get alock because a conflicting
lock is held by transaction T,, then thereis an edge T; — T,, meaning T, iswaiting for T,. In general, the
data manager creates an edge T; — T; whenever transaction T; is blocked for alock owned by transaction Tj,
and it deletes the edge when T; becomes unblocked. There is a deadlock whenever the deadlock graph has a
cycle, that is, a sequence of edges that loops back onitself, suchas T, — T, — T, (asin Figure 6.5), or T,
—)T7—)T4—)T2—)T1.

T, waits-for T,’slock ony
r,[x] r,[y] wl,[x]-{blocked} wl, [y]-{blocked}

T,waits-for T,"slock on x

Figure 6.5 A Waits-For Graph The graph on the left represents the waiting situations in the execution on
theright (see also Figure 6.4). Since thereisacycleinvolving T, and T,, they are deadlocked.

Any newly added edge in the waits-for graph could cause acycle. So it would seem that the data manager
should check for cycles (deadlocks) whenever it adds an edge. While thisis certainly correct, it isalso
possible to check for deadlocks less frequently, such as every few seconds. A deadlock won't disappear
spontaneously, so thereis no harm in checking only periodically; the deadlock will till be there whenever
the deadlock detector gets around to look for it. By only checking periodically, the system reduces deadlock
detection cost. Like timeout-based detection, it allows some deadl ocks to go undetected longer than
necessary. But unlike timeout, all detected deadlocks are real deadlocks.

Victim Selection

After adeadlock has been detected using graph-based detection, one of the transactions in the cycle must be
aborted. Thisis called the victim. Like all transactions in the deadlock cycle, the victim is blocked. It finds
out it is the victim by receiving an error return code from the operation that was blocked, which says “you
have been aborted.” It's now up to the application that issued the operation to decide what to do next.
Usually, it just restarts, possibly after a short artificial delay to give the other transactions in the cycle time to
finish, so they don’t all deadlock again.

There are many victim selection criteria that can be used. Y ou could choose the one in the deadlock cycle
that:

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-9

1/10/2005 Locking

1. closed the deadlock cycle — Thisis may be the easiest to identify, and is fair in the sense that thisis
the transaction that actually caused the deadl ock.

2. hasthe fewest number of locks — Thisis a measure of how much work the transaction did. Choose
the transaction that did the least amount of work.

3. generated the least amount of log records — Since a transaction generates a log record for each
update it performs (to be discussed at length in Chapter 7), this transaction is probably the cheapest
to abort.

4. hasthe fewest number of write locks — Thisis another way of selecting the transaction that is
probably cheapest to abort.

Or the application itself can choose the victim.. For example, Oracle 8i backs out the statement that caused
the deadlock to be detected and returns an error, thereby leaving it up to the application to choose whether to
abort this transaction or another one.*

Some systems allow the transaction to influence victim selection. For example, in Microsoft SQL Server, a
transaction can say “SET DEADLOCK_PRIORITY LOW” or “SET DEADLOCK_PRIORITY

NORMAL.” If one or more transactions in a deadlock cycle have priority LOW, one of them will be selected
as victim. Among those whose priority makes them eligible to be the victim, the system selects the one that
is cheapest to abort.

One consideration in victim selection is to avoid cyclic restart, where transactions are continually restarted
due to deadlocks, and thereby prevented from completing. One way this could happen isif the oldest
transaction is always selected as victim. For example, suppose T, starts running, then T, starts, then T, and
T, deadlock. Since T, isolder, it'sthe victim. It aborts and restarts. Shortly thereafter, T, and T, deadlock
again, but thistime T, is older (since T restarted after T,), so T, isthe victim. T, aborts and restarts, and
subsequently deadl ocks again with T;. And so on.

One way to avoid cyclic restart isto select the youngest transaction as victim. This ensures that the ol dest
transaction in the system is never restarted due to deadlock. A transaction might till be repeatedly restarted
due to bad luck — if it's lways the youngest transaction in the cycle— but thisis very unlikely.

The problem can be avoided entirely if the transaction is given the same start time each time it isrestarted,
so that it is guaranteed to eventually be the oldest in the system. But this requires that the data manager
accept the start-time as an input parameter to the Start operation, which few data managers support.

In the end, the application or TP monitor usually provide the ultimate solution by tracking the number of
times atransaction is restarted. An application error should be reported if atransaction is restarted too many
times, whether for deadlock or other reasons, at which point it is an application debugging or tuning problem
to determine why the transaction is deadlocking so often.

Distributed Deadlock Detection

To understand distributed deadlock detection, we must first examine distributed locking. In a distributed
system, there are multiple data managers on different nodes of the network. A transaction may access data at
more than one data manager. Data managers set locks in the usual way, asif the transaction were not
distributed. That is, when a transaction accesses a data item at a data manager, the data manager setsthe
appropriate lock before performing the access.

Asin the non-distributed case, sometimes alock request becomes blocked. These blocking situations can
exist at multiple data managers, which can lead to a deadlock that spans data managers yet is not detectable
by any one data manager by itself. For example, let’s reconsider our favorite transactions T, and T,, and
suppose x and y are stored at different data managers, DM, and DM, (see Figure 6.6). T, reads x at DMy,
setting aread lock, and T, readsy at DM,, setting aread lock. Now, as before, T, triesto write'y at DM, but
is blocked waiting for T,, and T, tries to write x at DM, but isblocked waiting for T;. Thisisthe same

4InOracle 8i Concepts, Release 8.1.5, A67781-01, Chapter 27, “ Data Concurrency and Consistency” .

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-10

1/10/2005 Locking

deadlock we observed in Figures 6.4 and 6.5; T, iswaiting for T, at DMy and T, iswaiting for T, at DM,.
However, neither DM, nor DM, alone can see the deadlock. They each just see one waiting situation.

DM, DM

rli[x] rl;[yl
wi,[x] {blocked} wi,[y] { blocked}

y

Figure 6.4 A Distributed Deadlock DM, and DM, are independent data managers, perhaps at different
nodes of the network. At DMy, T, iswaiting for T,, which iswaiting for T, at DM,. The transactions are
deadlocked, but neither DM, nor DM, alone can recognize this fact.

There are a variety of algorithms to detect distributed deadlocks. Dozens of a gorithms have been published
by database researchers over the years, but only afew are used in practice. One simple techniqueisto
designate one node N as the distributed deadlock detector and have every other node periodically send its
waits-for graph to node N. N has a complete view of waits-for situations across all nodes and can therefore
detect distributed deadlocks. This can work well for a set of data managers from a single vendor that have
high speed connections, such as in a cluster. However, in a more heterogeneous system, this requires more
cooperation between data managers than one can reasonably expect. And if communication speeds are slow,
frequent exchange of deadlock graphs may be impractical.

The most popular approach for detecting distributed deadlocks is even simpler, namely, timeout-based
detection. The implementation istrivial, it worksin heterogeneous systems, and it is unaffected by slow
communications (except to select an appropriate timeout period). Moreover, it performs surprisingly well.
We will see why in the next section.

6.4 Performance

Locking performance is aimost exclusively affected by delays due to blocking, not due to deadlocks.
Deadlocks arerare. Typicaly, fewer than 1% of transactions are involved in a deadl ock.

L ock Conversions

However, before embarking on an analysis of blocking delays and how to avoid them, we must first
investigate one situation that can lead to many deadl ocks: lock conversions. A lock conversion is arequest
to upgrade aread lock to awrite lock. This occurs when a transaction reads a data item, say X, and later
decides to writeit, arather common situation. If two transactions do this concurrently, they will deadlock;
each holds aread lock on x and requests a conversion to awrite lock, which can't be granted. Notice that it
is not safe for atransaction to release its read lock before upgrading it to awrite lock, since that would break
two-phase locking.

This problem can be prevented if each transaction gets awrite lock to begin with, and then downgrades it to
aread lock if the transaction decides not to write the item. This can be done, provided that the transaction is
programmed in arelatively high level language, such as SQL. To see how, consider a SQL Update
statement, which updates the subset of rows in atable that satisfy the statement’s WHERE clause. A naive
implementation would scan al of the rows of the table. For each row, it setsaread lock, check whether the
row satisfies the WHERE clause, and if so, converts the read lock to awrite lock and update the row. To
avoid the possible lock conversion deadlock in the last step, it could instead work as follows: For each row,
it setsawrite lock, checks whether the row satisfies the WHERE clause; if so, it updates the row and if not,
it converts the write lock to aread lock.

Downgrading the write lock to aread lock looks like it might be breaking two-phase locking, since reducing
the strength of the lock is much like releasing the lock. Ordinarily, two-phase locking would disallow this,
but here, since the transaction only read the row, it's safe; It first sets awrite lock, in case it needs that lock
later to avoid a deadlock. Onceiit realizesit will not write the row, it knows that it only needed a read lock,
so it downgrades to aread lock.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-11

1/10/2005 Locking

The approach can be approximated even if the transaction is programmed is alower level language, where
updates are performed by first reading a dataitem and then later issuing an write operation. However, in this
case, the transaction needs to give an explicit hint in the read operation that awrite lock is required.
Downgrading the lock to aread lock would require ancther hint; or it may not be done, at the expense of
reduced concurrency.

Although getting write locks early can reduce concurrency, the overall performance effect is beneficial since
it prevents alikely deadlock. Therefore, most commercial SQL data managers use this approach.

One can improve concurrency somewhat by adding an additional lock mode, called update. An update lock
conflicts with update locks and write locks, but not with read locks. In this approach, when atransaction
accesses a dataitem that it may later update, it sets an update lock instead of awrite lock. If it decidesto
update the dataitem, it upgrades the update lock to awrite lock. Thislock upgrade can’t lead to alock
conversion deadlock, because at most one transaction can have an update lock on the data item. (Two
transaction must try to upgrade the lock at the same time to create alock conversion deadlock.) On the other
hand, the benefit of this approach is that an update lock does not block other transactions that read without
expecting to update later on. The weakness is that the request to upgrade the update lock to awrite lock may
be delayed by other read locks. If large numbers of dataitems are read and only afew of them are updated,
the tradeoff is worthwhile. This approach is used Microsoft SQL Server. SQL Server aso allows update
locks to be obtained in a SELECT (i.e. read) statement, but in this case, it will not downgrade the update
locks to read locks, since it doesn’t know when it is safe to do so.

