5.D atabase System
R ecovery

CSEP 545 Transaction Processing
forE-Comm erce

Philp A .Bemsten

Copyright© 2005 Philp A .Bemstein

Outline

1. lhtroduction

2 .Recovery M anager

3.Two Non-Logging A gorithm s
4 .Log-based R ecovery

5.M edia Failure

1. lhtroduction

e A database m ay becom e Inconsistentbecause of a
- transaction failire @bort)
- datgbase system failire ppossbly caused by O S crash)
-medi crash disk-residentdata is conupted)

e The recovery system ensures the database contains
exactly those updates produced by comm itted
transactions

— Ie.atom icity and durability, despite failures

A ssum ptions

e Two-phase locking, holding w rite Jocks until after
a transaction comm its. This n plies
— recoverability
— no cascading aborts
- strictness feverovemw rite uncomm itted data)
e Page-level everything (fornow)
- page-granularity locks
— database isa setof pages
- atransaction’s read orw rite operation operates on an
entire page
- we'll ook at record granulrity hter

10508

Storage M odel

e Stable database - survives system failires
e Cache fvolatle) - contains copies of som e pages,
w hich are lostby a system failure
Fetch, Flush
Pin, Unpin, D eallocate
CacheM anager

Read, W rite .
Read, W rite

|S I‘amembasel I Cache

Stable Storage
e W rite (P) overw rites the entire contents of P on the
disk
e TfW rite isunsuccessfill, the eorm ightbe
detected on the nextread ...
- eg.page checksum enor=> page is conupted
e .. ormaybenot
- W rite cornectly w rote to the w rong location
e W rite is the only operation that’'s atom ic w ith
respect o failures and w hose successful execution
can be determ ned by recovery procedures.

The Cache
e Cache isdivided Into page-sized sbots.
e D ity birtells if the page w as updated since itw as Jast
w ritten to disk.
e Pin count tells num berof pin opsw ithoutunpins

Page | Dty Bi CacheAddess | Pin Count
P, 1 91976 1
D, 0 812 2
P, 1 10101 0

e Fetrh (P) -1ead P into a cache sbot. Retum sbtaddress.
e Fluch P) - IEP’s sbtis dirty and unpinned, then w rite itto
disk ({e.r=tum afterthe disk acks)

L

Cache (cont'd)

e Pin(P) -make P’s sbtnon-flushable & non-replacesble.
- Non-flushable because P’s contentm ay be nconsistent
- Non-eplaceable because som eone has a pointer into P oris
accessing P’s content.
e UnpinP) -releases it.
¢ Dealbcate P) -allow P’ssbttobe rrusad (even if ditty)

B ig Picture
e Record m anager is the m ain userof the cache m anager.

e TtcallsFetch (P) and PIn P) to ensure the page is nm ain
m em ory, non-flushable, and non-replacesble.

Latches
e A latch isa shorttem lock thatgives its owner
access o apage.
e A read latch allow s the ow nerto 1ead the content.
e A write Iatch allow s the ow nerto m odify the
content.

e The latrh isusually a bitin a control stucture,
notan entry In the lock m anager. Tt can be setand
released m uch fBsterthan a Iock.

e There’sno deadlock detection for latches.

10508

10

Gy Pt Feth, Flah
Database [Y e Pin, Unpi,
System 1d-oriented files) D eallocate
Page-oriented Files Recovery m anager
Cachem anager
Page file m anager
D atabase =
2L50e 9
TheLog
e A sequential file of records describing updates:
— address of updated page

- 1d of transaction thatdid the update
- before-in age and after-in age of the page
® W heneveryou update the cache, also update the log
¢ Log recods forComm i£(T,) and Abort(T,)
e Som e older system s separated before-in ages and
after-in ages nto separate log files.
e If op, conflicts w ith and executes before op, , then
op;’s Jog record m ustprecede op, s log record
,— recovery w ill replay operations in log-record-order 1

The Log (cont/d)
e To update records on a page:

