3.Concurrency Control
for Transactions
PartOne

CSEP 545 Transaction Processing
Philip A .Bemstein

Copyright© 2005 Philp A .Bemstein

Outlne
.A Sinple System M odel
2. Serializability Theory

. Synchronization R equirem ents
forR ecoverability

.Tw o-Phase Locking

=

w

. Preserving T'ransaction H andshakes
. Tn plem enting Tw o-Phase Locking
.Deadlocks

N o oo

31A SmmpleSystem M odel

e Goal-Ensure serializable (SR) executions

e Tn plem entation technigue -D elay operations
thatw ould lead to non-SR results €g.setlocks
on shared data)

¢ Forgood perform ance m inim ize overhead and
dely from synchronization operations
e First, we'llstudy how to getcorrect SR) resuls
e Then,w e'll study perform ance in plications
fm ostly in PartTw o)

A ssum ption -A tom ic O perations

¢ W ew il synchionize Readsand W rites.
® W em ustthersfore assum e they’re atom ic

- elsew e’d have to synchronize the finergrained
operations that in plem entRead and W rite
¢ Read (x) - retums the cunentvalue of x in the DB
e W rite &, val) overw rites allof x (the whole page)
e This assum ption of atom ic operations isw hat
allow s us to abstractexecutions as sequences of
eads and w rites w ithout loss of inform ation) .
- O therw ise, whatw ould w] r;[x] m ean?
¢ Also,comm it (c;) and abort (@) are atom ic

10005

System M odel

‘Transactbnl‘ ‘Tmnsaction2‘5 oo ‘TransactbnN‘

Start, Commit, Abo\rt
Read(x), Write(x)
\ |/

Data
M anager|

e

3 2 Serializability Theory

e The theory isbased on m odeling executions as

histories, such as
H=pKlgKklw, Klcw,klc

e First, characterize a concunrency control
algorithm by the properties of histories itallow s.

e Then prove thatany history having these
properties is SR

e W hy bother? Thelps you understand w hy
concunency conttol algorithm s w ork.

Equivalence of H istories

¢ Tw o operations conflict if theirexecution oxder
affects theirretum valuesorthe DB sate.
- aread and w rite on the sam e data iem conflict
- two w rtes on the sam e data item conflict
— two reads (on the sam e data item) do not conflict

e Two histories are equivalent if they have the
sam e operations and conflicting operations are n
the sam e order 1n both histories

- because only the relative order of conflicting
operations can affect the resultof the histories

Exam ples of Equivalence

¢ The follow Ing histories are equivalent
Hi=gklgklw, Klqw,llc
Hy=gKlnklw,Klcw,lc,
Hy=pklnklw,Vlow, Klq
Hy=pklw,Mlgnklv, klc

e Butnone of them are equivalentto
Ho=nkKlw, Klgklow,llc
because r, k] and w,] conflictand
r,] precedesw, x] nH, -H,, but
r k] ollowsw, k] nH.

Serializable H istories
e A history is serializable if it is equivalentto a serial
history
e Forexampl,
Hi=ngKlrpklw, kKlcw,ylc
isequivalentto
H,=5Klw, il o nklw, ko
g k] andw, [x] are In the ssme orderinH, andH,)
e Therefore, H, is serializable.

AnotherExample

*H=rpKIpKlw, KlnKlw,Flw,klcw,l¥lq g
Isequivalentto a serialexecution of T, T; T,
H=pKlw,VlognKlw, Klw,ylq nKklw, Kl c

e Each conflict in plies a constrainton any equivalent
serialhistory:

T T,
Hi=pKIpKlw, KIgKlw,Flw,klcw, ¥l g
\ el

TN
TAT, TfT, Tfi T,

10

Serialization G raphs

e A serialization graph, SG #), forhisory H tells the
effective execution orderof transactions In H .

e G ven history H , SG H) isa directed graph whose
nodes are the com m itted transactions and w hose
edgesare all T, fi T, such thatatleastoneof T,’s
operations precedes and conflicts w ith at leastone
of T, 's operations

H=pKlgKlw, KlgKklw,ylw,;Klcw, ¥l c g

SGHo) = Tfi T T,

11

The Serializability Theorem

A history isSR ifand only if SG H) isacyclic.

Pmof: (if) SG H) isacyclic.So letH be a serial
history consistentw ith SG H#) .Each pairof
conflicting ops M H Inducesan edge n SG H).
Since conflicting ops InH and H are In the same
ower,H_ "H,soH isSR.

