
1

2/15/05 1

8. Concurrency Control
for Transactions

Part Two

CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2005 Philip A. Bernstein

2/15/05 2

Outline
1. A M odel for Concurrency Control
2. Serializability Theory
3. Synchronization Requirem ents for Recoverability
4. Two-Phase Locking
5. Implem enting Two-Phase Locking
6. Locking Performance
7. M ultigranularityLocking (revisited)
8. Hot Spot Techniques
9. Query-Update Techniques
10. Phantoms
11. Shared Disk Systems
12. B-Trees
13. Tree locking

2/15/05 3

8.6 Locking Performance

• Deadlocks are rare
–up to 1% -2% of transactions deadlock

• The one exception to this is lock conversions
–r-lock a record and later upgrade to w-lock

– e.g., Ti= read(x) … write(x)

– if two txnsdo this concurrently, they’ll deadlock
(both get an r-lock on x before either gets a w-lock)

– To avoid lock conversion deadlocks, get a w-lock first
and down-grade to an r-lock if you don’t need to write.

– Use SQL Update statem ent or explicit program hints

2/15/05 4

Conversions in M S SQL Server

• Update-lock prevents lock conversion deadlock.
–Conflicts with other update and write locks, but not
with read locks.

– Only on pages and rows (not tables)

• You get an update lock by using the UPDLOCK
hint in the FROM clause

Select Foo.A
From Foo(UPDLOCK)
W here Foo.B = 7

2/15/05 5

Blocking and Lock Thrashing

Throughput

Low

High

of Active Txns
Low High

• The locking perform ance problem is too much delay
due to blocking
–little delay until locks are saturated
– then major delay, due to the locking bottleneck
– thrashing-the point where throughput decreases with
increasing load

thrashing

2/15/05 6

M ore on Thrashing

• It’s purely a blocking problem
–It happens even when the abort rate is low

• As number of transactions increase
–each additional transaction is more likely to block

– but first, it gathers som e locks, increasing the
probability others will block (negative feedback)

2

2/15/05 7

Avoiding Thrashing

• If over 30% of active transactions are blocked,
then the system is (nearly) thrashing
so reduce the number of active transactions

• Tim eout-based deadlock detection mistakes
–They happen due to long lock delays

– So the system is probably close to thrashing

– So if deadlock detection rate is too high (over 2%)
reduce the number of active transactions

2/15/05 8

Interesting Sidelights
• By getting all locks before transaction Start, you
can increase throughput at the thrashing point
because blocked transactions hold no locks
–But it assumes you get exactly the locks you need
and retries of get-all-locks are cheap

• Pure restart policy -abort when there’s a conflict
and restart when the conflict disappears
–If aborts are cheap and there’s low contention for
other resources, then this policy produces higher
throughput before thrashing than a blocking policy

– But response tim e is greater than a blocking policy

2/15/05 9

How to Reduce Lock Contention
• If each transaction holds a lock L for tseconds,
then the maximum throughput is 1/ttxns/second

Start CommitLock L

t

• To increase throughput, reduce t (lock holding tim e)
–Set the lock later in the transaction’s execution
(e.g., defer updates till commit tim e)

– Reduce transaction execution tim e (reduce path length,
read from disk before setting locks)

– Split a transaction into smaller transactions
2/15/05 10

Reducing Lock Contention (cont’d)
• Reduce number of conflicts

–Use finer grained locks, e.g., by partitioning tables
vertically

Part# Price OnHandPartNameCatalogPage

Part# Price OnHand Part# PartNameCatalogPage

– Use record-level locking (i.e., select a database
system that supports it)

2/15/05 11

M athematical M odel of Locking

• N transactions each own K/2 locks on average
–KN/2 in total

• Each lock request has probability KN/2D of
conflicting with an existing lock.

• Each transaction requests K locks, so its probability
of experiencing a conflict is K2N/2D.