— Fetch P) read P nto cache
-PnP) ensure P isn't flushed

- wrte bk @) fortw o-phase Iocking
- wrte latch @) getexclusive access to P
— update P update P 1n cache

- Iog the update to P append itto the g

- unkitch P) 1elease exclusive access
- Unpn @) allow P to be flushed

12

2.Recovery M anager
® Processes Comm it, A bortand R estart

e Comm it(T)
- W rte T’s updated pages to stable storage atom ically.
even if the system crashes.
e Abort(T)

— Undo the effects of T 'sw rites
® Restart= recoverfiom system failure
— Abortall tansactions thatw ere notcomm ited atthe tin e
of the previous failire
- Fix sable storage s0 it includes allcomm ited w rites and
no uncomm ited ones (g0 itcan be read by new txns)

L pe 13

Recovery M anagerM odel

‘Tmnmctionl‘ ‘Tmnactbnz‘ Transacton N
Comm jt,Abort,Remrtl
Reoovery M anager
| Flush
D eallocate
Read,W rie : Read, Read,
rite W rite
H Cache H

w Flush, dealloc fornom alopematn
s ResertusesFetch, Pin, Unpin .

Tm plem enting A bort(T)

e Suppoxe T wiotepage P.

e Tf P w as not ttansferred to stable storage,
then deallocate its cache slot

e Tf itw as transfened, then P’s before-in age m ustbe
T sable sorage €lse you couldn’tundo aftera
system failure)

e Undo Rule -D o not flush an uncom m itted update of
P untilP’s before-in age is stable. Ensuresundo is
possible.)

- W rite-A head Log Protocol -Do not... untdlP’s
before-in age is n the log

1050 15

Avoiding Undo
e Avoid the problem im plied by the Undo Rule by
never flushing uncom m ited updates.
— Avoids sabk Iogging of before-in ages
— Don’tneed t© undo updates aftera system failure
e A recovery algorithm requiresundo if an update of
an uncom m ited transaction can be flushed.

— U sually called a stealalgorithm , because itallow s a dirty
cache page to be “stolen

Im plem enting Comm it(T')

e Comm itm ustbe atom ic. So itmustbe in plem ented
by adisk wrte.

e Suppose T wwte P, T comm itted, and then the
system fails. P mustbe in sable storage.

e Redo mile -Don'tcomm ita transaction untl the
after-im ages of all pages itw 1ote are In sable
storage (In the database or log) . Ensures r=do is
possible.)

— O ften called the ForceA tComm itmile

L pe 17

Avoiding Redo
e To avoid r=do, flush allof T’s updates to the sable
datsbase before itcomm its. (They m ustbe In sable
storage.)
- Usually called a Force algorithm , because updates are
forced to disk before comm it
- I'seasy, because you don’tneed sable bookkesping of
after-im ages
- Buti's mefficient forhotpages. ConsiderTPC A B)
e Conversely, a recovery algorithm requires redo ifa
transaction m ay com m itbefore all of its updates are
I the sEble database.

L pe 18

Avoiding Undo and Redo?

e To avoid both undo and r=do
— never flush uncom m ited updates (o avoid undo), and
— flush allof T "s updates to the sable database before it
comm is (o avoid redo).
e Thus, irequires ms@lling allofa ttansaction’s
updates nto the stable database n one w rite to disk
e Ttcan be done, but it isn‘tefficient for short
transactions and record-level updates.
— U = chadow paghhg.

Im plem enting Restart

e To recoverfrom a system failire
— A bort transactions thatw ere active at the failire

— Forevery comm ited transaction, redo updates thatare In
the Iog butnot the stable database

— Resum e nom alprocessing of transactions
e dem potentoperation -m any executions of the
operation have the sam e effectas one execution
® Restartm ustbe idem potent. If it's mtenupted by a
failure, then tre-executes from the beghning.
e Restart contributes to unavailability . So m ake it fast!