Lock Thrashing

By avoiding lock conversion deadlocks, we have dispensed with deadlock as a performance consideration, so
we are |eft with blocking situations. Blocking affects performance in a rather dramatic way. Until lock usage
reaches a saturation point, it introduces only modest delays— significant, but not a serious problem. At
some point, when too many transactions reguest locks, alarge number of transactions suddenly become
blocked, and few transactions can make progress. Thus, transaction throughput stops growing. Surprisingly,
if enough transactions are initiated, throughput actually decreases. Thisis called lock thrashing (see Figure
6.7). The main issue in locking performance is to maximize throughput without reaching the point where
thrashing occurs.

Throughput
High

Thrashing
i Region
Low i Number of Active
Low High Transactions

Figure 6.7 Lock Thrashing When the number of active transactions gets too high, many transactions
suddenly become blocked, and few transactions can make progress.

One way to understand lock thrashing is to consider the effect of slowly increasing the transaction load,
which is measured by the number of active transactions. When the system isidle, the first transaction to run
cannot block due to locks, because it’s the only one requesting locks. As the number of active transactions
grows, each transaction has a higher probability of becoming blocked due to transactions already running.
When the number of active transactions is high enough, the next transaction to be started has virtually no
chance of running to completion without blocking for some lock. Worse, it probably will get some locks
before encountering one that blocks it, and these locks contribute to the likelihood that other active
transactions will become blocked. So, not only doesit not contribute to increased throughput, but by getting

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-12

1/10/2005 Locking

some locks that block other transactions, it actually reduces throughput. This leads to thrashing, where
increasing the workload decreases the throughput.

There are many techniques open to designers of data managers, databases, and applications to minimize
blocking. However, even when all the best techniques are applied, if the transaction load is pushed high
enough, lock thrashing can occur, provided other system bottlenecks (such as disk or communications
bandwidth) don’t appear first.

Tuning to Reduce L ock Contention

Suppose a transaction holds awrite-lock L for t seconds. Then the maximum transaction rate for transactions
that set L is 1/t (i.e., one transaction per t seconds). To increase the transaction rate, we need to maket
smaller. Thus, most techniques for minimizing blocking attempt to reduce the time a transaction holds its
locks.

One approach isto set lock L later in the transaction’s execution, by accessing L’ s data later. Since a
transaction releases its locks when it completes, the later in its execution that it sets alock, the lesstime it
holds the lock. This may require rearranging application logic, such as storing an update in alocal variable
and only applying it to the database just before committing the transaction.

A second approach is to reduce the transaction’ s execution time. If atransaction executes faster, it

completes sooner, and therefore holds its locks for a shorter period. There are several ways to reduce

transaction execution time:

e Reduce the number of instructions it executes, called its path length

o Buffer data effectively, so atransaction rarely hasto read from disk. If data must be read from disk, do
the disk 1/0 before setting the lock, to reduce the lock holding time

e Optimize the use of other resources, such as communications, to reduce transaction execution time.

A third approach isto split the transaction into two or more shorter transactions. This reduces lock holding
time, but it also loses the all-or-nothing property of the transaction, so one has to use one of the multi-
transaction request techniques discussed in Section 4.6. This can complicate the application design, the price
to be paid for reduced lock contention. For example, instead of one all-or-nothing transaction, there are now
two transactions, there needs to be recovery code for the case where one succeeds and the other doesn't,
something that wasn’t required when there was just one transaction.

Recall that lock granularity affects locking performance. One can reduce conflicts by moving to finer
granularity locks. Usually, one relies on the data manager to do this, but there are cases where a database or
application designer can affect granularity. For example, suppose a data manager uses record granularity
locking. Consider afile that has some frequently accessed fields, called hot fields, and other infrequently
accessed ones, called cold fields. In this case, it may be worth splitting the file “vertically” into two files,
where each record is split in half, with its hot fields in one file and its cold fields in the other. For example,
the file may contain information about customer accounts, and we split it with customer number, name and
balance (the hot fields) in one file, and customer number, address, and phone number (the cold fields) in the
other (see Figure 6.8). Note that customer number, the key, must appear in both files to link the two halves
of each record.® Before splitting the file, transactions that used the cold fields but not the hot ones were
delayed by locks held by transactions accessing the hot fields. After splitting the file, such conflicts do not
arise.

® Inarelational database system, you could make the original table available as a view of the partitioned
tables. This avoids rewriting existing programs and offers more convenient access to a transaction that
requires both hot and cold fields.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-13

1/10/2005 Locking

Customer Phone Customer Customer Phone
Address

Number | Name| Address | Balance| \(" Number | N@me |Balance Number Number

a. original table b. partitioning into two tables, with hot fields on the left and cold

fields on the right.

Figure 6.8 Splitting Hot and Cold Fieldsto Avoid Contention. By moving the cold fields, Address and
Phone Number, into a separate table, accesses to those fields aren’t delayed by locks on the hot fields, Name
and Balance, which are now in a separate table.

When arunning system is on the verge of thrashing due to too much blocking, the main way to control the
problem isto reduce the transaction load. Thisisrelatively straightforward to do: reduce the maximum
number of threads allowed by each data manager. One good measure for determining that the system is close
to thrashing is the fraction of active transactions that are blocked. From various studies, a value of about
30% is the point at which thrashing starts to occur. Thisfraction is available in most systems, which expose
the number of active and blocked transactions.

Recall that detecting deadl ocks by timeout can make mistakes by aborting transactions that are not really
deadlocked. However, if atransaction is blocked for along time, this suggests that the transaction load istoo
high, so aborting blocked transactions may be good to do. Of course, to get the full benefit of thisload
reduction, the aborted transaction should not be immediately restarted, which would keep the transaction
load at too high alevel. But even if it isrestarted immediately, aborting it may have a positive effect by
unblocking some transactions that are waiting for the aborted transaction’s locks.

Some impractical locking policies are useful to understand, because they provide insight on how locking
performance is affected by certain factors. One such policy is conservative locking, which requires that after
atransaction completes the Start operation, it waits until it can set al of the locks it needs. Moreover, it must
set the locks all of the locks at once. Since blocked transactions hold no locks, this increases the transaction
load that can be handled before lock thrashing occurs. (Recall the paragraph after Figure 6.8 that explain
why trashing occurs.) The approach isimpractica for two reasons: First, a transaction must know exactly
which locks it needs before it starts. Since it ordinarily does not know this, it would be compelled to set all

of the locks that it might need, typically a much larger set than the exact set it does need, which thereby
increases lock contention. Second, a transaction may have to try to acquire all of its locks many times before
it getsal of them, so each attempt to get al of its locks must be practically free, which it is not.

Another interesting impractical locking approach is the pure restart policy. In this approach, transactions
never wait. Rather, if atransaction requests alock that conflicts with one that is already set, it aborts and
waits until the conflicting lock is released before it restarts. If aborts are cheap and there is no contention for
other resources (besides locks), a pure restart policy can sustain a higher transaction load before reaching its
thrashing point compared to a standard blocking policy (where transactions wait for conflicting locks to be
released). Of course, aborts do have cost and often other resources are in limited supply, which is why the
blocking policy iswhat is normally used in practice. However, aswe'll seein Section 6.8, thereis apractical
case where apure restart policy is preferable.

A Mathematical Model of L ocking Performance

Some fairly deep mathematics has been applied to locking performance. Whileit isn’'t necessary to
understand the math to know how to reduce lock contention, the formulas do help explain the observed
phenomena. The mathematicsis based on a model where each transaction issues requests for K write locks
with an average time T between lock requests. The overall database has D dataitems that can be locked, and
there are N transactions running at any given time (see Figure 6.9).

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-14

1/10/2005 Locking

Transaction Model System Model
K lock requests per transaction N transactions accessing the database
*T seconds average time between lock requests D dataitemsin the database
I T I T 1 I T 1
I T T T 1
Start Request Request vee Request Commit
Lock, Lock, Locky

Figure 6.9 Mathematical Model of Transactions and System. Using this model, formulas can be derived
for probability of conflict and deadlock and for throughput.

Assuming all dataitems are equally likely to be accessed by all transactions, and using probability theory,
the following formul as have been derived based on the above parameters:
o the probability of aconflict is proportional to K*N/D
o the probability of adeadlock is proportional to K*N/D?
Since atypical application might have aK of 20 (for an average transaction) and a D of one million, you can
see from the previous two formulas why deadlock is so rare relative to conflict — a deadlock is K¥D as
likely asa conflict, or only .0004 as likely.
o thethroughput is proportional to (N/T)*(1 - AK?N/2D)
where T’= (total transaction time) - (time spent waiting for locks)
= transaction’ s actual execution time
and A = ratio of transaction waiting time per lock conflict to total transaction time, typically */5 to */,
Looking at throughput, we see that using finer grain locksincreases D, which decreases K°N/D, thereby
increasing throughput (assuming that transactions are really accessing fine-grained data, so that K is
unaffected by decreasing lock granularity). Shortening transaction execution time decreases T/, which
increases N/T ", and hence increases throughput.

6.5. Hot Spots

Even when a system locks fine-grained data items, some of those data items are so frequently accessed that

they become locking bottlenecks. Such dataitems are called hot spots (i.e., they are so frequently accessed

that the data metaphorically “getshot”). Some common kinds of hot spot are

e summary information, such as the amount of money in a bank branch, since every debit and credit
transaction needs to update that value;

o theend-of-file marker in afile being used primarily for data entry, since each insert operation moves
(i.e., updates) that end-of-file marker and therefore needs to lock it; and

e thenext serial number to be sequentially assigned, such as order number or transaction number, since
many transaction types need to assign such serial numbers.

In these cases, the hot spot is already a fine-grained data item, so moving to a finer granularity to relieve the

bottleneck is not an option. Other techniques are needed.