(only if) H isSR .LetH be a serial history equivalent
toH.W eclin thatif T,fi T, nSG H),thenT;
precedesT, nH, ElseH_ # H).IESG H) hada
cycle, T fi Tfi .. fi T fi T,,thenT, precedesT, In
H, a contradiction.So SG #) isacyclic.

LWL 12

How U=
the Serializability Theorem

e Characterize the setof histories thata
concunency contlalgoritm allow s

e Prove thatany such history m usthave an
acyclic serialization graph.

e Therefore, the algorithm guatrantees SR
executions.

e W e'lluse this soon to prove that Jocking
produces serializable executions.

13

R ecoverability

e IfT, rads fiom T, and T, aborts, then T, mustabort
- Examplk -w, K] 5,] a, iInplies T, m ustabort
e Butwhat if T) already comm itted? W e’d be stuck.
-Exampk-w, Kl Klc,a
- T, can’tabortafteritcomm is
¢ Executionsm ustbe recoverable:
A tansaction T's comm operation m ust follow the
comm itof every transaction from which T read.
- Reooverblke -w, kKl Kl ¢ ¢,
- Notmecoverble -w, Kl 5 Kl ¢, a,
e R ecoverability requires synchronizing operations.

3 3 Synchronization R equirem ents
forR ecoverability
e Th addition to guaranteeing serializability,
synchronization is needed to in plem entaborteasily.
e W hen a transaction T abots, the data m anagerw pes
outallof T''s effects, mcluding
— undoing T ’sw rites thatw ere applied to the DB, and
— dborting transactions that read values w ritten by T
(these are called cascading aborts)
e Example - w,]l x Kl w, [yl
- to abort T, , wemustundo w, [x] and abortT,
@ cascading abort)

14

Avoiding Cascading A borts
e Cascading abotts are w orth avoiding t©
— avoid com plex bockkesping, and
— avoid an uncontrolled num berof forced aborts
e To avoid cascading aborts, a data m anager should
ensure transactions only read comm ited data
e Example
- avoids cascading aborts:w ,] ¢ 1, K]
- allow s cascading aborts:w, K] 1, K] &,
e A gystem thatavoids cascading aborts also
guarantees recoverability .

10005 15

Strictness
e Tt's convenient to undo aw rite, w [x], by restoring its|
before inage (= the value of x beforew] executed)
e Example -w, [x,1] w rites the value “1” into x.
—w, kK1llw, y3lqw, 1l Kl a
- abort T, by restoring the before inage ofw, fy 1] (ie.3)
e Butthis imn’talwayspossible.
- Forexample, considerw , k2] w, k3] a a,
- a, & a, can’tbe in plem ented by restoring before in ages
- notice thatw, k2] w, 3] 8, & wouldbe OK
e A gystem is strict if itonly reads orovew rites
comm ited data.

17

LWL

10005 16

Stricthess (cont/d)

e M ore precisely, a system is strict if itonly executes
1] orw, [x] if all previous transactions thatw ote x
comm ited orabored.

e Examples (V.. ” m arks a non-strictprefix)

— strct: w,Klcw,Kkla,

- notstrct:w, Klw,Kl.. ¢ a,

-srict: wikw, e pKw, e

- notstict:w, Klw, ¥l g Kl.. qw,lyla,

— To see w hy strictnessm atters In the above histories,
considerw hathappens if T, aborts

e “Strict” I plies “avoids cascading aborts.”

LWL

18

3 4 Two-Phase Locking

e Basic locking -Each transaction sets a lock on each
data item before accessing the data
— the Jock isa reservation
- there are read Jocks and w rite Jocks
— if one transaction has a w rite Jock on x, then no other

transaction can have any lock on x

e Example
- 1], m;], w1 x], wu, K] denote Iock Amlock operations
-wl Klw, k] i K] 5 K] is inpossble
—wlKlw, Klwy K7 K] 5 K] iSOK

Basic Locking Isn’tEnough
e Basic locking doesn’tguarantee serializability

o Xl kK] my KI—, —rwllylw, ylwu vl g
//’/ \’\\
AV wl K w, K m, bl we, Ko
e Elin nating the lock operations, w e have
LKl rlylw, K c,w, fy] ¢, which in’tSR
e The problem is that Jocks aren’tbeing released
properly .