• Probability of a deadlock is proportional to K4N/D2

– Prob(deadlock) / Prop(conflict) = K2/D

– if K=10 and D = 106, then K2/D = .0001

• K locks per transaction

• D lockable data items

• N transactions

• T time between lock requests

2/15/05 12

8.7 M ultigranularityLocking (M GL)

• Allow different txnsto lock at different granularity
–big queries should lock coarse-grained data (e.g. tables)

– short transactions lock fine-grained data (e.g. rows)

• Lock m anager can’t detect these conflicts
–each data item (e.g., table or row) has a different id

• M ultigranularity locking “trick”
–exploit the natural hierarchy of data containment

– before locking fine-grained data, set intention lockson
coarse grained data that contains it

– e.g., before setting a read-lock on a row, get an
intention-read-lock on the table that contains the row

3

2/15/05 13

M GL Type and Instance Graphs
Database

Area

File

Record

DB1

A1 A2

F1 F2 F3

R1.1 R1.2 R2.1 R2.2 R2.3 R2.1 R2.2

Lock Type
Graph

Lock Instance Graph

• Before setting a read lock on R2.3, first set an intention-read
lock on DB1, then A2, and then F2.

• Set locks root-to-leaf. Release locks leaf-to-root.
2/15/05 14

M GL Compatibility M atrix

r w ir iw riw

r y n y n n

w n n n n n

ir y n y y y

iw n n y y n

riw n n y n n

riw = read with
intent to write,
for a scan that
updates some
of the records it
reads

• E.g., irconflicts with w because irsays there’s a fine-
grained r-lock that conflicts with a w-lock on the container

• To r-lock an item, need an r-, ir-or riw-lock on its parent

• To w-lock an item, need a w-, iw-or riw-lock on its parent

2/15/05 15

M GL Complexities
• Relational DBM Ssuse M GL to lock SQL queries,
short updates, and scans with updates.

• Use lock escalation -start locking at fine-grain and
escalate to coarse grain after nth lock is set.

Area

File

Record

Index

Index Entry

• The lock type graph is a
directed acyclic graph, not
a tree, to cope with indices

• R-lock one path to an item.
W -lock all paths to it.

2/15/05 16

M S SQL Server

• M S SQL Server can lock at table, page, and row level.
• Uses intention read (“share”) and intention write
(“exclusive”) locks at the table and page level.

• Tries to avoid escalation by choosing the “appropriate”
granularity when the scan is instantiated.

Table

Page

Index Range Extent

2/15/05 17

8.8 Hot Spot Techniques

• If each txnholds a lock for tseconds, then the
max throughput is 1/ttxns/second for that lock.

• Hot spot -A data item that’s m ore popular than
others, so a large fraction of active txnsneed it
–Summary information (total inventory)

– End-of-file marker in data entry application

– Counter used for assigning serial numbers

• Hot spots often create a convoyof transactions.
The hot spot lock serializes transactions.

2/15/05 18

Hot Spot Techniques (cont’d)

• Special techniques are needed to reduce t
–Keep the hot data in main memory

– Delay operations on hot data till commit time

– Use optimistic methods

– Batch up operations to hot spot data

– Partition hot spot data

4

2/15/05 19

Delaying Operations Until Commit

• Data m anager logs each transaction’s updates

• Only applies the updates (and sets locks) after
receiving Com mit from the transaction

• IM S Fast Path uses this for
–Data Entry DB

– M ain Storage DB

• W orks for write, insert, and delete, but not read

2/15/05 20

Locking Higher-Level Operations
• Read is often part of a read-write pair, such as
Increm ent(x, n), which adds constant n to x,
but doesn’t return a value.

• Increm ent (and Decrement) com mute

• So, introduce Increm ent and Decrem ent locks

r w inc dec
r y n n n
w n n n n
inc n n y y
dec n n y y

• But if Inc and Dec have a
threshold (e.g. a quantity of
zero), then they conflict
(when the threshold is near)

2/15/05 21

Solving the Threshold Problem
Another IM S Fast Path Technique

• Use a blind Decrement (no threshold) and
Verify(x, n), which returns true if x ‡ n

• Re-execute Verify at com mit time
– If it returns a different value than it did during normal
execution, then abort

– It’s like checking that the threshold lock you didn’t
set during Decrement is still valid.

bEnough = Verify(iQuantity, n);
If (bEnough) Decrement(iQuantity, n)
else print (“not enough”);

2/15/05 22

Optimistic Concurrency Control

• The Verify trick is optimistic concurrency control

• M ain idea -execute operations on shared data
without setting locks. At com mit time, test if there
were conflicts on the locks (that you didn’t set).