There are four main techniques to relieve hot spot bottlenecks:

1. Keep the hot datain main memory. Since accesses to main memory are fagt, the transaction accessing
the hot data will hopefully execute quickly, and therefore not hold onto itslock for too long.

2. Delay operations on the hot spot till just before the transaction commits. That way, the transaction holds
its lock on the hot data for the minimum amount of time.

3. Replace Read operations by verification operations that can be delayed until just before the transaction
commits.

4. Group operationsinto private batches and apply the batch to the hot spot data only periodically.

Often, these techniques are used in combination.

The first technique is relatively automatic. Since the datais hot, the data manager’ s cache management
agorithm will probably keep the datain main memory without any special attention. Still, some systems

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-15

1/10/2005 Locking

make a special point of nailing down hot datain main memory, so it can't be paged out even if it hasn’t been
accessed in awhile.

Delaying Operations Until Commit

The second technique can be implemented by carefully programming a transaction so that its updates come
at the end. One can automate this approach. Instead of executing operations on data items when they occur,
the data manager simply writes a description of each operation in alog. When the transaction is finished and
ready to start committing, then the data manager actually executes the operationsin the transaction’ s log.
The data manager gets locks for the operations only during this actual execution. Since this execution is at
the very end of the transaction, the lock holding time will be quite short.

For example, consider a data entry application that is adding records to the end of afile. Each transaction
must lock the end-of-file marker from the time it startsits insertion until after it commits. Since every
transaction is adding a record, the end-of-file marker islikely to be alock bottleneck. One can avoid this
problem by delaying record insertions until the transaction is ready to commit, thereby reducing the lock
holding time on the end-of-file marker. This techniqueisused in IBM’s IMS Fast Path system for data that
is declared to be a Data Entry database.

One problem with thistechniqueis read operations. A transaction program usually cannot delay read
operations until the end, because the values it reads affect its execution — it affects the values it writes and
it affectsits control flow viaif-statements and the like. For any read operation that must be executed when
it isissued (and not delayed till the end of the transaction’ s execution), the data manager must set aread
lock. Thisisaproblem if theread lock is set on a hot spot.

Optimistic M ethods

One way to circumvent this problem of read operationsisto build reads into higher level operations that
don’t return data item values to the calling program. For example, consider an operation Decrement(x),
which subtracts one from data item x. To decrement X, the operation needs to read the current value of x, but
it need not return that value to the caller. It therefore can be deferred until the transaction is ready to commit.
However, suppose instead that Decrement(x) subtracts one from x only if x is positive, and returns True or
False to indicate whether or not it actually subtracted one from x. Since Decrement returns avaluetoits
caller, it cannot be deferred. Unfortunately, like the second version of Decrement, many hot spot operations
need to return a value and therefore cannot be deferred.

To circumvent the problem of deferring operations that return a value, we need to be a little more devious.
Instead of simply deferring the operation until commit, the data manager executes the operation twice: first,
when it isinitialy issued by the application and second, as a deferred operation at commit time (see Figure
6.10). During the operation’ sfirst execution, the data manager logs the value returned by the operation along
with the operation itself, discards any updates that the operation performs, and releases itslock at the end of
the operation. At commit time, the data manager reacquires the necessary lock, executes the logged
operation again, but thistime it allows the updates to be installed and holds the lock until the transactionis
done. In addition, it checks that the operation returns the same value v at commit time asit did initialy, by
comparing the logged value to v; if they're not the same, it aborts the transaction. So, in the previous
example, if Decrement(x) returns True during the first execution of the operation, then its update is thrown
out and Trueis logged, but no lock is held on x. When Decrement(x) is re-executed at commit time, it sets
and holds alock, its update (if it makes one) is allowed to be installed, and the value returned by Decrement
at commit time is compared to the logged value True. If they are different, the transaction is aborted.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-16

1/10/2005 Locking

void OptimisticTransaction;
{ Start;

b = Decrement (x) «€«———— System logs “Decrement (x)“ and the value returned

c;;mmit; -« System replays the log. If “Decrement (x) “ returns a different
} value than was previously logged, then abort else commit.

Figure 6.5 Using a Decrement Operation with Optimistic Locking No locks are set when Decrement(x)
first executes. During the replay of Decrement(x), the system sets locks, but aborts if the result changed
since the origina execution.

To see why thisworks, consider what happens if the data manager actually sets alock on the data during the
first execution. Then of course the operation would return the same value during the initial and deferred
executions, since the data that the operation is reading couldn’t change during that period. Instead of setting
alock, the data manager simply checks at commit time that the operation returns the same value, which
effectively checks that the execution behaves as if the lock were held.

The reason why this helpsis that it allows concurrent conflicting operations on the hot spot data since the
dataisn’t locked during itsinitial execution. That is, for a given transaction, the value of the data read by the
operation can change between its two executions of Decrement, as long as that change doesn’t affect the
value returned by the operation. For example, suppose atransaction T, issues Decrement(x) and that when
Decrement(x) executes the first time, x = 2, so it returns True. Suppose that before T, commits, another
transaction T, decrements x and commits. Therefore, when T, issues its commit operation, x = 1. But that’s
al right. At commit time, T;'s re-execution of Decrement(x) decrements X to zero, and returns True, which
is the same value that it returned during its first execution. Notice that T, and T, executed concurrently, even
though they both updated x. If they had used ordinary locking, one of them would have been delayed until
the other one committed and released its lock. Now suppose instead that initially x = 1 instead of x = 2. So
T, executes Decrement(x) and returns True. Then T, decrements x and commits (before T, commits). Then
when T, re-executes Decrement(x) at commit time, x = 0, so it returns False, which is different than what it
returned during its first execution, so the transaction aborts, and needs to be restarted. When Ty isre-
executed, it finds x = 0 during itsfirst execution of Decrement(x) and takes appropriate action. For example,
if X represents the number of available reservations, it would report that there are no more reservations
available.

This technique can be effective even for operations that don’t do any updates. For example, consider an
operation Verify(f), where f is a predicate formula that references data items and evaluates to True or False.
Like Decrement(x), this operation can be deferred until the end of the transaction by logging not only the
operation, but also the valueit returns (i.e., True or False). When the operation is replayed at commit time, it
locks any data items it accesses, and if it evaluatesto a different value than it did during normal execution, it
aborts.

This Verify operation can be used with a deferred Decrement that does not return a value. For example,
consider an inventory application that is keeping track of the number of itemsin stock. It can accept orders
for an item until there are none in stock. So, suppose that for each inventory item i, it stores the quantity in
stock, Quantity(i). A transaction that processes an order for item i should decrement Quantity(i) provided
that it doesn’t make Quantity(i) negative. It can do this by executing:

1. EnoughAvailable = Verify(Quantity(i) > 1)

2. If EnoughAvailable then Decrement(Quantity(i)) else Print(“ Insufficient stock.”)

The semantics here is surprisingly subtle. For example, the above example only works if Decrement is
deferred. This method, using arestricted form of the Verify operation, isused in IMS Fast Path, initsMain
Storage Databases feature.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-17

1/10/2005 Locking

Thisidea of executing an operation without setting locks, and checking that the operation is still valid at
commit time, is called optimistic concurrency control. It is considered to be optimistic because you have to
be optimigtic that the check at commit time isusually OK. If it fails, the penalty is rather high— you have to
abort the whole transaction. In the previous inventory application, for example, the technique would work
well only if most items are usually in stock. Other scenarios where optimistic concurrency control is useful
are presented in Section 6.8.

Batching

Another technique that is used to relieve hot spotsis batching. Instead of having each transaction update the
hot data when it needsiit, it batches its effect across a set of transactions. For example, in a data entry
application, instead of appending records to the shared file in each transaction, each transaction appends the
record to alocal batch (one batch for each thread of executing transactions). Since each thread has a private
batch, thereisno lock contention for the batch. Periodically, the batch is appended to the shared file. As
another example, consider the problem of assigning serial numbers. Instead of reading the latest serial
number within each transaction, a batch of serial numbers s periodically set aside for each thread. The
thread assigns serial numbers from its private batch until it runs out, at which time it gets another batch.

Batching is effective at relieving hot spots, but it has one disadvantage — failure handling requires extra
work. For example, after afailure, the private batches of appended records must be gathered up and
appended to the file. Similarly, if it'simportant that all serial numbers actually be used, then after afailure,
unused serial numbers have to be collected and reassigned to threads. Sometimes, the application can alow
the failure handling to be ignored, for example, if the lost serial numbers are not important.

Partitioning

The load on a hot data item can be reduced by partitioning it. For example, if x represents the number of
available reservations and is hot, it can be partitioned into X, X, and xs, where the values of x3, X, and X3
are approximately equal and x; + %, + X3 = X. Each transaction that decrements x randomly sel ects one of
the partitions to use. Thus, instead of applying 100% of the transaction load to x, onethird of theload is
applied to each partition. The number of partitionsis selected to be large enough so that the load on each
partition doesn’t create a hot spot bottleneck.

The main problem with partitioning is balancing the load among the partitions. In the previous example, we
balanced the load by randomizing each transaction’s selection of a partition. However, it's till possible that
more transactions are applied to one partition than another. Therefore, it's possible that one partition will run
out of reservations while other partitions still have some reservations |eft. To ensure that atransaction is
denied areservation only if al partitions have been exhausted, the application would have to try all three
partitions. So, once two of the partitions are empty, all transactions are applied to the non-exhausted
partition, making it a hot spot. It therefore may be better to deny a reservation immediately, if the partition it
selected is empty.

Partitioning x also has the effect of making the value of x more expensive to obtain. To read x, atransaction
hasto read x;, X,, and X3 and calculate their sum. Thisisn’t very burdensome, unless this value is required
frequently. In that case, the read locks obtained by each transaction that reads x may cause a locking
bottleneck with respect to the transactions that update each partition. It may be satisfactory to read the values
of Xy, X, and X3 in separate transactions, which would relieve the bottleneck. If not, then one of the
techniques described in the next section is needed.