Tw o-Phase Locking (@PL) Protocol

e A transaction is two-phase locked if:
- before reading x, itsets a read Iock on x
- before w riting x, it sets a w rite Iock on x
- itholds each lock untilafter it executes the
conesponding operation
- after its firstunlock operation, trequestsnonew locks
e Each transaction sets Jocks during a grow Ing phase
and releases them during a shrinking phase.
¢ Exam ple -on the previous page T, is tw o-phase
Jocked, butnot T, since my, K] < w1 fy]
- use “<” for “precedes”

10005 21

LTS

2PL Theorem : If all tansactions In an execution are
tw o-phase locked, then the execution is SR .

Proof:Define T; = T, if either
- T, read x and T} terw ote x, or
- T;wmotex and T, aterread orw mote x

e IfT,= T,, then T, released a lock before T,
obtained som e lock.

¢ IfT, = T, = T, ,then T, released a lock before T |
obtained som e Jock (because T, is tw o-phase).

® IfT,=...= T,, then T; ®leased a Iock before T,
obtained som e lock, breaking the 2-phase nile.

e So there cannotbe a cycle. By the Seralizability

Theorem , the execution isSR .

22

2PL and R ecoverability

e 2PI, does notguarantee recoverability
e Thisnon-recoverable execution is 2-phase Jocked
wliklw, Klwuy KIAKIgKlc.. o
— hence, tisnotstrictand allow s cascading aborts
e How ever, holding w rite locks untilafter comm itor
abortguarantees strictness
— and hence avoids cascading aborts and is recoverable
— Th the above exam ple, T, mustcomm itbefore its first
unlock-w rte wu,):wl Klw, Kkl wu Kkl Kl Klc

A utom ating Lockng

e 2PL can be hidden fiom the application

® W hen a datam anagergetsaRead orW rite
operation fiom a transaction, tsetsa read orw rite
Tock.

e How does the data m anagerknow i's safe to
elease Jocks @nd be tw ophase)?

e O dharily, the data m anagerholds a transaction’s
Jocksuntil fcomm its oraborts. A data m anager
— can rlease read locks after treceives comm it
— releases w rite Jocks only afterprocessing comm it,

o ensure strictness

3 5 Preserving Transaction H andshakes

e Read and W rite are the only operations the
system w ill control to attain serializability .

e S0, if transactions com m unicate via m essages,
then in plem entSendM sg asW e, and
ReceiveM sgasRead.

e Else, you could have the follow Ing:

w, K] 5] send, M] receive, M]
- datam anagerdidn’tknow aboutsend feceive and
thought the execution was SR .
e A lso watch out forbmain transport

LWL 25

Transactons Can Com m unicate via Bram

T ransport
Tl: Start .
Bmain
st transpory
Display output— U sermadsoutput
—
Commit — @\‘a
U serenters Input

e sram

—> Get input from display

Commit

B rain Transport (cont/d)

¢ Forpractical purposes, if userw aits forT; t©
com m tbefore starting T, , then the data m anager
can gnore brain transport.
e This is called a ransaction handshake
(T, comm itsbefore T, starts)
e Reason - Locking preserves the order in posed by
transaction handshakes
- eg., fteeriglizes T, before T, .

2PL Preserves Transaction H andshakes

e 2P, serializes transactions @bbr. tns) consistent
w ith all tansaction handshakes. Te. there’s an
equivalent serial execution thatpreserves the
transaction orderof transaction handshakes

e This isn’ttue forarbirary SR executions.E g.

-nklw,Klonilogw, ¥lg

- T, comm isbefore T, starts, but the only equivalent
serialexecution isT, T, T,

—aKnkwlylm Klwl Klw,kKlwy, Klc
butnow we're stuck, shhcew e can’tsetrl, y]) 1 y].
So the history cannotoccurusing 2PL.

2PL Presevves Transaction
H andshakes (cont’d)

e Stating thism ore form ally ...

e Theorem :
Forany 2PL execution H ,
there is an equivalent serial execution H ,
such thatforallT,, T,
ifT; comm itted before T, started InH,
then T; precedes T, InH .

B Tmnsport OnelLastTine

e Tf a userreads com m ited displayed outputof T;
and uses thatdisplayed outputas Inputto
transaction T, , then he/che should w ait for
T; to comm itbefore starting T, .

e The usercan then =ly on transaction handshake
preservation to ensure T, is serialized before T, .

