
1

2/2/05 1

7. Two Phase Commit

CSEP 545 Transaction Processing
for E-Com merce

Philip A. Bernstein

Copyright ©2005 Philip A. Bernstein

2/2/05 2

Outline

1. Introduction

2. The Two-Phase Com mit (2PC) Protocol

3. 2PC Failure Handling

4. 2PC Optimizations

5. Process Structuring

6. Three Phase Com mit

2/2/05 3

7.1 Introduction
• Goal -ensure the atomicity of a transaction that
accesses multiple resource managers

• (Recall, resource abstracts data, messages, and other
items that are shared by transactions.)

• W hy is this hard?
–W hat if resource manager RM ifails after a transaction
commits at RM k?

– W hat if other resource managers are down when RM i

recovers?

– W hat if a transaction thinks a resource manager failed
and therefore aborted, when it actually is still running?

2/2/05 4

Assumptions

• Each resource m anager independently com mits or
aborts a transaction atomically on its resources.

• Hom e(T) decides when to start com mitting T

• Hom e(T) doesn’t start com mitting T until T
terminates at all nodes (possibly hard)

• Resource m anagers fail by stopping
–no Byzantine failures, where a failed process exhibits
arbitrary behavior, such as sending the wrong message

2/2/05 5

Problem Statement
• Transaction T accessed data at resource managers
R1, … Rn.

• The goal is to either
–commit T at all of R1, … Rn, or

– abort T at all of R1, … Rn

– even if resource managers, nodes and communications
links fail during the commit or abort activity

• That is, never com mit at Ribut abort at Rk.

2/2/05 6

7.2 Two-Phase Commit
• Two phase com mit (2PC) is the standard protocol
for making com mit and abort atomic

• Coordinator-the component that coordinates
com mitment at home(T)

• Participant-a resource manager accessed by T

• A participant P is ready to com mit T if all of T’s
after-images at P are in stable storage

• The coordinator must not com mit T until all
participants are ready
–If P isn’t ready, T commits, and P fails, then P can’t
commit when it recovers.

2

2/2/05 7

The Protocol
1 (Begin Phase 1) The coordinator sends a

Request-to-Prepare m essage to each participant
2 The coordinator waits for all participants to vote

3 Each participant
votes Prepared if it’s ready to comm it
may vote No for any reason
may delay voting indefinitely

4 (Begin Phase 2) If coordinator receives Prepared
from allparticipants, it decides to com mit.
(The transaction is now com mitted.)
Otherwise, it decides to abort.

2/2/05 8

The Protocol (cont’d)

5 The coordinator sends its decision to all
participants (i.e. Commit or Abort)

6 Participants acknowledge receipt of Commit or
Abort by replying Done.

2/2/05 9

Case 1: Commit

Coordinator Participant

Request-to-Prepare

Prepared

Commit

Done

2/2/05 10

Case 2: Abort

Coordinator

Request-to-Prepare

No

Abort

Done

Participant

2/2/05 11

Performance

• In the absence of failures, 2PC requires 3
rounds of messages before the decision is m ade
– Request-to-prepare

– Votes

– Decision

• Done m essages are just for bookkeeping
– they don’t affect response tim e

– they can be batched

2/2/05 12

Uncertainty

• Before it votes, a participant can abort unilaterally

• After a participant votes Prepared and before it receives the
coordinator’s decision, it is uncertain. It can’t unilaterally
commit or abort during its uncertainty period.

Coordinator Participant
Request-to-Prepare

Prepared

Commit
Done

Uncertainty
Period

3

2/2/05 13

Uncertainty (cont’d)

• The coordinator is never uncertain

• If a participant fails or is disconnected from
the coordinator while it’s uncertain,
at recovery it must find out the decision

2/2/05 14

The Bad News Theorems
• Uncertainty periods are unavoidable

• Blocking-a participant must await a repair before
continuing. Blocking is bad.

• Theorem 1 -For every possible com mit protocol
(not just 2PC), a communications failure can cause
a participant to becom e blocked.

• Independent recovery-a recovered participant can
decide to commit or abort without com municating
with other nodes

• Theorem 2 -No com mit protocol can guarantee
independent recovery of failed participants

2/2/05 15

7.3 2PC Failure Handling

• Failure handling -what to do if the coordinator or
a participant tim es out waiting for a m essage.
– Remember, all failures are detected by timeout

• A participant times out waiting for coordinator’s
Request-to-prepare.
– It decides to abort.