6.6 Query-Update Problems

Another major source of concurrency bottlenecksis queries, that is, read-only requests for decision support
and reporting. Queries typically run much longer than update transactions and they access alot of data. So, if
they run using two-phase locking, they often set many locks and hold those locks for along time. This
creates long, often intolerably long, delays of update transactions.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-18

1/10/2005 Locking

There are three popular approaches to circumventing this problem: data warehousing, weaker consistency
guarantees, and multiversion databases.

Data War ehousing

A simple way to avoid lock conflicts between queries and updates is to run them against different databases.
To do this, one creates a data warehouse, which is a snapshot of data that is extracted from TP databases.
Queries run against the data warehouse and updates run against the TP databases. Periodically, the contents
of the data warehouse is refreshed, either by reloading it from scratch or by extracting only those values
from the TP database that have changed since the last time the data warehouse was refreshed.

There are several reasons why it makes sense to use a data warehouse, in addition to relieving lock
contention between queries and updates. First, when doing data analysis, it's often important that the data
not be changing in between queries. For example, suppose you are trying to understand trends in customer
behavior. If the database contents changes after every query you run, then you' re never quite sure whether
the differences you' re seeing are due to changes to the query or changes to the underlying data.

Second, it's often important to run queries against datathat is extracted from multiple databases. For
example, you may be interested in cross-correlating information in the purchase order, inventory, and sales
applications. Often, such applications are devel oped independently over along period of time, which leads
to discrepancies between the data in their databases. For example, they may use different ways to encode the
same information. Also, since the applications run independently, there may be operational errorsthat cause
their databases to differ. For example, when a shipment arrives, the shipping clerk sometimes typesin the
wrong corresponding purchase order number. For these reasons, it is common practice to transform and
“scrub” TP data before putting it in the data warehouse, so that queries see a“clean” database. If queries
were run against the TP data, they would see data that is untransformed and partially inconsistent, making
the results less useful.

Third, it'simportant that TP systems have excellent response time, even under heavy load. However, when
gueries are running, thisis hard to guarantee, because queries can put a virtually unbounded load on the data
manager. By running queries on a data warehouse system, queries can only slow down other queries, not on-
line transactions.

For these reasons, data warehousing has become a very popular architecture. Still, there are times when
queries need to run against the same database as update transaction, so solutions to the query-update
problem are needed when queries and updates run on the same data manager.

Degrees of Isolation

To avoid the query-update problem, many applications just give up on serializability for queries by using
weaker locking rules. These rules, sometimes called degrees of isolation, are codified in the SQL standard
and are therefore offered by most SQL database products.

One such ruleis called read committed (sometimes called Degree 2) isolation. If a query executes with read
committed isolation, then the data manager only holds a read lock on a data item while the query is actually
reading the data. As soon asthe dataisread, it releases the lock.

Read committed isolation is weaker than two-phase locking, which requires the transaction to hold read
locks until it has obtained all of its locks. Read committed isolation does ensure that the query only reads
data that was produced by transactions that committed. That is, if an active update transaction is currently
modifying a data item, the query will not be able to lock it until that updater has committed or aborted.
However, it does not ensure serializability. For example, if the query reads dataitems x and y, and an
updater is updating those data items, one possible scenario is the following:

e thequery reads x and then releasesits lock on x,

e theupdater updates x and y, and then commits and releases its locks, and then

e thequeryreadsy.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-19

1/10/2005 Locking

The query looks like it executed before the updater on x but after the updater on'y, aresult that would be
impossiblein aseria execution.

Under read committed isolation, atransaction that reads the same data item twice might read different
vaues for each of the read operations. This can happen because another transaction can update the datain
between the two reads. For this reason, we say that read committed isolation allows non-repeatable reads.
It's something of a misnomer, since the transaction is allowed to repeat aread; it's just that it may get
different values each time it re-executes the read.

Read committed isolation is sometimes called cursor stability. The term was coined by Chris Date® based on
the behavior of SQL cursors. In SQL, the result of aquery is returned to a program as acursor. A program
can scan the result of the query by iterating over the cursor, one row at atime. Using read committed
isolation, a program would hold a read lock on the row of the cursor it is currently reading. When the
program asks to move to the next row using the SQL fetch operation, the database system first releases the
lock on the current row and then acquires the lock on the next row. Thus, the row that the cursor currently
identifiesis stable (i.e., read locked) while the program is looking at it—hence the term, cursor stability.

Customers are surprisingly accepting of read committed isolation. In fact, the technique is so popular that
many SQL database products use read committed isolation as the default, so that an application must add
special keywords to obtain serializable (i.e., two-phase locked) behavior. Even though the answers could be
incorrect, people don’'t seem to mind very much. There is no satisfactory technical explanation for this,
though there is an intuitive explanation that might be true: Queries often produce summary results about a
database. If the database is being updated frequently, then it doesn’t matter that there are small discrepancies
based on serializability errors, because the result is somewhat outdated anyway, almost immediately after
being presented to the user. Moreover, since thisis only a summary for decision support purposes, it doesn’t
matter that the dataisn’t exactly right.

One can run queries in an even weaker locking mode, where it holds no locks at all. Thisis called read
uncommitted (or dirty read or Degree 1) isolation. In this case, a query can perform “dirty reads,” where it
reads uncommitted data— that is, data that may be wiped out when a transaction aborts. Thiswill delay
gueries even lessthan read committed, at the cost of further inconsistencies in the values that are read.

Noticethat if queries use either read committed or read uncommitted isolation, update transactions are still
serializable with respect to each other, aslong as they obey two-phase locking. Therefore, the database state
is still the result of a serializable execution of transactions. It's just that queries might read incons stent
versions of that state.

Most SQL database systems offer the option of running update transactions using read committed or even
read uncommitted isolation, by executing a statement to set the isolation level. Running a transaction at one
of these lower consistency levels violates two-phase locking and can produce a non-serializable execution.
The performance may be better, but the result may be incorrect.

When discussing degrees 1 and 2, serializability is often characterized as Degree 3. Thisis sometimes called
repeatable reads, because unlike cursor stability, reading a data item multiple times returns the same value
since read locks are held throughout a transaction. The strongest level of isolation is called serializable, and
it means just that: the execution of transactions must be equivalent to a serial execution. A summary of the
levelsisin Figure 6.11. The degree of isolation terminology is used inconsistently in the literature. We've
glossed over many of the finer points here. A more thorough discussion of the various terms and their subtle
differences appearsin Berenson et al. [1995].

Degreeof Isolation ~ ANSI SQL Term = Behavior

1 Read Don't set read locks.
Uncommitted
2 Read Committed Only read committed data

® Include citation here.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-20

1/10/2005 Locking

3 Serializable Serializability

Figure 6.11 Degrees of I solation Degrees 1 and 2 provide less than serializable behavior, but better
performance.

Many database systems offer degrees of isolation that are less than serializable but that don’t fit neatly into
one of the terms of the ANSI SQL standard. For example, Microsoft SQL Server offers alocking option
called READPAST. If atransaction is using read committed isolation and specifies the READPAST option
in a SQL statement, then the statement will ignore write-locked rows, rather than waiting for those locks to
bereleased. The intuition is that since the application is using read committed isolation, it isn’t expecting
exact results anyway. So, in some cases, it is worth avoiding the delay of waiting for write locks to be
released by simply skipping over write-locked rows.

We will see other examples of weaker degrees of isolation later in the chapter.

Multiversion Data

One good technique for ensuring that queries read consistent data without dowing down the execution of
updatersis multiversion data. With multiversion data, updates do not overwrite existing copies of data items.
Instead, when an updater modifies an existing data item, it creates a new copy of that dataitem, called a new
version. So, each dataitem consists of a sequence of versions, one version corresponding to each update that
was applied to it. For example, in Figure 6.12, adataitem isarow of the table, so each version is a separate
row. There are three versions of employee 3, one of employee 43, and two of employee 19.

Transaction | Previous Employee | Name | Department | Salary
Identifier Transaction | Number

174 null 3 Tom Hat $20,000
21156 174 3 Tom Toy $20,000
21153 21156 3 Tom Toy $24,000
21687 null 43 Dick Finance $40,000
10899 null 19 Harry | Appliance $27,000
21687 10899 19 Harry | Computer $42,000

Figure 6.12 An Example M ultiver sion Database Each transaction creates a new version of each row that
it updates.

To distinguish between different versions of the same data item, each version istagged by the unique
identifier of the transaction that wrote it. Each version of a data item points to the previous version of that
data item (the “previous transaction” field in Figure 6.12), so each data item has a chain of versions
beginning with the most recent and going back in time. In addition, the data manager maintains alist of

transaction id's of transactions that have committed, called the commitlist| e S;’&::;ﬁht]lgfnﬁﬁt‘gig?i

The interesting capability of multiversion data is snapshot mode, which allows a query to avoid setting locks Gl ERER
and thereby avoid locking delays. When a query executes in snapshot mode, the data manager starts by

reading the current state of the commit list and associating it with the query for the query’ s whole execution.

Whenever the query asks to read a data item, say X, the data manager selects the latest version of x that is

tagged by atransaction id on the query’ s commit list. Thisisthe last version of x that was committed before

the query started executing. There is no need to lock this data because it can’t change. An updater will only

create new versions, and never modify an existing version.

When a query executes in snapshot mode, it is effectively reading the state of the database that existed at the
timeit started running. Thus, it reads a consistent database state. Any updates that execute after it started
running are from transactions that are not on the query’s commit list. These updates will be ignored by the
data manager when it executes reads on behalf of the query. So although it reads a consistent database state,
that state becomes increasingly out-of-date while the query is running.

There is obvioudy some cost in maintaining old versions of data items. However, some of that cost is
unavoidable, because recently overwritten old versions are needed to undo updates when a transaction

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-21

1/10/2005 Locking

aborts. In a sense, multiversion data is making use of those old versions that are needed for transaction abort
anyway. Implementation details of transaction abort appear in Chapter 8 on Database Recovery.

Multiver sion I mplementation Details

There are two technicalities in making this type of mechanism run efficiently. A user of the mechanism
need not be aware of these issues, but for completeness, we describe them here.

