
1

1/25/05 1

5. Database System
Recovery

CSEP 545 Transaction Processing
for E-Com merce

Philip A. Bernstein

Copyright ©2005 Philip A. Bernstein

1/25/05 2

Outline

1. Introduction

2. Recovery M anager

3. Two Non-Logging Algorithms

4. Log-based Recovery

5. M edia Failure

1/25/05 3

1. Introduction

• A database may become inconsistent because of a
–transaction failure (abort)
– database system failure (possibly caused by OS crash)
– media crash (disk-resident data is corrupted)

• The recovery system ensures the database contains
exactly those updates produced by com mitted
transactions
–I.e. atomicity and durability, despite failures

1/25/05 4

Assumptions
• Two-phase locking, holding write locks until after
a transaction commits. This implies
–recoverability

– no cascading aborts

– strictness (never overwrite uncommitted data)

• Page-level everything (for now)
–page-granularity locks

– database is a set of pages

– a transaction’s read or write operation operates on an
entire page

– we’ll look at record granularity later

1/25/05 5

Storage M odel

• Stable database -survives system failures

• Cache (volatile) -contains copies of some pages,
which are lost by a system failure

Stable Database

Log

Read, W rite

Fetch, Flush
Pin, Unpin, Deallocate

Cache M anager

Cache

Read, W rite

1/25/05 6

Stable Storage
• W rite(P) overwrites the entire contents of P on the
disk

• If W rite is unsuccessful, the error might be
detected on the next read ...
–e.g. page checksum error => page is corrupted

• … or m aybe not
–W rite correctly wrote to the wrong location

• W rite is the only operation that’s atomic with
respect to failures and whose successful execution
can be determined by recovery procedures.

2

1/25/05 7

The Cache
• Cache is divided into page-sized slots.
• Dirty bittells if the page was updated since it was last
written to disk.

• Pin counttells number of pin ops without unpins

Page Dirty Bit Cache Address Pin Count
P2 1 91976 1
P47 0 812 2
P21 1 10101 0

• Fetch(P) -read P into a cache slot. Return slot address.

• Flush(P) -If P’s slot is dirty and unpinned, then write it to
disk (i.e. return afterthe disk acks)

1/25/05 8

Cache (cont’d)

• Pin(P) -make P’s slot non-flushable & non-replaceable.
– Non-flushable because P’s content may be inconsistent

– Non-replaceable because someone has a pointer into P or is
accessing P’s content.

• Unpin(P) -releases it.

• Deallocate(P) -allow P’s slot to be reused (even if dirty)

1/25/05 9

Big Picture

Database
System

Query Optimizer
Query Executor
Access M ethod

(record-oriented files)
Page-oriented Files

Database

Recovery manager
Cache manager
Page file manager

Fetch, Flush
Pin, Unpin,
Deallocate

• Record manager is the main user of the cache manager.

• It calls Fetch(P) and Pin(P) to ensure the page is in main
mem ory, non-flushable, and non-replaceable.

1/25/05 10

Latches
• A latchis a short-term lock that gives its owner
access to a page.

• A read latch allows the owner to read the content.

• A write latch allows the owner to modify the
content.

• The latch is usually a bit in a control structure,
not an entry in the lock manager. It can be set and
released much faster than a lock.

• There’s no deadlock detection for latches.

1/25/05 11

The Log

• A sequential file of records describing updates:
–address of updated page

– id of transaction that did the update

– before-imageand after-imageof the page

• W henever you update the cache, also update the log

• Log records for Com mit(Ti) and Abort(Ti)

• Some older systems separated before-images and
after-images into separate log files.

• If opiconflicts with and executes before opk, then
opi’slog record mustprecede opk’slog record
–recovery will replay operations in log-record-order

1/25/05 12

The Log (cont’d)
• To update records on a page:

– Fetch(P) read P into cache

– Pin(P) ensure P isn’t flushed

– write lock (P) for two-phase locking

– write latch (P) get exclusive access to P

– update P update P in cache

– log the update to P append it to the log

– unlatch (P) release exclusive access

– Unpin(P) allow P to be flushed

3

1/25/05 13

2. Recovery M anager
• Processes Com mit, Abort and Restart

• Com mit(T)
–W rite T’s updated pages to stable storage atomically,
even if the system crashes.