• Often used in client/server systems
– Client does all updates in cache without shared locks

– At commit time, try to get locks and perform updates

2/15/05 23

Batching
• Transactions add updates to a mini-batch and only
periodically apply the mini-batch to shared data.
– Each process has a private data entry file,
in addition to a global shared data entry file

– Each transaction appends to its process’ file

– Periodically append the process file to the shared file

• Tricky failure handling
– Gathering up private files

– Avoiding holes in serial number order

2/15/05 24

Partitioning

• Split up inventory into partitions

• Each transaction only accesses one partition

• Example
– Each ticket agency has a subset of the tickets

– If one agency sells out early, it needs a way to
get more tickets from other agencies (partitions)

5

2/15/05 25

8.9 Query-Update Techniques
• Queries run for a long tim e and lock a lot of data —
a perform ance nightmare when trying also to run
short update transactions

• There are several good solutions
– Use a data warehouse

– Accept weaker consistency guarantees

– Use multiversion data

• Solutions trade data quality or timeliness for
performance

2/15/05 26

Data W arehouse
• A data warehouse contains a snapshot of the DB
which is periodically refreshed from the TP DB

• All queries run on the data warehouse

• All update transactions run on the TP DB

• Queries don’t get absolutely up-to-date data

• How to refresh the data warehouse?
– Stop processing transactions and copy the TP DB to the
data warehouse. Possibly run queries while refreshing

– Treat the warehouse as a DB replica and use a replication
technique

2/15/05 27

Degrees of Isolation
• Serializability = Degree 3 Isolation

• Degree 2 Isolation (a.k.a. cursor stability)
– Data manager holds read-lock(x) only while reading x,
but holds write locks till commit (as in 2PL)

– E.g. when scanning records in a file, each get-next-record
releases lock on current record and gets lock on next one

– read(x) is not “repeatable” within a transaction, e.g.,
rl1[x] r1[x] ru1[x] wl2[x] w2[x] wu2[x] rl1[x] r1[x] ru1[x]

– Degree 2 is commonly used by ISAM file systems

– Degree 2 is often a DB system’s default behavior!
And customers seem to accept it!!!

2/15/05 28

Degrees of Isolation (cont’d)

• Could run queries Degree 2 and updaters Degree 3
– Updaters are still serializable w.r.t. each other

• Degree 1 -no read locks; hold write locks to com mit

• Unfortunately, SQL concurrency control standards
have been stated in terms of “repeatable reads” and
“cursor stability” instead of serializability, leading
to much confusion.

2/15/05 29

ANSI SQL Isolation Levels

• Uncom mitted Read -Degree 1

• Com mitted Read -Degree 2

• Repeatable Read -Uses read locks and write locks,
but allows “phantoms”

• Serializable -Degree 3

2/15/05 30

M S SQL Server
• Lock hints in SQL FROM clause

– All the ANSI isolation levels, plus …

– UPDLOCK -use update locks instead of read locks

– READPAST -ignore locked rows (if running read
committed)

– PAGLOCK -use page lock when the system would
otherwise use a table lock

– TABLOCK -shared table lock till end of command or
transaction

– TABLOCKX -exclusive table lock till end of
command or transaction

6

2/15/05 31

M ultiversion Data
• Assum e record granularity locking

• Each write operation creates a new version instead
of overwriting existing value.

• So each logical record has a sequence of versions.