• The coordinator tim es out waiting for a
participant’s vote
– It decides to abort

2/2/05 16

2PC Failure Handling (cont’d)

• A participant that voted Prepared tim es out waiting
for the coordinator’s decision
– It’s blocked.
– Use a termination protocol to decide what to do.
– Naïve termination protocol -wait till the coordinator
recovers

• The coordinator tim es out waiting for Done
– it must resolicit them, so it can forgetthe decision

2/2/05 17

Forgetting Transactions

• After a participant receives the decision, it may
forget the transaction

• After the coordinator receives Done from all
participants, it may forget the transaction

• A participant must not reply Done until its com mit
or abort log record is stable
– Else, if it fails, then recovers, then asks the coordinator
for a decision, the coordinator may not know

2/2/05 18

Logging 2PC State Changes
• Logging may be eager

– m eaning it’s flushed to disk before the next Send M essage

• Or it may be lazy= not eager

Coordinator
Participant

Request-to-Prepare

Prepared

Commit
Done

Log comm it
(eager)

Log comm it (eager)

Log comm it (lazy)

Log prepared (eager)

Log Start2PC
(eager)

4

2/2/05 19

Coordinator Recovery
• If the coordinator fails and later recovers, it must know the
decision. It must therefore log

– the fact that it began T’s 2PC protocol, including the list
of participants, and

– Commit or Abort, before sending Commit or Abort to any
participant (so it knows whether to commit or abort after
it recovers).

• If the coordinator fails and recovers, it resends the decision
to participants from whom it doesn’t remember getting
Done
– If the participant forgot the transaction, it replies Done
– The coordinator should therefore log Done after it has
received them all.

2/2/05 20

Participant Recovery
• If a participant P fails and later recovers, it first performs
centralized recovery (Restart)

• For each distributed transaction T that was active at the
time of failure

– If P is not uncertain about T, then it unilaterally aborts T

– If P is uncertain, it runs the termination protocol
(which may leave P blocked)

• To ensure it can tell whether it’s uncertain, P must log its
vote beforesending it to the coordinator

• To avoid becoming totally blocked due to one blocked
transaction, P should reacquire T’s locks during Restart
and allow Restart to finish before T is resolved.

2/2/05 21

Heuristic Commit
• Suppose a participant recovers, but the termination
protocol leaves T blocked.

• Operator can guess whether to com mit or abort
– M ust detect wrong guesses when coordinator recovers

– M ust run compensations for wrong guesses

• Heuristic com mit
– If T is blocked, the local resource manager (actually,
transaction manager) guesses

– At coordinator recovery, the transaction managers jointly
detect wrong guesses.

2/2/05 22

7.4 2PC Optimizations and Variations

• Optimizations
– Read-only transaction

– Presum ed Abort

– Transfer of coordination

– Cooperative term ination protocol

• Variations
– Re-infection

– Phase Zero

2/2/05 23

Read-only Transaction
• A read-only participant need only respond to phase
one. It doesn’t care what the decision is.

• It responds Prepared-Read-Only to Request-to-Prepare,
to tell the coordinator not to send the decision

• Limitation -All other participants must be fully
terminated, since the read-only participant will
release locks after voting.
– No more testing of SQL integrity constraints

– No more evaluation of SQL triggers

2/2/05 24

Presumed Abort
• After a coordinator decides Abort and sends Abort to
participants, it forgets about T imm ediately.

• Participants don’t acknowledge Abort (with Done)

Coordinator
Participant

Request-to-Prepare

Prepared

Abort
Log abort
(forget T)

Log abort (forget T)

Log prepared

Log Start2PC

• If a participant times out waiting for the decision, it asks the
coordinator to retry.

– If the coordinator has no info for T, it replies Abort.

5

2/2/05 25

Transfer of Coordination
If there is one participant, you can save a round of messages
1. Coordinator asks participant to prepare and becom e the
coordinator.

2. The participant (now coordinator) prepares, commits, and
tells the form er coordinator to commit.

3. The coordinator commits and replies Done.

Coordinator
Participant

Request-to-Prepare-and
-transfer-coordination

CommitLog comm it
Log comm itted

Log prepared

Done

•Supported by som e app servers, but not in any standards.
2/2/05 26

Cooperative Termination Protocol (CTP)

• Assume coordinator includes a list of participants in
Request-to-Prepare.

• If a participant times-out waiting for the decision,
it runs the following protocol.

1. Participant P sends Decision-Req to other participants
2. If participant Q voted No or hasn’t voted or received Abort
from the coordinator, it responds Abort

3. If participant Q received Commit from the coordinator,
it responds Commit.

4. If participant Q is uncertain, it responds Uncertain
(or doesn’t respond at all).

• If all participants are uncertain, then P remains blocked.

2/2/05 27

Cooperative Termination Issues
• Participants don’t know when to forget T,
since other participants m ay require CTP
– Solution 1 -After receiving Done from all participants,
coordinator sends End to all participants

– Solution 2 -After receiving a decision, a participant may
forget T any tim e.

• To ensure it can run CTP, a participant should
include the list of participants in the vote log record.

2/2/05 28

Reinfection
• Suppose A is coordinator and B and C are participants

– A asks B and C to prepare
– B votes prepared
– C calls B to do som e work. (B is reinfected.)
– B does the work and tells C it has prepared,
but now it expects C to be its coordinator.

– W hen A asks C to prepare, C propagates the request to B
and votes prepared only if both B and C are prepared.
(See Tree of Processes discussion later.)

• Can be used to implem ent integrity constraint checking,
triggers, and other commit-time processing, without
requiring an extra phase (between phases 1 and 2 of 2PC).

2/2/05 29

Phase Zero
• Suppose a participant P is caching transaction T’s
updates that P needs to send to an RM (another
participant) before T commits.
– P m ust send the updates after T invokes Comm it, to ensure P
has all of T’s updates

– P m ust send the updates before the RM prepares, to ensure the
updates are made stable during phase one.