• Abort(T)
–Undo the effects of T’s writes

• Restart = recover from system failure
–Abort all transactions that were not committed at the tim e
of the previous failure

– Fix stable storage so it includes all committed writes and
no uncommitted ones (so it can be read by new txns)

1/25/05 14

Recovery M anager M odel

Stable Database

Log

Read,
W rite

Pin, Unpin
Fetch

Cache M anager

Cache

Read, W rite

Recovery M anager

Flush
Deallocate

Transaction 1 Transaction 2 Transaction N

Commit, Abort, Restart

Read,
W rite

Flush, deallocfor normal operat’n
Restart uses Fetch, Pin, Unpin

1/25/05 15

Implementing Abort(T)

• Suppose T wrote page P.

• If P was not transferred to stable storage,
then deallocate its cache slot

• If it was transferred, then P’s before-im age mustbe
in stable storage (else you couldn’t undo after a
system failure)

• Undo Rule-Do not flush an uncom mitted update of
P until P’s before-image is stable. (Ensures undo is
possible.)

–W rite-Ahead Log Protocol-Do not … until P’s
before-image is in the log

1/25/05 16

Avoiding Undo
• Avoid the problem implied by the Undo Rule by
never flushing uncom mitted updates.
–Avoids stable logging of before-images

– Don’t need to undo updates after a system failure

• A recovery algorithm requires undoif an update of
an uncom mitted transaction can be flushed.
–Usually called a stealalgorithm, because it allows a dirty
cache page to be “stolen.”

1/25/05 17

Implementing Commit(T)
• Com mit must be atom ic. So it must be implemented
by a disk write.

• Suppose T wrote P, T com mitted, and then the
system fails. P mustbe in stable storage.

• Redo rule-Don’t com mit a transaction until the
after-images of all pages it wrote are in stable
storage (in the database or log). (Ensures redo is
possible.)
–Often called the Force-At-Commitrule

1/25/05 18

Avoiding Redo
• To avoid redo, flush all of T’s updates to the stable
databasebefore it com mits. (They must be in stable
storage.)
–Usually called a Forcealgorithm, because updates are
forced to disk before commit.

– It’s easy, because you don’t need stable bookkeeping of
after-images

– But it’s inefficient for hot pages. (Consider TPC-A/B.)

• Conversely, a recovery algorithm requires redoif a
transaction may com mit before all of its updates are
in the stable database.

4

1/25/05 19

Avoiding Undo andRedo?
• To avoid both undo and redo

–never flush uncommitted updates (to avoid undo), and

– flush all of T’s updates to the stable databasebefore it
commits (to avoid redo).

• Thus, it requires installing all of a transaction’s
updates into the stable database in one write to disk

• It canbe done, but it isn’t efficient for short
transactions and record-level updates.
–Use shadow paging.

1/25/05 20

Implementing Restart
• To recover from a system failure

–Abort transactions that were active at the failure

– For every committed transaction, redo updates that are in
the log but not the stable database

– Resume normal processing of transactions

• Idempotentoperation -many executions of the
operation have the sam e effect as one execution

• Restart must be idempotent. If it’s interrupted by a
failure, then it re-executes from the beginning.

• Restart contributes to unavailability. So m ake it fast!

1/25/05 21

3. Log-based Recovery
• Logging is the most popular mechanism for
implementing recovery algorithms.

• The recovery manager implements
–Commit -by writing a commit recordto the log and
flushing the log (satisfies the Redo Rule)

– Abort -by using the transaction’s log records to restore
before-images

– Restart -by scanning the log and undoing and redoing
operations as necessary

• The algorithms are fast since they use sequential log
I/O in place of random database I/O. They greatly
affect TP and Restart performance.

1/25/05 22

Implementing Commit
• Every com mit requires a log flush.

• If you can do K log flushes per second, then K is
your m aximum transaction throughput

• Group Com mit Optimization -when processing
com mit, if the last log page isn’t full, delay the
flush to give it time to fill

• If there are multiple data m anagers on a system,
then each data m gr must flush its log to com mit
–If each data mgr isn’t using its log’s update bandwidth,
then a shared log saves log flushes

– A good idea, but rarely supported commercially

1/25/05 23

Implementing Abort
• To implem ent Abort(T), scan T’s log records and install
before images.

• To speed up Abort, back-chain each transaction’s update
records.

Transaction Descriptors

Transaction last log record

T7

Start of Log

End of Log

Ti Pk null pointer

Ti Pm backpointer

Ti’sfirst
log record

1/25/05 24

Satisfying the Undo Rule
• To implem ent the W rite-Ahead Log Protocol, tag each
cache slot with the log sequence number (LSN) of the last
update record to that slot’s page.

Page Dirty Cache Pin LSN
Bit Address Count

P47 1 812 2
P21 1 10101 0

Log
Start

End

On disk

M ain
M emory

• Cache manager won’t flush a page P until P’s last updated
record, pointed to by LSN, is on disk.