Firgt, it istoo inefficient to represent the entire commit list asalist of transaction id’s. We can keep the

commit list short by assigning transaction id' s sequentially (e.g. use a counter to generate them) and

periodically discarding a prefix of the commit list. We can do this by exploiting the following observation:

1. If al active transactions have a transaction id greater than some value, say T-Oldest, and

2. No new transaction will be assigned a transaction id smaller than T-Oldest, and

3. For dl transactions with transaction ids < T-Oldest (which, by (1), have terminated), their updates have
aready been committed or have been aborted and wiped out from the database,

4. Then queries don't need to know about transaction ids smaller than T-Oldest.

To see why the commit list need only contain transaction ids greater than T-Oldest, suppose the data

manager processes a read operation for a query on data item x. If the transaction id of the latest version of x

issmaller than T-Oldest, then by (3) it must be committed, so the data manager can safely read it. If its

transaction id is greater than T-Oldest, then the data manager checks the query’s commit list. To keep the

list short, the data manager should frequently truncate the small transaction ids off of the commit list based

on the above rule. This type of multiversion technique is used in Oracle’ s Rdb/\VMS product.

One can avoid using a commit list altogether by assigning sequence numbers to transactions, where the
sequence numbers are consistent with the effective order in which the transactions executed. This can be
done by getting a new sequence number at the time that a transaction starts to commit, thereby ensuring that
the sequence number islarger than the sequence number of every committed transaction that it conflicts
with. Each version is tagged by the sequence number of the transaction that produced it. When a query starts
executing in snapshot mode, instead of reading the commit list, it reads the value of the last transaction
sequence number that was assigned, which becomes the sequence number for the query. When it reads a
dataitem, it readsthe version of that dataitem with the largest sequence number tag that is less than or
equal to the query’s sequence number. Thistype of technique is used in Oracle 8i, where sequence numbers
are called “ sequence change numbers.”

A second problem is that the database can become cluttered with old versions that are useless, because no

query will ever read them. A version of dataitem x is uselessif

1. itisnot the latest version of x, and

2. all active queries have a commit list that contains the transaction id of alater version of x (either
explicitly or its T-Oldest value is larger than the transaction id of some later version of x).

In this case, no active query will read a useless version of x; they'll only read later ones. No new query will

look at this version of x either, because it will use an even more up-to-date commit list, which won't include

smaller transaction ids than currently running queries. So this version of x can be thrown out.

Other Multiversion Techniques

Multiversion data can be used to offer read committed isolation. When a transaction reads a data item, if the
latest version of that dataitem is currently locked by an update transaction, then the transaction reads the
previous version. The latter was surely written by a committed transaction, so this ensures read committed
isolation.

A variation of thisis offered by the database system Oracle 8i. At serializable isolation level, transactions
use snapshot mode, as described earlier, which they call “transaction-level read consistency.” At read
committed isolation level, they offer “ statement-level read consistency,” where each SQL statement runsin
snapshot mode using the value of the commit list at the time it started. Thus, each successive SQL statement
reads aslightly more up-to-date state of the database than the previous one.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-22

1/10/2005 Locking

6.7 Avoiding Phantoms

In the standard locking model that we have been using in this chapter, insert and delete operations are
modeled as write operations. We don’t treat them specially. However, inside the system, the data manager
must be particularly careful with these operations to avoid non-serializable results.

ACCOUNTS
Account Number | Location | Balance
1 A 50
2 B 50
3 B 100
ASSETS
Location | Tota
A 50
B 150

Figure 6.13 Accounts Database to | llustrate Phantoms

To seethe potential problem, consider the database in Figure 6.13. The Accounts table has arow for each
account, including the account number, branch location, and balance in that account. The Assets table has
the total balance for all accounts at each branch location. Now, suppose we execute the following sequence
of operations by transactions T; and T»:
T,: Read Accounts 1, 2, 3
T;: Identify the Accounts rows where Location = B (i.e., 2 and 3) and add their balances (= 150)
T,: Insert anew Accounts row [4, B, 100]
: Read the total balance for location B in Assets (returns 150)
T,: Write Assets [B, 250]
T,: Commit
T1: Read Assetsfor location B (returns 250)
T,: Commit

ONOUOAWDN P
—
N

Transaction T; is auditing the accountsin location B. It first reads all the accounts in the Accounts table
(step 1), adds up the balancesin location B (step 2), and then looks up the Assets for location B (step 7), to
make sure they match. They don’t, because T, didn’t see the Accounts row inserted by T,, even though it did
see the updated value in the Assets table for location B, which included the result of the insertion.

This execution is not seriaizable. If T; and T, had executed serially, T; would either have seen T,' s updates
to both the Accounts table and the Assets table, or it would have seen neither of them. However, in this
execution, it saw T,'s update to Assets but not its update to Accounts.

The problem is the Accounts row [4, B, 100] that T, inserts. T, didn’t see thisrow when it read the
Accounts table, but did see T,' s effect on Assets that added 100 to B’ s total balance. The Accounts row [4,
B, 100] is called a phantom, because it’ sinvisible during part of T;'s execution but not all of it.

The strange thing about this execution is that it appears to be allowed by two-phase locking. In the
following, we add the lock operations required by two-phase locking:
T,: Lock rows 1, 2, and 3 in Accounts. Read Accounts 1, 2, 3
T Identify the Accounts rows where Location = B (i.e., 2 and 3) and add their balances (= 150)
T,: Insert anew Accounts row [4, B, 100] and lock it.
: Lock location B’ s row in Assets. Read the total balance for location B (returns 150)
T,: Write Assets[B, 250]
T,: Commit and unlock location B’s row in Assets and row [4, B, 100] in Accounts.
T1: Lock location B’srow in Assets. Read Assets for location B (returns 250)
T,: Commit and unlock location B’s row in Assets and rows 1, 2, and 3 in Accounts.

©ONOGAWDN P
—
N

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-23

1/10/2005 Locking

Isit realy true that two-phase locking doesn’t guarantee serializability when there are insertion operations?
Fortunately not. There is some hidden behavior here that would cause an extralock to be set and whichisn't
shown in the execution. It all hinges on how T, knew there were exactly 3 rows in the Accounts table. There
must have been a data structure of some kind to tell it: an end-of-file marker, a count of the number of rows
inthefile, alist of pointersto the rowsin the file, or something. Since it read that data structure to determine
that it should read exactly rows 1, 2, and 3, it had to set aread lock on that data structure. Moreover, since
T, added arow to the Accounts table, it had to lock that data structure too, in write mode, so it could update
it. It would be prevented from doing so by T,’s read lock on that data structure, and thus the above execution
could not occur.

So, the phantom problem is not a problem, provided that the data manager setslocks on all data it touches,
including system structures that it uses internally on behalf of atransaction’s operation.

Perfor mance | mplications

This example brings up yet another common scenario that leads to performance problems, one that’s closely
related to the query-update problems we saw in the previous section. Here we had one transaction, Ty, that
scanned afile (essentially a query), and another transaction T, that inserted a row and therefore was blocked
by the scan operation. Since T; needs to compare the values it reads in the Accounts table to the values it
reads in the Assets table, it must run in a serializable way. Read committed locking isn’'t good enough. This
means that T, must lock the entire table in read mode, which delays any update transaction that wantsto
write an existing row or insert a new one. This reduction in concurrency is bound to cause some transaction
delays.

Database systems that support SQL reduce this problem somewhat by locking ranges of key values. In the
example, since T, only wants to read rows in location B, the system would set a key-range lock on rows with
“Location = B.” Transaction T, would have to get a key-range lock on “Location = B” to insert its new row,
and would be blocked as before. But other update transactions that operate on rows in other locations would
be permitted to run, because they get key-range locks on other key ranges. That is, a key-range lock on
“Location = B” does not conflict with one on “Location = A.”

Key-range locking works well in SQL because the WHERE clause in SQL has clauses like
“Accounts.Location = B”, which gives the system a strong hint about which lock to set. In an indexed file
system, such as COBOL ISAM implementations, it is much harder to do, since the operations issued by the
program don’t give such strong hints to the file system to figure out which key-range locks to set. For this
reason, key-range locking iswidely supported in SQL database systems, but not in many other kinds.

Although key-range locking is effective and relatively inexpensive, it is not free. Therefore, some systems
offer a degree of isolation guarantees serializability except for phantoms. Thus, it isin between read
committed and seriaizable. Thisis called repeatable read in Microsoft SQL Server and in the ANSI SQL
92 standard, and read stability in IBM DB2 UDB.

6.8 Optimistic Concurrency Control

In addition to the hot spot technique described in Section 6.5, optimistic concurrency control is useful in
situations where data is cached outside the data manager. For example, a client or middle-tier machine may
cache data that it retrieves from a data manager that resides on a remote machine. In such cases, the cached
data may be updated in the data manager (e.g., by other clients) without the cache being told about it.
Therefore, any transaction that reads the cached datais at risk to use out-of-date data that can lead to a non-
serializable execution. Asin the hot spot method, the solution isto check at commit time whether the cached
data has changed in the data manager in a way that invalidates the transaction’s earlier reads. If so, the
transaction must abort.

One scenario where this comes up is interactive transactions, where a user isinvolved in looking at data
before deciding whether or how to update it. Since the user may look at the data for several minutes before
deciding, it isimpractical to lock the data between the timeit’sread and the time it's updated. Therefore, the

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-24

1/10/2005 Locking

application that interacts with the user executes one transaction to read the data, and later runs a second
transaction to perform the user’s updates. In between the two transactions, the user decides what updates to
perform. Since the dataisn’t locked between the reads and writes, an optimistic approach can be used.
Namely, the update transaction includes the values of the data items that were read earlier and on which the
update depends. The update transaction checks that the values that were read still have the same valuesin
the data manager. If so, then the transaction can perform its updates.

The effect is asif the transaction had set read |ocks on the data during the first read-only transaction and
held them until the update transaction ran. Of course, since it didn’t hold the read locks that long, the update
transaction may find that some of the data items that were read have changed, and therefore the transaction
must abort. In that case, the application needs to get involved by re-reading the data that it read during the
first transaction, displaying those new values to the user, and asking the user if her previous updates are still
what she wants.