• Tag each record with transaction id of the
transaction that wrote that version

Tid Previous E# Name Other fields
123 null 1 Bill
175 123 1 Bill
134 null 2 Sue
199 134 2 Sue
227 null 27 Steve

2/15/05 32

M ultiversion Data (cont’d)
• Execute update transactions using ordinary 2PL

• Execute queries in snapshot mode
– System keeps a commit listof tidsof all committed txns

– W hen a query starts executing, it reads the commit list

– W hen a query reads x, it reads the latest version of x
written by a transaction on its comm it list

– Thus, it reads the database state that existed when it
started running

2/15/05 33

Commit List M anagement
• M aintain and periodically recompute a tidT-Oldest, such
that
– Every active txn’stidis greater than T-Oldest
– Every new tidis greater than T-Oldest
– For every com m itted transaction with tid£ T-Oldest,
its versions are comm itted

– For every aborted transaction with tid£ T-Oldest,
its versions are wiped out

• Queries don’t need to know tids£ T-Oldest
– So only m aintain the com mit list for tids> T-Oldest

2/15/05 34

M ultiversion Garbage Collection

• Can delete an old version of x if no query will
ever read it
– There’s a later version of x whose tid ≤ T-Oldest
(or is on every active query’s comm it list)

• Originally used in Prime Computer’s
CODASYL DB system and Oracle’s Rdb/VM S

2/15/05 35

Oracle M ultiversion
Concurrency Control

• Data page contains latest version of each record, which
points to older version in rollback segm ent.

• Read-committed query reads data as of its start time.

• Read-only isolation reads data as of transaction start tim e.

• “Serializable” query reads data as of the txn’sstart time.
– An update checks that the updated record was not m odified after
txnstart time.

– If that check fails, Oracle returns an error.

– If there isn’t enough history for Oracle to perform the check,
Oracle returns an error. (You can control the history area’s size.)

– W hat if T1 and T2 m odify each other’s readset concurrently?

2/15/05 36

Oracle Concurrency Control (cont’d)

• The result is not serializable!

• In any SR execution, one transaction would have
read the other’s output

r1[x] r1[y] r2[x] r2[y] w1[x¢] c1 w2[y¢] c2

7

2/15/05 37

8.10 Phantoms
• Problems when using 2PL with inserts and deletes

T1: Read Accounts 1, 2, and 3
T2: Insert Accounts[4, Tacoma, 100]
T2: Read Assets(Tacoma), returns 500
T2: W rite Assets(Tacoma, 600)
T1: Read Assets(Tacoma), returns 600
T1:Com mit

Acct# Location Balance Location Total

1 Seattle 400
2 Tacoma 200
3 Tacoma 300

Seattle 400
Tacoma 500

Accounts Assets

The phantom record

2/15/05 38

The Phantom Phantom Problem
• It looks like T1 should lock record 4, which isn’t
there!

• W hich of T1’s operations determined that there
were only 3 records?
– Read end-of-file?

– Read record counter?

– SQL Select operation?

• This operation conflicts with T2’s Insert
Accounts[4,Tacoma,100]

• Therefore, Insert Accounts[4,Tacom a,100]
shouldn’t run until after T1com mits

2/15/05 39

Avoiding Phantoms -Predicate Locks
• Suppose a query reads all records satisfying
predicate P. For example,
– Select * From Accounts W here Location = “Tacoma”
– Normally would hash each record id to an integer lock id
– And lock control structures. Too coarse grained.

• Ideally, set a read lock on P
– which conflicts with a write lock Q if some record can
satisfy (P and Q)

• For arbitrary predicates, this is too slow to check
– Not within a few hundred instructions, anyway

2/15/05 40

Precision Locks

• Suppose update operations are on single records

• M aintain a list of predicate Read-locks

• Insert, Delete, & Update write-lock the record and
check for conflict with all predicate locks

• Query sets a read lock on the predicate and check
for conflict with all record locks

• Cheaper than predicate satisfiability, but still too
expensive for practical implementation.

2/15/05 41

8.11 Shared Disk Systems

• Use a version number on the page and in the lock

Process A

P

r2

Process B

P

r7

P

• Can cache a page in two processes
that write-lock different records

• Only one process at a time can
have write privilege

• Use a global lock manager

• W hen setting a write lock on P,
may need to refresh the cached
copy from disk (if another process
recently updated it)

2/15/05 42

Shared Disk System

• W hen a process sets the lock, it tells the lock
manager version number of its cached page.

• A process increm ents the version number the first
time it updates a cached page.

• W hen a process is done with an updated page, it
flushes the page to disk and then increments
version number in the lock.

8

2/15/05 43

Logging

• Since updates are happening on different
systems, where is the log?

• A single log server is simplest, but makes
logging more expensive.

