
1

1/11/05 1

3. Concurrency Control
for Transactions

Part One

CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2005 Philip A. Bernstein

1/11/05 2

Outline
1. A Simple System M odel

2. Serializability Theory

3. Synchronization Requirements
for Recoverability

4. Two-Phase Locking

5. Preserving Transaction Handshakes

6. Implementing Two-Phase Locking

7. Deadlocks

1/11/05 3

3.1 A Simple System M odel

• Goal -Ensure serializable (SR) executions

• Implem entation technique -Delay operations
that would lead to non-SR results (e.g. set locks
on shared data)

• For good perform ance minimize overhead and
delayfrom synchronization operations

• First, we’ll study how to get correct (SR) results

• Then, we’ll study performance implications
(mostly in Part Two)

1/11/05 4

Assumption -Atomic Operations

• W e will synchronize Reads and W rites.

• W e must therefore assum e they’re atomic
–else we’d have to synchronize the finer-grained
operations that implem ent Read and W rite

• Read(x) -returns the current value of x in the DB

• W rite(x, val) overwrites allof x (the whole page)
• This assumption of atomic operations is what
allows us to abstract executions as sequences of
reads and writes (without loss of information).
–Otherwise, what would wk[x] ri[x] mean?

• Also, com mit (ci) and abort (ai) are atomic

1/11/05 5

System M odel

Transaction 1 Transaction N

Start, Commit, Abort
Read(x), Write(x)

Data
M anager

Database

Transaction 2

1/11/05 6

3.2 Serializability Theory

• The theory is based on modeling executions as
histories, such as

H1 = r1[x] r2[x] w1[x] c1 w2[y] c2
• First, characterize a concurrency control
algorithm by the properties of histories it allows.

• Then prove that any history having these
properties is SR

• W hy bother? It helps you understand why
concurrency control algorithms work.

2

1/11/05 7

Equivalence of Histories
• Two operations conflict if their execution order
affects their return values or the DB state.
–a read and write on the same data item conflict

– two writes on the same data item conflict

– two reads (on the same data item) do notconflict

• Two histories are equivalent if they have the
sam e operations and conflicting operations are in
the same order in both histories
–because only the relative order of conflicting
operations can affect the result of the histories

1/11/05 8

Examples of Equivalence
• The following histories are equivalent
H1 = r1[x] r2[x] w1[x] c1 w2[y] c2
H2 = r2[x] r1[x] w1[x] c1 w2[y] c2
H3 = r2[x] r1[x] w2[y] c2 w1[x] c1
H4 = r2[x] w2[y] c2 r1[x] w1[x] c1

• But none of them are equivalent to
H5 = r1[x] w1[x] r2[x] c1 w2[y] c2
because r2[x] and w1[x] conflict and
r2[x] precedes w1[x] in H1 -H4, but
r2[x] follows w1[x] in H5.

1/11/05 9

Serializable Histories
• A history is serializable if it is equivalent to a serial
history

• For example,

H1 = r1[x] r2[x] w1[x] c1 w2[y] c2
is equivalent to

H4 = r2[x] w2[y] c2 r1[x] w1[x] c1
(r2[x] and w1[x] are in the same order in H1 and H4.)

• Therefore, H1 is serializable.

1/11/05 10

Another Example

• H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2
is equivalent to a serial execution of T2 T1 T3,

H7 = r2[x] w2[y] c2 r1[x] w1[x] w1[y] c1 r3[x] w3[x] c3

• Each conflict implies a constraint on any equivalent

serial history:

H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

T2fi T1 T1fi T3 T2fi T1

T2fi T3

1/11/05 11

Serialization Graphs
• A serialization graph, SG(H), for history H tells the
effective execution order of transactions in H.

• Given history H, SG(H) is a directed graph whose
nodes are the com mitted transactions and whose
edges are all Ti fi Tk such that at least one of Ti’s
operations precedes and conflicts with at least one
of Tk’soperations

H6 = r1[x] r2[x] w1[x] r3[x] w2[y] w3[x] c3 w1[y] c1 c2

SG(H6) = T2 fi T1 fi T3

1/11/05 12

The Serializability Theorem
A history is SR if and only if SG(H) is acyclic.

Proof: (if) SG(H) is acyclic. So let Hsbe a serial
history consistent with SG(H). Each pair of
conflicting ops in H induces an edge in SG(H).
Since conflicting ops in Hsand H are in the same
order, Hs”H, so H is SR.