3 6 Inplem enting Tw o-Phase Lockng

e Even if youneverimplementaDB system , it's
valuable to understand locking im plem entation,
because itcan have a big effect on perform ance.

e A data m anager In plem ents locking by

— In plam enting a lock m anager
— setting a Jock foreach Read and W rite
— handling deadlocks

Query O ptin izer
Query Executor

A ccessM ethod
SYSEM | e vord-oriented Files)
Page-oriented Files

[

How o InplementSQL

® Query O ptim izer - ranslates SQ L Into an ordered
expression of relational DB operators (Select,
Proect, Join)

e Query Executor - executes the ordered expression
by mnning a program foreach operator, w hich in
tum accesses recoxds of files

e A ccessm ethods - provides indexed record-ata-
tim e access to files O penScan, GetN ext, ...)

® Page-oriented files -Read orW rite fpage address)

W hich O perations G et Synchronized?

478 QL opemtons

Query O ptim izer
Q uery Executor
A ccessM ethod
(record-oriented files)
Page-oriented Files

D . .
Recor-orented opemtons

+—Page-orented operatons

® T's a ttadeoffbetw een
— am ountof concunency and

— mntin e expense and program m Ing com plexity
of synchronization

Lock M anager
e A Jock m anager services the operations
- Lock (tans-d, data-item -id, m ode)
- Unlck (tans-d, data-item -id)
- Unlock (mans-id)
e Ttstores locks n a Jock table. Lock op serts
frans-id, m ode] in the table. Unlock deletes it.
DamTem | ListofLocks W aitList
x r,Ar,d Tyw]
y T w] Tl [Ty, 1

Lock M anager (cont/d)

e Callergenerates data-item -id, e g.by hashing data
item name

e The lock table is hashed on data-item -id

e [,ock and Unlock m ustbe atom ic, so access t the
Jock able m ustbe “locked”

e Lock and Unlock are called frequently. They must
e very fast. A verage < 100 nstmictions.

— This ishard, in partdue to slow com pare-and-sw ap
operations needed foratom ic access to lock @bk

Lock M anager (cont/d)

e M S SQL Server

— Locks are approx 32 byteseach.

— Each Iock contains a D atabase-D , 0 bject1d, and other
resource-gpecific Iock inform ation such as record id
RD)orkey.

- Each Jock s attached to Jock resource block (64 bytes)
and lock ownerblock (32 bytes)

37

Locking G ranularity

e G ranularity - size of data item s to lock
- eg., files, pages, records, fields
e Coarse granularity in plies
— very few Jocks, so little Jocking overhead
- mustlock arge chunksof data, o high chance of
conflict, so concunrency m ay be lIow
e Fine granularity in plies
—many locks, so high Jocking overhead
— Jocking conflictoccurs only w hen tw o transactions try
o access the exact sam e data concurrently

¢ H Igh perform ance TP requires record locking

LWL 38

M ultgranularity Locking M GL)

e ATow different tms to Jock atdifferentgranularity
- big queries should Jock coarse-grained data € g. Ebles)
- short transactions lock fine-grained data e g.10OWS)
e Lock m anager can’tdetect these conflicts
- eachdata i=m g., Bbk orrow) hasa different id
e M ulbgranularity Jocking “trick”
- explit the naturalhierarchy of data containm ent
- before Iocking fine-grained data, set intention Jocks on coarse
grained data that contains it

- eg., before setting a read-lock on a row ,getan
Intention-read-lock on the tablk that contains the ow

- Ihtention-read-locks conflicts w ith a w rite Jock

10005 39

3.7 Deadlocks

e A setof transactions is deadlocked if every
transaction 1 the set isblocked and w ill rem ain
blocked unless the system htervenes.

- Exampk r,] granted
7 [yl granted
wl] blocked
wlfyl blocked and deadlocked

e D eadlock is 2PL’sway to avoid non-SR executions
- KgAK L. cntunw, KXl w, iyl andbe SR
e To repaira deadlock, you m ustaborta transaction
- if you released a transaction’s Iock w ithoutaborting it,
.. you'd bresk 2PL 20

D eadlock Prevention
® Nevergranta lock thatcan lead to deadlock
e O fien advocated Tn operating system s
® Ugeless forTP, because itw ould require mnning
transactions serially.
- Exampk t preventthe previous deadlock,
Kl ylwl klwl], the system can’tgrantt, fy]
e Avoiding deadlock by resource ordering isunusable
Tn general, since itoverly constrains applications.
— Butm ay help forcertain high frequency deadlocks
e Setting all locks w hen tm begins requires too m uch
advance know ledge and reduces concunency .