For example, suppose a contractor is accessing an on-line supplier from aweb browser over the internet.
The contractor wants 20 windows of a certain size, for delivery within two weeks. He issues a request for
catalog information on the appropriate type of windows. He shows the windows to his customer and after
some discussion, they select a particular window. That purchase request should include not only the part
number of the window to be purchased but also the delivery date. The update transaction that runs on the
supplier's server re-reads the promised delivery date and compares it to the one in the request; thisisto
validate the earlier optimistic read of the delivery date. If the delivery date can no longer be met, the
application returns an error, else it completes the purchase as requested.

Notice that it's up to the application to figure out the data items that were read earlier and on which the
update depends. In the previous example, the application needed to know that the update only depended on
the delivery date, not on al the other catalog information that was displayed to the contractor.

Still, under certain assumptions, it's possible for the application to figure out what data items to validate
without any hints from the application. For example, in Microsoft SQL Server, a cursor (which contains the
result of a SQL query) can be declared asOptimistic With Values. Inthiscase, the database rows
that are returned in the cursor are not read-locked. Instead, if an application updates arow in the cursor, both
the old and new value of the row are sent to the database system. The system processes the update by setting
alock on the row and then checking whether the current value of the row equals the old value that was
included with the update. If so, then the new value of the row isinstalled. If not, then the update is rejected
and error isreturned. A similar option, called Optimistic With Versions, isavailable, where
each row is tagged by atimestamp, which is updated every time the row is modified. So, instead of sending
the old value of the row with the update, only the old timestamp needs to be sent. If the timestamp has
changed, then the update is rejected.

Note that this SQL Server mechanism implicitly assumes that the update to the row depends only on the
previous value of the same row. If the update depended on some other rows, then some other concurrency
control technique would need to be used on those other rows. For example, those rows could be read using
the seriaizable isolation level or the application could re-read those rows using serializable isolation level at
the time it does the update and check that their values didn’t change.

6.9 B-Tree Locking

To speed up content-based retrieval of records, all database systems use some form of index. Anindex isa
mapping from key values to physical location. For example, in arelationa database system an index maps
column values to rows; in Figure 6.13 an index on Location values in the Accounts table would map the
column value “A” to the first row, and “B” to the second and third rows. When a user submits a query to
retrieve rows that have a given field value, such as Location = “B”, the database system can use theindex to
directly access the desired rows, instead of having to scan all rows of the table to find the desired ones.

First, we will explain how indexes work. Then we will discuss techniques to avoid the special locking
bottlenecks that can arise when accessing indexes.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-25

1/10/2005 Locking

B-Trees

The most popular data structure used for implementing an index in a database system is the B-tree. A B-tree
consists of aset of pages organized as atree. The leaf pages (i.e., those that don't point to other pages)
contain the data being indexed, such as rows of atable. The remaining pages, called internal nodes, are
directories of key values that are used to guide a search.

Each page contains a sorted sequence of key values, which subdivides the range of possible key valuesinto
subranges. So, a sequence of n key values [k, ks, ..., k,] creates n+1 subranges: one subrange for key values
lessthan k;, one for key values between k; and k, ..., one for key values between k;,.; and k,,, and one for
key values greater than or equal to k,. Associated with each subrange is a pointer to the root of a subtree
that contains all the keys in that subrange.

For example, the B-tree in Figure 6.14 has key values that are non-negative integers. The root page, Po,
contains the sorted sequence of key values 125, 490. (In the terminology of the previous paragraph, n = 2.)
The pointer before 125 points to the root page of a subtree that contains all the keys in the range [0, 125)
(i.e., zero up to but not including 125). Similarly, the pointer between 125 and 490 points to a sub-tree
containing the range [125,490), and the pointer after 490 points to a subtree containing the range [490, «).
(Only the subtree for the range [125, 490) is shown explicitly.) Thus, the root page partitions the set of all
key values into three ranges: [0, 125), [125, 490), and [490,).

Below the root, each page subdivides its key range, which is defined by its parent. Looking again at the
figure, we see that page P; subdivides the range [125, 490), which is defined by its parent, P,. The subranges
consist of [125, 213), [213, 352), and [352, 490). Notice that P;’ s first subrange is [125, 213), not [0, 213),
because P; subdivides the range [125, 490), not [0, 490). Similarly, the last subrange is[352, 490), not [352,
). The leaves of the tree contain the actual key values, such 125, 145 and 199 in the leaf P,. These key
values may include the data records themselves (such as rowsin the Accounts table) or pointers to those
records.

P
125 J4sd |

l31
subtree 213 352 subtree
with keys with keys
<125 > 490
P P P

125\155\199\ 213\2i7\320\ 352\4%7\ |

Figure 6.14 A B-tree Page P, isthe root and P,, P; and P, are leaves. Each of the two triangular subtreesis
an abbreviation for acombination of pages like P, — P,.

To search for a given key value k, you start by examining the root page and finding the key range that
contains k. Y ou then follow the pointer associated with that key range to another page, and repeat the
process, moving down the tree. For example, to search for key value 145, you search the root and discover
that range [125, 490) contains 145. So you follow the pointer to Py. In Py, you find that key range [125, 213)
contains 145, so you follow the pointer to P,. Searching page P,, you find key 145. To search for key 146,
the same sequence of pages would have been followed. However, in that case, when reaching P,, you would
find that the page doesn’t contain 146. Since thisis aleaf page, thereis nowhere else to look, so you would
conclude that 146 is not contained in theindex. Noticethat in all cases, the number of pagesthat are read
equals the number of levels of the tree, that is, one more than the number of pointers that need to be
followed to get from the root to aleaf.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-26

1/10/2005 Locking

Notice that the B-tree also effectively sorts the keys, as you can see in the leaves P,, P3, and P, in the figure.
Y ou can therefore get all of the keysin a given range by searching for the key at the low end of the range
and then scanning the leaves in order until you hit the high end of the range. For example, to find all the keys
in the range 160 to 360, you would search for key 160, which takes you to page P,. Then you scan pages P,
Ps, and P,. When you reach key value 487 on P, which isthe first key value greater than 360, you know you
have found al of the keysin the desired range.

The B-tree in Figure 6.14 is artificially small, so it can fit on a printed page. In practice, each B-tree pageis
the size of a disk page, and therefore can hold hundreds of keys. For example, if apageis 8K bytes, akey is
8 bytes, and a pointer is 2 bytes, then a page can hold up to 818 keys; therefore, a 3-level B-tree can have up
to 818° = 669,124 leaves. If each leaf holds up to 80 records, that's about 5.3 million recordsin all. If the
tree had 4 levels, it would have up to about 4.4 billion records. As you can see from these numbers, it's
extremely rare for a B-tree to have more than 4 levels.

B-trees are intended to live on disk with a portion of them buffered in main memory. The root is always
buffered in main memory and usually the level below the root is buffered too. Levels 3 and 4 are more
problematic. How much of them are buffered depends on how much memory is available and how
frequently the pages are accessed, that is, whether it's worth buffering them. However, even if levels3 and 4
are not buffered at all, to search for akey, only two disk pages need to be accessed. It's pretty amazing, if
you think about it — you can search for akey in afile of 4 billion records and are guaranteed to find it in
two disk accesses.

This great performance of a B-tree depends on the tree being wide and flat. If the tree were thin and deep,
that is, if it had many levels, then the performance would be worse. Y ou would have to read many more
pages to search from the root to aleaf. The main trick that makes the B-tree structure so attractive is that its
update algorithms are able to keep the tree wide and flat.

B-Treelnsertions

Toinsert akey value into a B-tree, you simply search for that key value. The search procedure identifies the
page where that key value should be stored, so that’'s where you store it. For example, to insert key value 353
in Figure 6.14, the search would take you to page P, so you add the new record to that page.

Inserting 353 was straightforward because there was extra space on that page. What if the desired pageis
already full? For example, suppose each leaf can hold only three records and you want to insert key value
225. The search procedure takes you to page P; which isfull. In this case, you split the page in half. That is,
you alocate another page, say Ps, from free space, and distribute the keys of P; plus 225 evenly between P;
and Ps, as shown in Figure 6.15. By adding page Ps, you have effectively split the range [213, 352) into two
ranges: [213, 225) and [225, 352). This splitting of range [213, 353) must be recorded in P5's parent, Py,
which is shown in Figure 6.15.

with keys

with keys

<125 > 490
P, P, Ps P,
125/145[199] |213(217| | |[225[320] | |[352[487] |

Figure 6.15 A B-Tree After a Split This shows the B-tree of Figure 6.18 after inserting key 225, assuming
P; can hold 3 keys.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-27

1/10/2005 Locking

The split shown in Figure 6.15 assumes that there is space in P; to store the extrarange. If thereisn’t enough
space, then sinceit’ sfull, P; would need to be split, just like P; was. The result is shown in Figure 6.16. In
this case, P, is split into Py and Ps. This causes another key range to be propagated up to the root, Py. But
since theroot isfull, it too must be split, into Py and P;. Thus, a new root, Pg, needs to be added, which
divides the total key range between Py and P;.

Notice that the tree stays wide and flat asit grows. The technical term is“balanced.” It's balanced in the
sense that all leaves are the same distance from the root.

subtree
with keys with keys
<125 > 490
P, P, Ps P,
1125[145[199] |213217] | |225]320] | |[3520487] |

Figure 6.6 A B-Tree After a Recursive Split This shows the B-tree of Figure 6.15, after inserting key 225,
assuming P; can hold at most 2 keys. Thus, P; must split into P, and Ps, which in turn causes Py to split into
Py and P;, which causes a new root Pg to be created.

Tree Locking

Suppose a transaction is executing a search for key value k; in a B-tree index. The search starts by reading
the root page, and scanning it to find the key range that contains k;. Since it isreading all of theroat, it needs
to set aread lock on the entire root page. Similarly, it needs to lock the other pages that it searches, as it
travels down the tree toward the leaf that contains k;. These read locks prevent any updates to the locked
pages. |f several active transactions are using the B-tree, then large portions of the tree are read locked,
which potentially blocks many update transactions.