• P’s last log record is usually stable before Flush(P),
so this rarely costs an extra flush

• LSN must be updated while latch is held on P’s slot

5

1/25/05 25

Implementing Restart (rev 1)
• Assum e undo and redo are required

• Scan the log backwards, starting at the end.
–How do you find the end?

• Construct a com mit list and recovered-page-list
during the scan (assuming page level logging)

• Com mit(T) record => add T to com mit list

• Update record for P by T
–if P is not in the recovered-page-list then

•add P to the recovered-page-list

•if T is in the commit list, then redo the update,
else undo the update

1/25/05 26

Checkpoints
• Problem -Prevent Restart from scanning back to the
start of the log

• A checkpointis a procedure to limit the amount of
work for Restart

• Com mit-consistent checkpointing
–Stop accepting new update, commit, and abort operations
– M ake list of [active transaction, pointer to last log record]
– Flush all dirty pages
– Append a checkpoint record to log; include the list
– Resume normal processing

• Database and log are now mutually consistent

1/25/05 27

Restart Algorithm (rev 2)

• No need to redo records before last checkpoint, so
–Starting with the last checkpoint, scan forward in the log.

– Redo allupdate records. Process all aborts.
M aintain list of active transactions (initialized to content
of checkpoint record).

– After you’re done scanning, abort all active transactions

• Restart tim e is proportional to the amount of log
after the last checkpoint.

• Reduce restart time by checkpointing frequently.

• Thus, checkpointing must be cheap.

1/25/05 28

Fuzzy Checkpointing
• M ake checkpoints cheap by avoiding synchronized flushing
of dirty cache at checkpoint time.

– Stop accepting new update, commit, and abort operations

– M ake a list of all dirty pages in cache

– M ake list of [active transaction, pointer to last log record]

– Append a checkpoint record to log; include the list

– Resume normal processing

– Initiate low priority flush of all dirty pages

• Don’t checkpoint again until all of the last checkpoint’s
dirty pages are flushed

• Restart begins at second-to-last (penultimate) checkpoint.

• Checkpoint frequency depends on disk bandwidth

1/25/05 29

Operation Logging
• Record locking requires (at least) record logging.

–Suppose records x and y are on page P

– w1[x] w2[y] abort1 commit2 (not strict w.r.t. pages)

• Record logging requires Restart to read a page
before updating it. This reduces log size.

• Further reduce log size by logging descriptionof an
update, not the entire before/after image of record.
–Only log after-image of an insertion

– Only log fields being updated

• Now Restart can’t blindly redo.
–E.g., it must not insert a record twice

1/25/05 30

LSN-based logging
• Each database page P’s header has the LSN of the last log
record whose operation updated P.

• Restart compares log record and page LSN before redoing
the log record’s update U.

– Redo the update only if LSN(P) < LSN(U)

• Undo is a problem. If U’s transaction aborts and you undo
U, what LSN to put on the page?

– Suppose T1 and T2 update records x and y on P

– w1[x] w2[y] c2 a1 (what LSN does a1 put on P?)

– not LSN before w1[x] (which says w2[y] didn’t run)

– not w2[y] (which says w1[x] wasn’t aborted)

6

1/25/05 31

LSN-based logging (cont’d)

• w1[x] w2[y] c2 a1 (what LSN does a1 put on P?)

• W hy not use a1’s LSN?
–must latch all of T1’s updated pages before logging a1
– else, some w3[z] on P could be logged after a1 but be
executed before a1, leaving a1’s LSN on P instead of
w3[z]’s.

1/25/05 32

Logging Undo’s
• Log the undo(U) operation, and use its LSN on P

– CLR = Compensation Log Record = a logged undo

– Do this for all undo’s(during normal abort or recovery)

• This preserves the invariant that the LSN on each page P
exactly describes P’s state relative to the log.

– P contains all updates to P up to and including the LSN
on P, and no updates with larger LSN.

• So every aborted transaction’s log is a palindrom e
of update records and undo records.

• Restart processes Commit and Abort the same way

– It redoes the transaction’s log records.

– It only aborts active transactions after the forward scan

1/25/05 33

Logging Undo’s(cont’d)
• Tricky issues

–M ulti-page updates (it’s best to avoid them)

– Restart grows the log by logging undos.
Each time it crashes, it has more log to process

• Optimization -CLR points to the transaction’s log
record preceding the corresponding “do”.
–Splices out undone work

– Avoids undoing undone work during abort

– Avoids growing the log due to aborts during Restart

DoA1 DoB1 DoC1 UndoC1 UndoB1...

1/25/05 34

Restart Algorithm (rev 3)
• Starting with the last checkpoint, scan forward in the log.