LWL 41

D eadlock D etection

e D etection approach : D etect deadlocks autom atically |
and aborta deadlocked transactions (the victm).
e Tt's the prefernad approach, because it
— allow s higher resource utilization and
— uses chesperalgoritm s
e Tim ecutbased deadlock detection - If a transaction
isblodked fortoo long, then abort it.
- Sinpland easy to Inplam ent
— Butaborts unnecessarily and
— som e deadlocks persist fortoo Iong

42

D etection Using W aits-ForG aph

e Explicitdeadlock detection -U seaW aits-ForG raph
- Nodes = {transactions}
- Edges= {T;fi T, |T;iswaitng forT, to rlasea ck}
- Exampk foreviousdeadlock) T,<= T,
e Theorem : If there’s a deadlock, then the w aits-for
graph has a cycle.

D etection Using W aits-ForG raph
(cont'd)
e S0, to find deadlocks
— when a transaction blocks, add an edge to the graph
— periodically check forcycles In the w aits-forgraph
® N eed nottest fordeadlocks too often. @ cycle
w on’tdissppearuntil you detect tand bresk it.)
® W hen a deadlock isdetected, selecta victm fiom
the cycle and abort it.

® Selecta victim thathasn’tdone much work
eg., has setthe few est ocks).

LWL 44

CyclicRestart

¢ Transactions can cause each other to abort forever.
- T, sarts mmning. Then T, starts mnning.
— They deadlock and T, (the oldest) isaborted.
- T, restants, bum ps Into T, and again deadlocks
- T, (the oldest) isaborted ...

e Choosing the youngest in a cycle asvictm avoids
cyclic restart, since the oldest unning transaction is
neverthe victim .

e Can com bine w ith otherheuristics, e g. few est-locks

M S SQL Server

e A borts the transaction that is “cheapest” to oIl
back.
— “Chespest” is determ lhed by the am ountof log
genemated.
- A Tow s transactions thatyou've Invested a ot In to
compkte.
e SETDEADLOCK_PRIORITY LOW
(vs.NORM A L) causes a transaction to sacrifice
Iselfasavictnm .

D istrbuted Locking

¢ Suppose a transacton can access data atm any
datam anagers
¢ Each datam anager sets locks I the usualw ay

e W hen a transaction com m its oraborts, itmins
tw o-phase comm it to notify all data m anagers it
accessed

e The only r=m aining issue is distributed deadlock

D istrbuted D eadlock

e The deadlock spans tw o nodes.
N eithernode alone can see it.

Node 1 Node 2
4 Kl 7 [yl
wl] blocked) wl fy] blocked)

e Tim ecutbased detection ispopular. s w eaknesses
are less In portant In the distrbuted case:
— dborts unnecessarily and som e deadlocks persist too long
— possibly abort youngerunblocked transaction to avoid
cyclic restart

O racke D eadlock H andling

e Ugesaw aits-forgraph for single-server
deadlock detection .

e The transaction thatdetects the deadlock is
the victim .

o U ges tim eouts to detect distrbuted
deadlocks.

49

FancierD ist'd D eadlock D etection

e U s w aits-forgraph cycle detection w ith a central
deadlock detection server
— morew ork than tim ecuttassd detection, and no
evidence itdoes better, perform ance-w ise
— phantom deadlocks? -N o, because each w aits-foredge
isan SG edge.So,W FG cyck=> SG cycke
fn odulo spontanecus aborts)
e Path pushing @k a.flooding) -Send pathsTfi ...
fi T, to each nodew here T, m ightbe blocked.
— D etects shortcycles quickly
- Har to know where to send paths.
Possbly too m any m essages

LWL 50

W hat'sCom Ing in PartTw 0?

e T,ocking Perform ance

e A more detailed look atm ulbgranularity
Jocking

¢ Hotspottechniques

e Query-Update Techniques

e Phantom s

e B -Trees and Tree Iocking

Locking Perform ance
¢ The follow Ing is oversin plified . W e’ Il revisit it.
e D eadlocks are rare.
- Typically 12% of transactions deadlock.
¢ Locking perfom ance problem s are notare.
e The problem is too m uch blocking.
e The solution is to reduce the “locking load”

® G ood heuristic — Ifm ore than 30% of transactions
are blocked, then reduce the num berof concurnent
transactions

51

52