• Be careful not to flush to the log until
necessary.
– This requires locally-assigned LSNs

– M ust flush the log before flushing an updated page

2/15/05 44

8.12 B-Trees
• An indexm aps field values to record ids.

– Record id = [page-id, offset-within-page]

– M ost comm on DB index structures: hashing and B-trees

– DB index structures are page-oriented

• Hashing uses a function H:Vfi B, from field values
to block numbers.
–V = social security numbers. B = {1 .. 1000}
H(v) = v mod 1000

– If a page overflows, then use an extra overflow page

– At 90% load on pages, 1.2 block accesses per request!

– BUT, doesn’t help for key range access (10 < v < 75)

2/15/05 45

B-Tree Structure

Ki Pi Ki+1K1 P1 Kn-1 Pn.

K í P í K í+1K 1́ P 1́ K ń-1 P ń.

• Index node is a sequence of [pointer, key] pairs

• K1 < K2 < … < Kn-2 < Kn-1

• P1 points to a node containing keys < K1

• Pipoints to a node containing keys in range [Ki-1, Ki)

• Pn points to a node containing keys > Kn-1

• So, K ́1 < K ́2 < … < K ́n-2 < K ́n-1

2/15/05 46

Example n=3
127 496

14 83 221 352

127 145 189 221 245 320

521 690

352 353 487

• Notice that leaves are sorted by key, left-to-right

• Search for value v by following path from the root

• If key = 8 bytes, ptr= 2 bytes, page = 4K, then n = 409

• So 3-level index has up to 68M leaves (4093)

• At 20 records per leaf, that’s 136M records

2/15/05 47

Insertion
• To insert key v, search for the leaf where v should appear

• If there’s space on the leave, insert the record

• If no, split the leaf in half, and split the key range in its
parent to point to the two leaves

19 --

12 14 17
X

15 19

12 14

X

15 17

To insert key 15
•split the leaf
•split the parent’s range [0, 19)
to [0, 15) and [15, 19)
•if the parent was full, you’d
split that too (not shown here)
•this automatically keeps the
tree balanced

2/15/05 48

B-Tree Observations
• Delete algorithm merges adjacent nodes < 50% full,
but rarely used in practice

• Root and most level-1 nodes are cached, to reduce
disk accesses

• Secondary (non-clustered) index -Leaves contain
[key, record id] pairs.

• Prim ary (clustered) index -Leaves contain records

• Use key prefix for long (string) key values
–drop prefix and add to suffix as you move down the tree

9

2/15/05 49

Key Range Locks
• Lock on B-tree key range is a cheap predicate lock

127 496

221 352

221 245 320

•Select Dept W here ((Budget > 250)
and (Budget < 350))

•lock the key range [221, 352) record
•only useful when query is on an
indexed field

• Commonly used with multi-granularity locking

– Insert/delete locks record and intention-write locks range

– M GL tree defines a fixed set of predicates, and thereby
avoids predicate satisfiability

2/15/05 50

8.13 Tree Locking
• Can beat 2PL by exploiting root-to-leaf access in a
tree

• If searching for a leaf, after setting a lock on a node,
release the lock on its parent

A

B C D

E F

wl(A) wl(B) wu(A) wl(E) wu(B)

• The lock order on the root serializes access
to other nodes

2/15/05 51

B-tree Locking
• Root lock on a B-tree is a bottleneck

• Use tree locking to relieve it

• Problem : node splits

• So, don’t unlock a node till you’re sure its child won’t split
(i.e. has space for an insert)

• Implies different locking rules for different ops
(search vs. insert/update)

19 --

12 14 17
X

P

C

If you unlock P before splitting C,
then you have to back up and lock
P again, which breaks the tree
locking protocol.

2/15/05 52

B-link Optimization
• B-link tree -Each node has a side pointer to the next

• After searching a node, you can release its lock before
locking its child

– r1[P] r2[P] r2[C] w2[C] w2[C]́ w2[P] r1[C] r1[C]́

19 --

12 14 17

P

CX

15 19

12 14

X

15 17

P

C´C

• Searching has the same behavior as if it locked the child
before releasing the parent … and ran later (after the insert)