– M aintain list of active transactions (initialized to content
of checkpoint record).

– Redo an update record U for page P only if
LSN(P) < LSN(U).

– After you’re done scanning, abort all active transactions.
Log undoswhile aborting. Log an abort record when
you’re done aborting.

• This style of record logging, logging undo’s, and
replaying history during restart was popularized in
the ARIES algorithm by M ohan et al at IBM .

1/25/05 35

Analysis Pass
• Log flushrecord after a flush occurs (to avoid redo)

• To improve redo efficiency, pre-analyze the log
–Requires accessing only the log, not the database

• Build a Dirty Page Table that contains list of dirty
pages and, for each page, the oldestLSN that must
be redone
–Flush(P) says to delete P from Dirty Page Table
– W rite(P) adds P to Dirty Page Table, if it isn’t there
– Include Dirty Page Table in checkpoint records
– Start at checkptrecord, scan forward building the table

• Also build list of active txnswith lastLSN

1/25/05 36

Analysis Pass (cont’d)

• Start redo at oldest oldestLSN in Dirty Page Table
–Then scan forward in the log, as usual

– Only redo records that might need it,
that is, those where LSN(redorecord) ‡ oldestLSN,
hence there’s no later flush record

– Also use Dirty Page Table to guide page prefetching
•Prefetch pages in oldestLSN order in Dirty Page Table

7

1/25/05 37

Logging B-Tree Operations

• To split a page
–log records deleted from the first page (for undo)

– log records inserted to the second page (for redo)

– they’re the same records, so long them once!

• This doubles the amount of log used for inserts
–log the inserted data when the record is first inserted

– if a page has N records, log N/2 records, every tim e a
page is split, which occurs once for every N/2 insertions

1/25/05 38

User-level Optimizations

• If checkpoint frequency is controllable,
then run some experiments

• Partition DB across more disks to reduce
restart time (if Restart is multithreaded)

• Increase resources (e.g. cache) available to
restart program.

1/25/05 39

Shared Disk System

• Use version number on the page and in the lock

Process A

P

r2

Process B

P

r7

P

• Can cache a page in two processes
that write-lock different records

• Only one process at a time can
have write privilege

• Use a global lock manager

• W hen setting a write lock on P,
may need to refresh the cached
copy from disk (if another process
recently updated it)

1/25/05 40

Shared Disk System

• W hen a process sets the lock, it tells the lock
manager version number of its cached page.

• A process increm ents the version number the first
time it updates a cached page.

• W hen a process is done with an updated page, it
flushes the page to disk and then increments
version number in the lock.

1/25/05 41

4. M edia Failures

• A m edia failureis the loss of some of stable storage.

• M ost disks have M TBF over 10 years

• Still, if you have 10 disks ...

• So shadowed disks are important
–W rites go to both copies. Handshake between W rites to
avoid common failure modes (e.g. power failure)

– Service each read from one copy

• To bring up a new shadow
–Copy tracks from good disk to new disk, one at a time

– A W rite goes to both disks if the track has been copied

– A read goes to the good disk, until the track is copied
1/25/05 42

RAID
• RAID -redundant array of inexpensive disks

–Use an array of N disks in parallel

– A stripeis an array of the ith block from each disk

– A stripe is partitioned as follows:

... ...

M data blocks N-M error
correction blocks

• Each stripe is one logical block, which can
survive a single-disk failure.

8

1/25/05 43

W here to Use Disk Redundancy?

• Preferably for both the DB and log

• But at leastfor the log
–In an undo algorithm, it’s the only place that
has certain before images

– In a redo algorithm, it’s the only place that has
certain after images

• If you don’t shadow the log, it’s a single
point of failure

1/25/05 44

Archiving
• An archiveis a database snapshot used for media recovery.

– Load the archive and redo the log

• To take an archive snapshot

– write a start-archive record to the log

– copy the DB to an archive medium

– write an end-archive record to the log
(or simply mark the archive as complete)

• So, the end-archive record says that all updates before the
start-archive record are in the archive

• Can use the standard LSN-based Restart algorithm to
recover an archive copy relative to the log.

1/25/05 45

Archiving (cont’d)
• To archive the log, use 2 pairs of shadowed disks. Dump
one pair to archive (e.g. tape) while using the other pair for
on-line logging. (I.e. ping-pong to avoid disk contention)

– Optimization -only archive com mitted pages and
purge undo information from the log before archiving

• To do increm ental archive, use an archivebit in each page.

– Each page update sets the bit.

– To archive, copies pages with the bit set, then clear it.

• To reduce media recovery tim e

– rebuild archive from increm ental copies

– partition log to enable fast recovery of a few corrupted
pages