L 20

3.Log-bas=d R ecovery

e 1,ogging is the m ostpopularm echaniam for
In plem enting recovery algorithm s.
e The recovery m anager In plem ents
- Comm it -by w riting a comm itrecord to the log and
fiushing the Jog (satisfies the Redo Ruk)
— Abort - by using the transaction’s log records to restore
before-in ages
— Resart - by scanning the Jog and undoing and r=doing
operations as necessary
e The algorithm s are fast since they use sequential log
I0 inplace of random database I0 . They greatly
affect TP and R estart perfom ance.

10508 21

Inplem enting Comm it

e Every comm itrequiresa log flush.

e Tfyou can do K log flushespersecond, then K is
yourm axin um transaction throughput

e Group Comm itO ptm ization -w hen processing
comm it, if the last log page isn’'t full, delay the
flush o give ittim e to £11

e TIf there are m ultdple data m anagers on a system ,
then each data m grm ust flush its log to comm it

— Feach daea m grim‘tusing its log’s update bandw idth,
then a shared Iog saves Iog flushes

— A good dea, butarely supported comm excially

1L5hs 22

Im plem enting A bort

e To Inplem entA bort(T), scan T ’s Iog records and nsall
before in ages.

e To speed up A bort, back-chain each transaction’s update
1=cors.

Startof Log T,'s first

Jog record)|

Transacton D escriptors

v\Ti

Pk‘ nullpointer
Trensaction| last log record

T, T——————— T.
1

P, ‘ backpointer

End of Log

Satisfying the Undo Rule

e To InplementtheW rite-A head Log Protocol, tag each
cache sbtw ith the Iog sequence num ber (LSN) of the Jast

update record to that slot's page.
Page| Dity] Cache | Pin | LSN Onaige | Lo3
Bit | Addmess| Count v Steat
P, | 1 812 | 2 M ai
P, | 1 | 10101 o0 | Memoy | Exd
v

e Cachem anagerw on’t flush a page P until P’s lastupdated
record, ponted to by LSN |, ison disk.

e P’'slast Iog recor isusually sablk before Flush @),
=0 this rarely costs an extra flush

® LSN mustbe updated w hile ich isheld on P's slot

24

In plem enting Restart @ev 1)
e A ssum e undo and redo are required
e Scan the log backw ards, sarting at the end.
- How do you find the end?
e Constructa comm it listand recovered-page-list
during the scan (@ssum ng page level logging)
e Comm It(T) record => add T to comm it list
e Update record forP by T
— If P isnotn the recovered-page-list then
® add P to the recovered-page-list

e if T is In the comm it list, then redo the update,
else undo the update

Checkpoints
e Problem -PreventRes@rt fiom scanning back to the
startof the Iog
e A checkpoint is a procedure to lin it the am ountof
work forRestart
e Comm toconsistent checkpointing
— Stop accepting new update, comm i, and abort operations
— M gke listof [active transaction, ponter to st log record]
— Flush alldirty pages
— Append a checkpoint record t© log; Include the list
— Resum e nom alprocessing
e D atgbase and log are now m utually consistent

L 26

RestartA Jorithm @=v 2)

® N o need to redo records before last checkpoint, so
- Starting w ith the Jast checkpoint, scan forw ard in the Iog.
— Redo allupdate records. Process all aborts.

M aintan listof active transactions (nidalized to content
of checkpomtrecord) .

— A flteryou’re done scanning, abortall active transactions

e Restarttim e is proportional to the am ountof log
after the last checkpoint.

e R educe resart tim e by checkpointing frequently.
e Thus, checkpointing m ustbe cheap.