(only if) H is SR. Let Hsbe a serial history equivalent
to H. W e claim that if Ti fi Tk in SG(H), then Ti
precedes Tk in Hs(else Hs ≢ H). If SG(H) had a

cycle, T1fi T2fi … fi Tnfi T1, then T1 precedes T1 in
Hs, a contradiction. So SG(H) is acyclic.

3

1/11/05 13

How to Use
the Serializability Theorem

• Characterize the set of histories that a
concurrency control algorithm allows

• Prove that any such history must have an
acyclic serialization graph.

• Therefore, the algorithm guarantees SR
executions.

• W e’ll use this soon to prove that locking
produces serializable executions.

1/11/05 14

3.3 Synchronization Requirements
for Recoverability

• In addition to guaranteeing serializability,
synchronization is needed to im plem ent abort easily.

• W hen a transaction T aborts, the data manager wipes
out all of T’s effects, including
–undoing T’s writes that were applied to the DB, and

– aborting transactions that read values written by T
(these are called cascading aborts)

• Example - w1[x] r2[x] w2[y]
– to abort T1, we must undo w1[x] andabort T2
(a cascading abort)

1/11/05 15

Recoverability
• If Tk reads from Tiand Tiaborts, then Tk must abort

–Example -w1[x] r2[x] a1 implies T2 must abort

• But what if Tk already comm itted? W e’d be stuck.
–Example -w1[x] r2[x] c2 a1
– T2 can’t abort after it commits

• Executions must be recoverable:
A transaction T’s com mit operation must follow the
com mit of every transaction from which T read.
–Recoverable -w1[x] r2[x] c1 c2
– Not recoverable -w1[x] r2[x] c2 a1

• Recoverability requires synchronizing operations.

1/11/05 16

Avoiding Cascading Aborts
• Cascading aborts are worth avoiding to

–avoid complex bookkeeping, and

– avoid an uncontrolled number of forced aborts

• To avoid cascading aborts, a data m anager should
ensure transactions only read com mitted data

• Example
–avoids cascading aborts: w1[x] c1 r2[x]

– allows cascading aborts: w1[x] r2[x] a1

• A system that avoids cascading aborts also
guarantees recoverability.

1/11/05 17

Strictness
• It’s convenient to undo a write, w[x], by restoring its
before image (=the value of x before w[x] executed)

• Example -w1[x,1] writes the value “1” into x.
–w1[x,1] w1[y,3] c1 w2[y,1] r2[x] a2
– abort T2 by restoring the before image of w2[y,1] (i.e. 3)

• But this isn’t always possible.
–For example, consider w1[x,2] w2[x,3] a1 a2
– a1 & a2 can’t be implemented by restoring before images

– notice that w1[x,2] w2[x,3] a2 a1 would be OK

• A system is strictif it only reads or overwrites
com mitted data.

1/11/05 18

Strictness (cont’d)
• M ore precisely, a system is strictif it only executes
ri[x] or wi[x] if all previous transactions that wrote x
com mitted or aborted.

• Examples (“… ” m arks a non-strict prefix)
–strict: w1[x] c1 w2[x] a2
– not strict: w1[x] w2[x] … c1 a2
– strict: w1[x] w1[y] c1 r2[x] w2[y] a2
– not strict: w1[x] w1[y] r2[x] … c1 w2[y] a2
– To see why strictness matters in the above histories,
consider what happens if T1 aborts

• “Strict” implies “avoids cascading aborts.”

4

1/11/05 19

3.4 Two-Phase Locking
• Basic locking -Each transaction sets a lockon each
data item before accessing the data
–the lock is a reservation

– there are read locks and write locks

– if one transaction has a write lock on x, then no other
transaction can have any lock on x

• Example
–rli[x], rui[x], wli[x], wui[x] denote lock/unlock operations

– wl1[x] w1[x] rl2[x] r2[x] is impossible

– wl1[x] w1[x] wu1[x]rl2[x] r2[x] is OK

1/11/05 20

Basic Locking Isn’t Enough
• Basic locking doesn’t guarantee serializability

• rl1[x] r1[x] ru1[x] wl1[y] w1[y] wu1[y] c1

rl2[y] r2[y] wl2[x] w2[x] ru2[y] wu2[x] c2

• Elim inating the lock operations, we have
r1[x] r2[y] w2[x] c2 w1[y] c1 which isn’t SR

• The problem is that locks aren’t being released
properly.