This locking bottleneck can be avoided by exploiting the fact that all transactions traverse the B-tree from
root to leaf. Consider a simple tree consisting of a page P (the parent), child C of P, and achild G of P (G is
the grandchild of P). Instead of holding read locks on all pagesit touches, it is actually safe for atransaction
T; torelease itsread lock on P after it has set aread lock C, where C covers the key range of interest. This
seems more than alittle strange, since we have made such a big point in this chapter of being two-phase
locked. If T; continues searching down the tree to lock G, then T; has broken two-phase locking— it
unlocked P and | ater obtained alock on G. However, in this special case of traversing a tree, breaking two-
phase locking in thisway is safe.

The important point is that T; acquired its lock on C before releasing itslock on P. It descends through the
tree much like climbing down aladder, placing one foot firmly on the next lower rung before lifting the
other foot from the higher rung. Thisis called lock coupling, or crabbing (by analogy to the way acrab
walks). The effect isthat no transaction that is obtaining conflicting locks can pass T; on the way down,
because T; is dways holding alock on some page on the path to its final destination.

The bad case would be that some transaction T, got a write lock on page P after T; released its read lock on
P, but got awrite lock on, say, G before T; got its read lock on G. That would violate serializability because

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-28

1/10/2005 Locking

it would appear that Ty came after T; with respect to P and before T; with respect to G. But thiscan't
happen. If T, getsa conflicting lock on P after T; releasesitslock on P, then lock coupling ensures that Ty
will follow T; on the entire path that T; takes down the tree.

The correctness argument above assumes that each transaction gets the same kind of lock on al pages. If it
switches between two types of locks, then the argument breaks down. For example, if Ty setsawrite lock on
P, aread lock on C, and awrite lock on G, then a non-serializable execution could arise as follows: T; read
locks P, T; read locks C, T; unlocks P, Ty write locks P (so Ty follows T; at P), Ty read locks C (so T; and Ty
both have read locks on C), Ty unlocks P, Ty write locks G, T unlocks C, T, unlocks G, T; read locks G (so
T; follows Ty at G). Soin this case, where a transaction switches between lock types, lock coupling isn’'t
enough. A commonly-used solution is to disallow transactions from getting aweaker lock when traversing
down the tree.

After T; locks the leaf page L that it'slooking for, it can release itslock on L’s parent. At thispoint, itis
holding alock on only one page, L. In terms of locking performance, this is much better than before, where
T; would have held alock on every page on the path from the root to L. Since T; isonly locking L, update
transactions can run concurrently as long as they aren’t trying to update akey on L.

Insertions cause a problem for lock coupling, due to page splits. Suppose a transaction executes an insert of
key k, into the B-tree. The insert begins by searching down the tree for the leaf that should contain k;, setting
read locks on pages, just like a B-tree search. When it findsthe leaf L, it setsawritelock on it, so that it can
insert ky. If L isfull, then it must be split, which requires that a new key be added to L’s parent, say P, .
However, at this point, the transaction doesn’t own alock on L’s parent. Re-acquiring the lock would break
the lock coupling protocol and thereby allow a non-serializable execution to occur.

One solution is to require that the insert procedure obtain write locks as it traverses down the tree. Assume it
holds alock on page P and has just acquired alock on P's child C. At this point, it checks whether C isfull.
If not, then it releasesitslock on P. If so, then it retains the lock on P because it may have to split C, in
which case it will need to update P. This solution israther expensive, because the insert needs to set write
locks from the beginning of its search, including the root, an obvious bottleneck. An aternative solution isto
search down the tree using read locks only, keeping track of which pages are full. If the desired leaf turns
out to befull, then release its lock and start traversing down from the root again. Thistime, the insert
procedure holds write locks on all the pages that need to be updated, which include the leaf L and its parent
P, plus P's parent if Pisfull, plus P's grandparent if P's parent is full, etc.

The B-Link Optimization

Lock coupling is a significant performance boost over two-phase locking for B-trees. However, we can do
even better by adding to the B-tree structure a sideways link from each page to the next page at the same
level in key-sequence order. For example, the sideways links in Figure 6.17 are shown as horizontal dotted
lines. Notice that links are not only between siblings, i.e., between pages that have a common parent. Links
may also connect cousins, such as the pointer from P; to P,. Thus, only the last page on each level hasno
sideways link; in the figure, that’s P, on level 3, P; on level 2, and P, on level 1.

P,) P,
ST
PG P7 PZ r P3 P4
| 6 | 14 | 55 H—--+ 56 | 94 | 108H -------- > 125| 145 |199 H~----> 213| 217 |320 H——-—> 352| 487| | |

Figure 6.17 A B-Tree with Sideways Pointer s Each page points to the next page at the same level in key
sequence order.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-29

1/10/2005 Locking

These sideways links, called B-links, enable the search and insert procedures to hold only one page lock at a
time, which improves concurrency over lock coupling. The optimization exploits our knowledge about the
kinds of updatesto a B-tree that can alter its structure, namely page splits.

When searching down a B-tree, the search procedure only holds alock on one page at atime. So, for
example, suppose T, executes a search for key 94. The search procedure begins by locking Py, selecting the
range [0, 125) as the one that contains 94, getting the associated pointer to Ps, and releasing its lock on P,.
At thispoint, it holds no locks. It repeats the process on Ps by locking Ps, selecting the range [56, 125),
getting the associated pointer to P;, and releasing itslock on Ps. Finally, it locks P, finds the record with key
94, and releases its lock.

This search procedure looks rather dangerous, because at certain pointsin its execution, it is holding a
pointer to apage that isn’t locked. For example, after unlocking Ps, it's holding a pointer to P;, which is not
locked. What if another transaction somehow makes that pointer to P; invalid before the search procedure
follows the pointer?

Here is where our knowledge of B-tree behavior comesin. The only way that P; can change in away that
affects the search isif another transaction splits P;. For example, suppose that when T,'s search holds a
pointer to P; but no locks, another transaction T, inserts key 60 on P; causing P; to split, yielding the tree in
Figure 6.18. Looking at the split of P; in more detail: T, write locks P, allocates a new page Pg, copies P;'s
link (to P,) to Pg (so Pg points to P,), moves records 94 and 108 to Pg, inserts record 60 in P, updates P;'s
link to point to Pg, and unlocks P;. At this point, Ps isinconsistent with P; and Pg, so T, must update it to add
key 94. However, this update of Ps has no effect on Ty, which already read Ps and is holding a pointer to P,.
So, now that T, has unlocked P;, T, can push ahead and lock P; and read it. Of course, record 94, which T,
islooking for, isn't in P; anymore. Fortunately, T, can figure this out. It seesthat the largest key in P; is 60.
Soit’s possible that record 94 got caught in a split, and moved to the next higher page. Thisiswhere the link
is used. Instead of giving up after failing to find 94 in P;, T, follows the link to the next higher page, |ooks
there for key 94, and findsit.

Pa
l6 14|55 [|o{56[60 | [{»0a [108] [}o125]145 100 [} 213 217 320 [{s] 352 | a87| ||

P

Figure 6.18 The B-Tree of Figure 6.17 After Inserting 60 Page P; is split into P; and a new page P, links
are updated, and the boundary key 94 isinserted in page Ps.

Suppose that T; was looking for key 95 instead of 94. When it follows the link to Pg, and failsto find 95 on
Pg, it looks for the largest key on Pg, which in this case is 108. Since 108 is larger than 95, T; knows that
there’ s no point in following Pg'slink to P,, since all keysin P, are larger than 108.

6.10 Multigranularity Locking

In Section 6.1, we briefly explained how a data manager can set locks at different granularities, such as
database, file, and record granularity. In this section, we expand on the details. Knowledge of these details
can be helpful in understanding the performance characteristics of locking in data managers that use it.
However, this knowledge is not essential to later sections of this book, so it can be skipped without loss of
continuity.

Aswe explained earlier, the main problem in locking at different granularities is determining when locks at
different granularities conflict. For example, if transaction T, owns awrite lock on file F, we would like T,

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-30

1/10/2005 Locking

to be prevented from setting aread lock on record R in F. However, as far as the lock manager is concerned,
locks on F and R are compl etely independent, so the lock manager would allow them both to be set.

The trick in multigranularity locking is to require that before setting afine grain lock on adataitem x, a
transaction must first set aweak lock, called an intention lock, on every coarse grain data item that contains
X. Intention locks conflict with read and write locks. In the previous example, since F contains R, T, would
need to set an intention read lock on F beforeit tried to set aread lock on R. The intention read lock on F
conflicts with T;'s write lock on F, so the lock manager recognizes the conflict and T, is delayed, as desired.

To know which intention locks to set for a given data item X, a data manager must know which data items
contain x. This knowledge is captured in a containment hierarchy, called alock type graph. For example, a
simple lock type graph for a SQL database system is shown in Figure 6.19a. This graph saysthat each row is
contained in atable, and each table is contained in a database. So, to set alock on arow R, the data manager
needs to set an intention lock on the table and database that contain R.

| Database
[Table
Row

a A lock type graph b. A lock instance graph

Figure 6.19 Graph that drives multigranularity locking The lock type graph describes the hierarchy of
granularity of object types that can be locked. The lock instance graph shows instances of those types.

Locks must be set in root-to-leaf order, as defined by the lock type graph. For example, consider the
database shown in Figure 6.19b, which is represented as alock instance graph, which conforms to the lock
type graph in Figure 6.19a. To set alock on record Rs, atransaction T, would first have to set an intention
lock on database DB,, then set one on table Thls,. If T, disobeyed the root-to-leaf order and set alock on R;
before setting those intention locks, it might find that another transaction T, already owns alock on Thls,
that prevents T, from setting the intention lock. Thus, T; would have alock on Rs and T, would have alock
on the table Thls, that contains R, which is exactly the situation we' re trying to avoid. Locking from root to
leaf preventsthis bad outcome.

Note that the hierarchy is only conceptual, not physical. That is, there is no data structure in the data
manager that represents the lock type graph. Rather, the data manager has hard-coded knowledge of the
graph, which it uses to decide which locks to set.