10508 27

Fuzzy Checkponnting
e M ake checkpoints cheap by avoiding synchronized flushing
of dirty cache at checkpomttime.
— Stop accepting new update, comm it, and abort operations
— M ake a listof alldirty pages In cache
— M ake listof [active transaction, ponter to st log record]
— Append a checkpoint record t© log; Include the list
— Resum e nom alprocessing
- hitiate ow priority flush of alldirty pages
¢ D on’tcheckpointagain untilallof the last checkpomit's
dirty pages are flushed
¢ Restartbegins at second-to-last (penultn ate) checkpomt.
o 9 heckpoint frequency depends on disk bandw idth

28

O peration Logging
e Record Jocking requires @t least) record logging.
— Suppose records x and y are on page P
-w, Klw, fy] abort; comm i, fotstrictw rit.pages)
¢ Reocord logging requires R esart to read a page
before updating it. This reduces log size.
o Furtherreduce log size by logging description of an
update, not the entire before After in age of record.
- Only Iog after-im age of an nsertion
- Only bg fieHs being updated
e Now Resartcan’tblindly r=do.
- E g., tmustnot nserta record tw ice

L 29

LSN Jased Iogging
® Each database page P’sheaderhas the LSN of the lastlog
record w hose operation updated P .
e Resartocom pares log record and page LiSN before redoing
the Iog record’supdate U .
— Redo the update only if LSN P) < LSN U)

e Undo isapmwblem . U ’s transaction aborts and you undo
U ,whatLSN to puton the page?

— Suppose T, and T, update records x and y on P
-w, Klw,]l c,a WhatLSN doesa, puton P?)

- notLSN beforew;] which saysw, [yl didn’tnm)
- notw, fy] which saysw, [x] wasn'taborted)

LSN Jased logging (cont’d)

e w, klw,[yl ¢,a WhatLSN doesa, puton P?)

® W hynotusea, 'sLSN ?
- mustlatch allof T, ‘s updated pages before Iogging a,
- else, som e w 4 [z] on P could be logged aftera, butbe

executed before a,, leaving &, ‘s LSN on P Instead of
w, [z]’s.

Logging Undo’s
e Log theundo U) operation, and use isLSN on P
— CLR = Com pensation Log Record = a Iogged undo
— Do this forallundo’s (during nom alabortor recovery)

e This preserves the Ivariant that the LSN on each page P
exactly describes P's state rehtive to the log.

— P contains allupdates to P up to and ncluding the LSN
on P, and no updatesw ith largerLSN .

e So every aborted transaction’s log is a palindrom e
of update records and undo records.
® Resartprocesses Comm itand Abortthe samew ay
— Eredoes the ttansaction’s log records.
- Tonly aborts active transactions after the forw ard scan

32

Logging Undo’s (cont/d)
e Tricky issues
— M uld-page updates ({t'sbestto avoid them)
- Resartgrow s the Jog by Iogging undos.
Each tin e itcrashes, thasm ore log to process
e Optim ization -CLR ponts to the transaction’s log
record preceding the corresponding “do” .
— Splices outundone w ork
— Avoids undoing undone w ork during abort
— Avoids grow Ing the Iog due to aborts during Resart
DoA, .. DoB, .. DoC, ... UndoC, ...UndoB,

‘\”‘\‘4///

1L5hs 33

RestartA gorithm (ev 3)
e Starting w ith the Jastcheckpoint, scan forw axd In the Iog.
- M aitah listof active transactions (nitalized to content
of checkpomtrecord) .

- Redo an update record U forpage P only if
LSN P) < LSN ().

- A fiteryou’re done scanning, abortall active transactions.
Log undos w hile aborting . Log an abort record w hen
you’re done aborting .

e This style of record Jogginhg, logging undo’s, and
1eplaying history during restartw as popularized in
the AR IES algorithm by M ohan etalat IBM .