1/11/05 21

Two-Phase Locking (2PL) Protocol
• A transaction is two-phase lockedif:

– before reading x, it sets a read lock on x
– before writing x, it sets a write lock on x
– it holds each lock until after it executes the
corresponding operation

– after its first unlock operation, it requests no new locks

• Each transaction sets locks during a growing phase
and releases them during a shrinking phase.

• Example -on the previous page T2 is two-phase
locked, but not T1 since ru1[x] < wl1[y]
– use “<” for “precedes”

1/11/05 22

2PL Theorem :If all transactions in an execution are
two-phase locked, then the execution is SR.

Proof:Define Ti⇒ Tkif either
– Tiread x and Tklater wrote x, or
– Tiwrote x and Tklater read or wrote x

• If Ti⇒ Tk, then Tireleased a lock before Tk
obtained some lock.

• If Ti⇒ Tk⇒ Tm, then Tireleased a lock before Tm
obtained some lock (because Tk is two-phase).

• If Ti⇒...⇒ Ti, then Tireleased a lock before Ti
obtained some lock, breaking the 2-phase rule.

• So there cannot be a cycle. By the Serializability
Theorem, the execution is SR.

1/11/05 23

2PL and Recoverability
• 2PL does notguarantee recoverability

• This non-recoverable execution is 2-phase locked
wl1[x] w1[x] wu1[x] rl2[x] r2[x] c2 … c1
– hence, it is not strict and allows cascading aborts

• However, holding write locks until aftercom mit or
abort guarantees strictness
– and hence avoids cascading aborts and is recoverable

– In the above example, T1 must commit before its first
unlock-write (wu1): wl1[x] w1[x] c1 wu1[x] rl2[x] r2[x] c2

1/11/05 24

Automating Locking
• 2PL can be hidden from the application

• W hen a data manager gets a Read or W rite
operation from a transaction, it sets a read or write
lock.

• How does the data m anager know it’s safe to
release locks (and be two-phase)?

• Ordinarily, the data manager holds a transaction’s
locks until it com mits or aborts. A data manager
– can release readlocks after it receivescommit

– releases writelocks only after processingcommit,
to ensure strictness

5

1/11/05 25

3.5 Preserving Transaction Handshakes

• Read and W rite are the only operations the
system will control to attain serializability.

• So, if transactions com municate via messages,
then implement SendM sgas W rite, and
ReceiveM sgas Read.

• Else, you could have the following:
w1[x] r2[x] send2[M] receive1[M]
– data manager didn’t know about send/receive and
thought the execution was SR.

• Also watch out for brain transport
1/11/05 26

Transactions Can Communicate via Brain
Transport

T1: Start
. . .
Display output
Commit

T2: Start
Get input from display
. . .
Commit

User reads output
…
User enters input

Brain
transport

1/11/05 27

Brain Transport (cont’d)

• For practical purposes, if user waits for T1 to
com mit before starting T2, then the data manager
can ignore brain transport.

• This is called a transaction handshake
(T1 com mits before T2 starts)

• Reason -Locking preserves the order imposed by
transaction handshakes
– e.g., it serializes T1 before T2.

1/11/05 28

2PL Preserves Transaction Handshakes
• 2PL serializes transactions (abbr. txns) consistent
with all transaction handshakes. I.e. there’s an
equivalent serial execution that preserves the
transaction order of transaction handshakes

• This isn’t true for arbitrary SR executions. E.g.
– r1[x] w2[x] c2 r3[y] c3 w1[y] c1
– T2 commits before T3 starts, but the only equivalent
serial execution is T3 T1 T2

– rl1[x] r1[x] wl1[y] ru1[x] wl2[x] w2[x] wu2[x] c2
but now we’re stuck, since we can’t set rl3[y]) r3[y].
So the history cannot occur using 2PL.

1/11/05 29

2PL Preserves Transaction
Handshakes (cont’d)

• Stating this more formally …

• Theorem:
For any 2PL execution H,
there is an equivalent serial execution Hs,
such that for all Ti, Tk,
if Ticom mitted before Tk started in H,
then Tiprecedes Tk in Hs.

1/11/05 30

Brain Transport One Last Time

• If a user reads com mitted displayed output of Ti
and uses that displayed output as input to
transaction Tk, then he/she should wait for
Tito com mit before starting Tk.