Each lock type has a corresponding intention lock type. That is, there are intention-to-write (iw) and
intention-to-read (ir) lock types, which correspond to the write and read lock types respectively. Before
setting aread lock on adataitem x, atransaction must first set an ir lock on x’' s ancestors. Similarly, for
setting awrite lock.

The lock conflict rules for intention locks are shown in Figure 6.20. To understand their meaning, consider a
dataitem x (e.g., atable) and dataitemsy and z that are contained by x (e.g., two rowsin table x):

e riscompatiblewithir, becauseit's OK if T; ownsaread lock on x while T, ownsanir lock on x and a
read lock on, say, .

e risincompatible with iw, because if T; ownsaread lock on X, then T, should not be allowed to own a
writelock ony. T,’'s attempt to get an iw lock on x (before locking y) will conflict with T,’sread lock.

e wisincompatible withir or iw, because if T, owns awrite lock on X, then T, should not be alowed to
own aread or write lock ony.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-31

1/10/2005 Locking

e irandiw locks are compatible with each other, because they are only flags that indicate that finer grain
locks are being held. Suppose T, and T, own an ir and iw lock on x respectively. This means T, plansto
own aread lock on somey contained in x and T, plans to own awrite lock on some z contained in x.
Thisisaproblem only if y=z But in that case T, and T, will conflict when they both try tolock y. So it
would be premature to disallow T, and T, from owning their intention locks on x.

Lock Type Requested
r w ir iw riw
r y n y n n
©
2w n n n n n
g
> y n y y y
X
8 iw n n y y n
|
riw n n y n n

Figure 6.20 Lock Type Compatibility Matrix Each entry says whether the lock type requested can be
granted given that another transaction holds the lock type held.

The new lock type read-with-intention-to-write (riw) is designed for transactions that are scanning alarge
number of dataitems but updating only some of them, such asin a SQL Update statement. Such a
transaction would have to own both aread and iw lock on the same dataitem, such as a SQL table. It
simplifies the lock manager if each transaction is allowed to hold only one lock on each dataitem.
Therefore, the two lock types, r and iw, are combined into one, riw. Notice that the riw lock type is
compatible with another lock type t if and only if both r and iw are incompatible with t.

So far, we have treated lock instance graphs that are trees. Trees have the nice property that each data item
(except the root) has exactly one parent. Often, we need to handle lock instance graphs that are directed
acyclic graphs (DAGs), where a data item may be contained by two or more parents. This requires
modifying the rules for setting intention locks, because setting an intention lock on a parent of a data item x
does not prevent other transactions from setting a conflicting coarse grain lock on a different parent of x.

Let’slook at the most common place where this arises, namely key-range locking, which we used in Section
6.7 to avoid phantoms. In key-range locking, key-range is another type of object that can be locked, as
shown in the lock type graph in Figure 6.21a. If atable uses multiple keys, then each row isin multiple key
ranges. For example, in Figure 6.22 suppose the Customer and Location columns are used as keysin the
Accounts table. Then each row is contained in two different key ranges, one for each key. For example,
Account 1 isin the Customer key range for “Eric” and the Location key range for “A”. Suppose that
transaction T, setsan iw lock on DB, Accounts, and the key range Customer = “Eric” and then setsawrite
lock on Account 1. This does not prevent another transaction T, from setting an ir lock on DB, and
Accounts and setting aread lock on the key range Location = “A”. Since the key range Location = “A”
covers the row for Account 1, this means that T, implicitly has aread lock on Account 1, which conflicts
with T, sexplicit write lock on Account 1. Thisis an example of the problem described in the previous
paragraph: a transaction holds an intention lock on one parent of x (i.e., on key range Customer = “Eric”,
which is a parent Account 1), but another transaction holds a conflicting lock on a different parent of x (i.e.,
key range Location =“A").

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-32

1/10/2005 Locking

Table Accounts

KeyRange| |Cust=| Cust=||Cust=|/Loc=||Loc=| Loc=

“Eric” | |“Jane” | |“Alex” || “A” “B” “c
Row Aast] [Aam2| |Am] A
a A lock type graph b. A lock instance graph

Figure 6.21 A DAG that Drives Multigranularity Locking This extends the graphs of Figure 6.19, to
allow each row to have more than one parent, which in this case are key ranges.

ACCOUNTS
Account Number | Customer | Location | Balance
1 Eric A 50
2 Eric B 50
3 Jane B 100
4 Alex C 75

Figure 6.22 Example Database This database corresponds to the lock instance graph of Figure 6.21b.

To avoid this problem, we modify the multigranularity locking protocol for write locks. We reguire that to
set awrite lock or iw lock on an object x, atransaction must have in iw lock on every parent of x. Inthe
example, this means that T; needs an iw lock on the two key ranges that are parents of Account 1, namely,
Customer = “Eric” and Location = “A”. Theiw lock on Location = “A” would conflict with T,’s read lock
on Location =“A". So only one of them can lock the range, thereby avoid the situation where T, and T, own
conflicting locks on Account 1.

6.11 Summary

Locking is the most popular mechanism to achieve transaction isolation, that is, to ensure that every
execution of transactionsis serializable. Each transaction sets read and write locks on data items that it
reads and writes (respectively). And it follows the two-phase rule, meaning that it obtains al of itslocks
before releasing any of them. Locks are generally set and released automatically by data managers, and are
therefore hidden from the application programmer.

A write lock conflicts with aread or write lock on the same data item. Two transactions cannot concurrently
hold conflicting locks on the same data item. If atransaction requests alock that conflicts with one owned
by another transaction, it is delayed. Thisleads to two problems: deadlock and thrashing.

A deadlock occurs when a set of transactions are waiting for each other to release locks. Deadlocks are
usually handled automatically by a detection mechanism. The system can use timeouts to identify a
transaction that has been waiting too long and is suspected of being in adeadlock. Or it explicitly maintains
awaits-for graph and periodically checks for cycles. The system breaks a deadlock by aborting one of the
transactionsinvolved in the deadl ock.

The main application design problem created by locking is performance delays created by lock conflicts. If
too many transactions request conflicting locks, transaction throughput decreases. Thisis called lock
thrashing. To solve it in arunning system, the number of active transactions must be decreased by aborting
them. Alternatively, one can modify the application, database or system design to reduce the number of

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-33

1/10/2005 Locking

conflicts. The latter is adesign activity that involves adjusting the locking granularity or using special
locking techniques that reduce the level of conflict, such as the following:

e Usefiner grained locks, thereby increasing concurrency, at the expense of more locking overhead, since
more locks must be set.

e Reduce thetime that locks are held by shortening transaction execution time or delaying lock requests
till later in the transaction.

e Useahot spot technique, such as delay operations until commit time, use operations that don’t conflict,
and keep hot datain main memory to shorten transaction execution time.

o Useaweaker degree of isolation, such as degree 2 consistency, allowing inconsistent reads by releasing
each read lock immediately after reading.

e Usemultiversions, so that queries can access old version of data and thereby avoid setting locks that
conflict with update transactions.

e Uselock coupling or the b-link method to reduce lock contention in B-tree indexes

e Use multigranularity locking so that each transaction sets locks at the appropriate granularity for the
operation it is performing.

Insert and del ete operations require special techniques, such as key-range locking, to avoid phantom updates
and thereby ensure serializable executions.

Appendix - Proof of Two-Phase Locking Theorem

One standard way to prove serializability is using a graph that represents the execution of a set of
transactions. Asin Section 6.1, we model an execution as a sequence of the read, write, and commit
operations issued by different transactions. To simplify matters, we do not consider aborted transactionsin
this analysis, although they can be included with some modest additional complexity to the theory.

The graph that we build from the execution is called a serialization graph. It has one node for each
transaction. For each pair of conflicting operations by different transactions, it has an edge from the earlier
transaction to the later one. For example, consider the execution in Figure 6.23. In this execution r,[x]
conflicts with and precedes wy[X], so there is an edge from T, to T in the serialization graph. Two conflicts
can lead to the same edge. For example, r,[X] conflicts with and precedes w;[x], and w,[y] conflicts with and
precedes wy[y], both of which produce the same edge from T, to T;.

T

raX] ro[X] wyX] ra[X] woly] ¢ wyly] ¢ wy[X] cg T,—T—T;

Figure 6.23 An Execution and its Serialization Graph The execution graph on the |eft is modeled by the
serialization graph on the right.

The fundamental theorem of serializability theory isthat an execution is serializableif its seriaization graph
isacyclic. So, to prove that two-phase locking produces serializable executions, we heed to show that any
execution it produces has an acyclic serialization graph.

So, consider the serialization graph of a two-phase locked execution, and examine one edge in this graph,
say T; — T;. This means there were two conflicting operations, o, from T; and o; from T;. T; and T; each set
locks for o; and g;, and since the operations conflict, the locks must conflict. (For example, o; might have
been aread and o; awrite on the same data item.) Before o executed, its lock was set, and o)’ s lock must
have been released before then (since it conflicts). So, in summary, given that T; — T;, T; released alock
before T; set alock.

Now, suppose thereis apath T; — T;and T; — T, From the previous paragraph, we know that T; released a
lock before T; set alock, and T; released alock before T set alock. Moreover, since T; is two-phase locked,
it set all of itslocks before it released any of them. Therefore, T, released alock before Ty set alock.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-34

1/10/2005 Locking

Avoiding the rigor of an induction argument, we can repeat this argument for paths of any length, so for a
path of any length T; — ... > Ty, T; released alock before Ty, set alock.

To prove that the two-phase locked execution is serializable, we need to show that its serialization graph is
acyclic. So, by way of contradiction, suppose thereisacycle in the seriaization graph T; — ... —» T;. From

the previous paragraph, we can conclude that T; released alock before T; set alock. But thisimplies T; was
not two-phase locked, contradicting our assumption that al transactions were two-phase locked. Therefore

the cycle cannot exist and, by the serializability theorem, the execution is seridizable.

© Copyright 2000 Philip A. Bernstein and Eric Newcomer 6-35