– Thus, we need an extra phase, before phase 1.

• A participant explicitly enlists for phase zero.
– It doesn’t ackphase zero until it finishes flushing its cached
updates to other participants.

• Supported in M icrosoft DTC.

2/2/05 30

7.5 Process Structuring
• To support multiple RM son multiple nodes, and minimize
communication, use one transaction manager (TM) per node

• TM may be in the OS (VAX/VM S, W in), the app server
(IBM CICS), DBM S, or a separate product (early Tandem).

• TM performs coordinator and participant roles for all
transactions at its node.

• TM communicates with local RM sand remote TM s.

Transaction M anager

Resource M anagerResource M anagerResource M anager

Application

Enlist and 2PC ops

RM ops
StartTransaction,
Commit, RollbackTX

XA
2PC ops Other

TM s

6

2/2/05 31

Enlisting in a Transaction
• W hen an Application in a transaction T first calls an RM ,
the RM must tell the TM it is part of T.

• Called enlistingor joiningthe transaction

Transaction M anager

Resource M anager

Application

3. Enlist(T)

2. Write(X, T)
1. StartTransaction
(returns Tranction ID)

2/2/05 32

Enlisting in a Transaction (cont’d)
• W hen an application A in a transaction T first calls an
application B at another node, B must tell its local TM that
the transaction has arrived.

Transaction
M anager

Communications
M anager

Application A

2. AddBranch(N, T)

1. Call(AP-B, T)

Transaction
M anager

Communications
M anager

Application B

4. StartBranch(N, T)

5. Call(AP-B, T)

3. Send Call(AP-B, T)

Node M Node N

2/2/05 33

Tree of Processes
• Application calls to RM sand other applications induces a
tree of processes

• Each internal node is the coordinator for its descendants,
and a participant to its parents.

• This adds delay to two-phase commit
• Optimization: flatten the tree, e.g. during phase 1

TM 1

TM 2
TM 3

TM 4

RM 1

RM 2 RM 3
RM 4

RM 5

Different
Nodes

2/2/05 34

Handling M ultiple Protocols
• Communication managers solve the problem of handling
multiple 2PC protocols by providing
– a model for communication between address spaces
– a wire protocol for two-phase comm it

• But, expect restrictions on multi-protocol interoperation.
• The RM only talks to the TM -RM interface. The multi-
protocol problem is solved by the TM vendor.

Transaction M anager

Resource M anagerResource M anagerResource M anager

Application

Enlist and 2PC ops

RM ops

TX

XA

2PC ops

Other
TM s

Communication
M anager

Send/receive msg

XA+

2/2/05 35

Complete W alkthrough
Application:

Start-trans
Call DBM S
Call rem ote app
Commit

Application

Comm M gr

Database
System

TxnM anager

Transaction
M anager

Comm
M anager

8. Req-prepare
9. Prepared
10. Commit
11. Done

1. Start Tran
4. Add-branch
7. Commit

2. Call DBMS

5. Call

6. Start-branch

3. Enlist
DBMS

2/2/05 36

Customer Checklist
• Does your DBM S support 2PC?

• Does your execution environment support it? If so,
– with what DBM Ss?

– Using what protocol(s)?

– Do these protocols m eet your interoperation needs?

• Is the TM -DBM S interface open (for home-grown
DBM Ss)?

• Can an operator com mit/abort a blocked txn?
– If so, is there automated support for reconciling
mistakes?

– Is there automated heuristic commit?

7

2/2/05 37

7.6 Three Phase Commit-The Idea
• 3PC prevents blocking in the absence of communications
failures (unrealistic, but …). It can be made resilient to
communications failures, but then it may block

• 3PC is muchmore complex than 2PC, but only marginally
improves reliability — prevents som e blocking situations.

• 3PC therefore is not used much in practice

• M ain idea: becoming certain and deciding to comm it are
separate steps.

• 3PC ensures that if any operational process is uncertain,
then no(failed or operational) process has committed.

• So, in the termination protocol, if the operational processes
are all uncertain, they can decide to abort (avoids blocking).

2/2/05 38

Three Phase Commit-The Protocol
1. (Begin phase 1) Coordinator C sends Request-to-prepare
to all participants

2. Participants vote Prepared or No, just like 2PC.

3. If C receives Prepared from allparticipants, then (begin
phase 2) it sends Pre-Commit to all participants.

4. Participants wait for Abort or Pre-Commit.
Participant acknowledges Pre-comm it.

5. After C receives acksfrom all participants, or times out on
som e of them, it (begin third phase) sends Commit to all
participants (that are up)

2/2/05 39

3PC Failure Handling

• If coordinator tim es out before receiving Prepared
from all participants, it decides to abort.

• Coordinator ignores participants that don’t ackits
Pre-Com mit.

• Participants that voted Prepared and timed out
waiting for Pre-Com mit or Com mit use the
termination protocol.

• The termination protocol is where the complexity
lies. (E.g. see [Bernstein, Hadzilacos, Goodm an 87],
Section 7.4)