• The user can then rely on transaction handshake
preservation to ensure Tiis serialized before Tk.

6

1/11/05 31

3.6 Implementing Two-Phase Locking
• Even if you never implement a DB system, it’s
valuable to understand locking implementation,
because it can have a big effect on performance.

• A data manager implements locking by
– implem enting a lock manager

– setting a lock for each Read and W rite

– handling deadlocks

1/11/05 32

System M odel
Transaction 1 Transaction N

Database
System

Start,
SQL Ops
Commit, Abort

Query Optimizer
Query Executor
Access M ethod

(record-oriented files)
Page-oriented Files

Database

1/11/05 33

How to Implement SQL

• Query Optimizer -translates SQL into an ordered
expression of relational DB operators (Select,
Project, Join)

• Query Executor -executes the ordered expression
by running a program for each operator, which in
turn accesses records of files

• Access methods -provides indexed record-at-a-
time access to files (OpenScan, GetNext, …)

• Page-oriented files -Read or W rite (page address)

1/11/05 34

W hich Operations Get Synchronized?

Record-oriented operations

Page-oriented operations

SQL operations
Query Optimizer
Query Executor
Access M ethod

(record-oriented files)
Page-oriented Files

• It’s a tradeoff between
– amount of concurrency and

– runtime expense and programming complexity
of synchronization

1/11/05 35

Lock M anager
• A lock m anager services the operations

– Lock(trans-id, data-item-id, mode)

– Unlock(trans-id, data-item-id)

– Unlock(trans-id)

• It stores locks in a lock table. Lock op inserts
[trans-id, mode] in the table. Unlock deletes it.

Data Item List of Locks W ait List

x [T1,r] [T2,r] [T3,w]

y [T4,w] [T5,w] [T6, r]

1/11/05 36

Lock M anager (cont’d)

• Caller generates data-item-id, e.g. by hashing data
item nam e

• The lock table is hashed on data-item-id

• Lock and Unlock must be atomic, so access to the
lock table must be “locked”

• Lock and Unlock are called frequently. They must
be very fast. Average < 100 instructions.
– This is hard, in part due to slow compare-and-swap
operations needed for atomic access to lock table

7

1/11/05 37

Lock M anager (cont’d)

• In M S SQL Server
– Locks are approx 32 bytes each.

– Each lock contains a Database-ID, Object-Id, and other
resource-specific lock information such as record id
(RID) or key.

– Each lock is attached to lock resource block (64 bytes)
and lock owner block (32 bytes)

1/11/05 38

Locking Granularity
• Granularity-size of data items to lock

– e.g., files, pages, records, fields

• Coarse granularity implies
– very few locks, so little locking overhead

– must lock large chunks of data, so high chance of
conflict, so concurrency may be low

• Fine granularity implies
– many locks, so high locking overhead

– locking conflict occurs only when two transactions try
to access the exact same data concurrently

• High performance TP requires record locking

1/11/05 39

M ultigranularity Locking (M GL)
• Allow different txnsto lock at different granularity

– big queries should lock coarse-grained data (e.g. tables)

– short transactions lock fine-grained data (e.g. rows)

• Lock manager can’t detect these conflicts
– each data item (e.g., table or row) has a different id

• M ultigranularity locking “trick”
– exploit the natural hierarchy of data containm ent

– before locking fine-grained data, set intention lockson coarse
grained data that contains it

– e.g., before setting a read-lock on a row, get an
intention-read-lock on the table that contains the row

– Intention-read-locks conflicts with a write lock

1/11/05 40

3.7 Deadlocks
• A set of transactions is deadlockedif every
transaction in the set is blocked and will rem ain
blocked unless the system intervenes.
– Example rl1[x] granted

rl2[y] granted
wl2[x] blocked
wl1[y] blocked and deadlocked

• Deadlock is 2PL’s way to avoid non-SR executions
– rl1[x] r1[x] rl2[y] r2[y] … can’t run w2[x] w1[y] and be SR

• To repair a deadlock, you mustabort a transaction
– if you released a transaction’s lock without aborting it,
you’d break 2PL

1/11/05 41

Deadlock Prevention
• Never grant a lock that can lead to deadlock

• Often advocated in operating systems

• Useless for TP, because it would require running
transactions serially.
– Example to prevent the previous deadlock,
rl1[x] rl2[y] wl2[x] wl1[y], the system can’t grant rl2[y]

• Avoiding deadlock by resource ordering is unusable
in general, since it overly constrains applications.
– But may help for certain high frequency deadlocks

• Setting all locks when txnbegins requires too much
advance knowledge and reduces concurrency.