10508 34

Analysis Pass
e Log flush record aftera flush occurs (o avoid redo)
e To in prove r=do efficiency, pre-analyze the log
— Regquires accessing only the og, not the database
e Build a D irty Page Table that contains listof dirty

pages and, foreach page, the oldestl.SN thatmust
be redone

- Flush P) saysto delete P fiom D Ity Page Table

- W rite () adds P to D Ity Page Tablk, if itisn'tthere

- Include D ity Page Table In checkpointrecords

— Startatcheckptrecord, scan forw ard buiding the t2ble
e A 1o build listof active tkns w ith Jastl.SN

L 35

Analysis Pass (cont'd)

e Startredo atoldestoldesti.SN in D ity Page Table
— Then scan forw ard In the log, asusual
- Only r=do records thatm ghtneed i,

that is, those w here LSN (edo record) # oldestI. SN,
hence there’sno Jater flush record

- A louse D ity Page Table to guide page prefetching
o Prefetch pages n oldest.SN orderin D ity Page Table

ogging B -T'ree O perations

e To splitapage

e Thisdoubles the4
- Tog the ngefted data w hen the record is g

U ser-level O ptim izations

o Tf checkpoint frequency is controllable,
then nn som e experin ents

e Partition DB acrossm ore disks to r=duce
resarttim e (R estart ism ulbthreaded)

e Tncrease resources (e g. cache) availeble
resartprogram .

Shared D isk System
ProcessA ProcessB e Can cache a page In tw o processes
thatw rite-lock different records
i e e Only one process ata tin e can
i have w rite privilege
2 ® U == aglbballock m anager

e W hen settingawrite lockon P,
m ay need to refresh the cached
copy from disk (if anotherprocess
recently updated i)

e U == version num beron the page and in the Iock

10508

Shared D isk System

e W hen a process sets the lock, ittells the lock
m anager version num berof its cached page.

¢ A process ncrem ents the version num ber the first
tim e itupdates a cached page.

® W hen a process is done w ith an updated page, it
flushes the page to disk and then ncrem ents
version num ber in the Jock.

10508

4 M edia Failures

e A m edia failure is the Joss of som e of stable storage.
e M ostdiskshaveM TBF overl0 years

e Stll, if you have 10 disks ...

® So shadow ed disks are In portant

- W rtesgo to both copies. H andshake betw een W rites to
avoid comm on failirem odes e g. pow er failire)

— Service each read fiom one copy
e Tobring up anew shadow
- Copy tracks fiom good disk to new disk, cneatatime
- A W rte goes to both disks if the track hasbeen copied
.~ A ad goes to the good disk, undlthe tack iscopied

RATD
e RAD -redundantanay of hexpensive disks
- Useananay of N disks n parallel
- A sgiripe isan anay of the block fiom each disk
— A stripe is partitioned as follow s:

[—
N-M enor

conrection blocks

M datablocks

e Each stripe is one logicalblock, w hich can
suwive a sihgle-disk failure.

W here to U s D ik R edundancy?

e Preferably forboth the DB and log
e Butat least forthe Iog
— T an undo algorithm , i's the only place that
has certain before in ages
— T a r=do algorithm , it's the only place thathas
certain after in ages
e Tfyou don'tshadow the log, isa single
pomntof failure

A rchiving
An archive is a database snapshotused form edia recovery .
— Load the archive and r=do the log
To take an archive snapshot
- w rite a sartarchive record o the Iog
— oopy the DB o an archive m edium
— w rite an end-archive record to the log
orsin ply m ark the archive as com plte)
So, the end-archive record says thatall updates before the
sartarchive record are I the archive
Can use the standard LSN Joasad R estartalgorithm t©
1ecover an archive copy ehtive to the log.

L 44

A rchiving (cont/d)

e To archive the log, use 2 pairs of shadow ed disks.Dump
one pairto archive g.tEpe) w hilk using the otherpair for
on-lne Iogging. (Ie.ping-pong to avoid disk contention)

— O ptim ization -only archive com m ited pages and
purge undo infom ation from the log before axchiving

e To do Incram entalarchive, use an axchive bit in each page.

— Each page update sets the bit.
— To axchive, aopies pages w ith the bit set,, then clearit.

e To reducem edia recovery tin e

- rebuid arxchive from Ihcram entalcopies
— partition log to enable fastrecovery of a few conupted
pages

10508