1/11/05 42

Deadlock Detection
• Detection approach: Detect deadlocks automatically,
and abort a deadlocked transactions (the victim).

• It’s the preferred approach, because it
– allows higher resource utilization and
– uses cheaper algorithms

• Tim eout-based deadlock detection -If a transaction
is blocked for too long, then abort it.
– Simple and easy to implement

– But aborts unnecessarily and

– som e deadlocks persist for too long

8

1/11/05 43

Detection Using W aits-For Graph

• Explicit deadlock detection -Use a W aits-For Graph
– Nodes = {transactions}

– Edges = {Tifi Tk | Tiis waiting for Tk to release a lock}

– Example (previous deadlock) T1 T2

• Theorem: If there’s a deadlock, then the waits-for
graph has a cycle.

1/11/05 44

Detection Using W aits-For Graph
(cont’d)

• So, to find deadlocks
– when a transaction blocks, add an edge to the graph

– periodically check for cycles in the waits-for graph

• Need not test for deadlocks too often. (A cycle
won’t disappear until you detect it and break it.)

• W hen a deadlock is detected, select a victim from
the cycle and abort it.

• Select a victim that hasn’t done much work
(e.g., has set the fewest locks).

1/11/05 45

Cyclic Restart

• Transactions can cause each other to abort forever.
– T1 starts running. Then T2 starts running.

– They deadlock and T1 (the oldest) is aborted.

– T1 restarts, bumps into T2 and again deadlocks

– T2 (the oldest) is aborted ...

• Choosing the youngest in a cycle as victim avoids
cyclic restart, since the oldest running transaction is
never the victim.

• Can combine with other heuristics, e.g. fewest-locks

1/11/05 46

M S SQL Server
• Aborts the transaction that is “cheapest” to roll
back.
– “Cheapest” is determined by the amount of log
generated.

– Allows transactions that you’ve invested a lot in to
complete.

• SET DEADLOCK_PRIORITY LOW
(vs. NORM AL) causes a transaction to sacrifice
itself as a victim.

1/11/05 47

Distributed Locking

• Suppose a transaction can access data at many
data m anagers

• Each data m anager sets locks in the usual way

• W hen a transaction comm its or aborts, it runs
two-phase com mit to notify all data m anagers it
accessed

• The only remaining issue is distributed deadlock

1/11/05 48

Distributed Deadlock
• The deadlock spans two nodes.
Neither node alone can see it.

• Tim eout-based detection is popular. Its weaknesses
are less important in the distributed case:
– aborts unnecessarily and some deadlocks persist too long
– possibly abort younger unblocked transaction to avoid
cyclic restart

rl1[x]
wl2[x] (blocked)

Node 1

rl2[y]
wl1[y] (blocked)

Node 2

9

1/11/05 49

Oracle Deadlock Handling

• Uses a waits-for graph for single-server
deadlock detection.

• The transaction that detects the deadlock is
the victim.

• Uses timeouts to detect distributed
deadlocks.

1/11/05 50

Fancier Dist’dDeadlock Detection

• Use waits-for graph cycle detection with a central
deadlock detection server
– more work than timeout-based detection, and no
evidence it does better, performance-wise

– phantom deadlocks? -No, because each waits-for edge
is an SG edge. So, W FG cycle => SG cycle
(modulo spontaneous aborts)

• Path pushing (a.k.a. flooding) -Send paths Tifi …
fi Tk to each node where Tk might be blocked.
– Detects short cycles quickly
– Hard to know where to send paths.
Possibly too many messages

1/11/05 51

W hat’s Coming in Part Two?

• Locking Perform ance

• A more detailed look at multigranularity
locking

• Hot spot techniques

• Query-Update Techniques

• Phantoms

• B-Trees and Tree locking

1/11/05 52

Locking Performance
• The following is oversimplified. W e’ll revisit it.

• Deadlocks are rare.
– Typically 1-2% of transactions deadlock.

• Locking performance problems are notrare.

• The problem is too much blocking.

• The solution is to reduce the “locking load”

• Good heuristic –If more than 30% of transactions
are blocked, then reduce the number of concurrent
transactions

