
1

1/11/05 1

2. Atomicity &
Durability Using
Shadow Paging

CSEP 545 Transaction Processing
for E-Com merce

Philip A. Bernstein

Copyright ©2005 Philip A. Bernstein

1/11/05 2

Introduction

• To get started on the Java-C# project, you need
to implement atomicity and durability in a
centralized resource manager (i.e. a database).

• The recom m ended approach is shadowing.

• This section provides a quick introduction.

• A more thorough explanation of the overall topic
of database recovery will be presented in a
couple of weeks.

1/11/05 3

Review of Atomicity & Durability

• Atomicity -a transaction is all-or-nothing

• Durability –the results of a com mitted
transaction will survive failures

• Problem
–The only hardware operation that is atomic with
respect to failure and whose result is durable is
“write one disk block”

– But the database doesn’t fit on one disk block!

1/11/05 4

Shadowing in a Nutshell
• The database is a tree whose rootis a single disk block

• There are two copies of the tree, the masterand shadow

• The root points to the master copy

• Updates are applied to the shadow copy

• To install the updates, overwrite the root so it points to
the shadow, thereby swapping the master and shadow
– Before writing the root, none of the transaction’s updates are
part of the disk-resident database

– After writing the root, all of the transaction’s updates are part
of the disk-resident database

– W hich means the transaction is atomic and durable

1/11/05 5

M ore Specifically …
• The databaseconsists of a set of files
• Each file consists of a page tableP and
a set of pagesthat P points to.

• A master pagepoints to each file’s
master page table.

• Assum e transactions run serially. I.e., at most
one transaction runs at any given time.

• Assum e that for each page table the transaction
has a private shadow copy in m ain-memory.

1/11/05 6

Initial State of Files a and b

PtT[a]
1
2
3

...

PtT[b]
1
2
3

...

a
b

P1aPt1[a]
1
2
3
...

Pt1[b]
1
2
3
...

P2a

P1b

P2b

Initial
StateD

I
S
K

M ain
M em ory
For T

M aster

2

1/11/05 7

To W rite a Page Pi

• Transaction writes a shadow copy of page Pito
disk (i.e. does not overwrite the master copy).

• Transaction updates its page table to point to
the shadow copy of Pi

• Transaction m arks Pi’s entry in the page table
(to remember which pages were updated)

1/11/05 8

After W riting Page P2b

PtT[a]
1
2
3

...

PtT[b]
1
2
3

...

a
b

P1aPt1[a]
1
2
3
...

Pt1[b]
1
2
3
...

P2a

P1b

P2b
Old

Initial
StateD

I
S
K

M ain
M em ory
For T

M aster

P2b
New

1/11/05 9

After W riting Page P1a

PtT[a]
1
2
3

...

PtT[b]
1
2
3

...

a
b

P1a
Old

Pt1[a]
1
2
3
...

Pt1[b]
1
2
3
...

P2a

P1b

P2b
Old

Initial
StateD

I
S
K

M ain
M em ory
For T

M aster

P2b
New

P1a
New

1/11/05 10

W hat if the System Fails?

• M ain memory is lost

• The current transaction is effectively aborted

• But the database is still consistent

1/11/05 11

To Commit

PtT[a]
1
2
3

...

PtT[b]
1
2
3

...

a
b

P1a
Old

Pt1[a]
1
2
3
...

Pt1[b]
1
2
3
...

P2a

P1b

P2b
Old

Initial
StateD

I
S
K

M aster

P2b
New

P1a
New

1. First copy PtT[a] and PtT[b] to disk

1/11/05 12

To Commit (cont’d)

PtT[a]
1
2
3

...

PtT[b]
1
2
3

...

a
b

P1a
Old

Pt1[a]
1
2
3
...

Pt1[b]
1
2
3
...

P2a

P1b

P2b
Old

Initial
StateD

I
S
K

M aster

P2b
New

P1a
New

2. Then overwrite M aster to point to the new Pt’s.

3

1/11/05 13

• W hat if two transactions update different pages of a file?
– If they share their m ain-m em ory shadow copy of the page table,
then comm itting one will comm it the other’s updates too!

• One solution: File-grained locking (but poor concurrency)
• Better solution: use a private shadow-copy of each page
table, per transaction. To commit T, do the following
within a critical section:
– For each file F m odified by T

•get a private copy C of the last comm itted value of F’s page
table

•update C’s entries for pages m odified by T
•store C on disk

– W rite a new m aster record, which swaps page tables for the files
updated by T, thereby installing just T’s updates

Shadow Paging with Shared Files

1/11/05 14

M anaging Available Disk Space

• Treat the list of available pages like another file

• The m aster record points to the master list

• W hen a transaction allocates a page, update its
shadow list

• W hen a transaction comm its, write a shadow
copy of the list to disk

• Com mitting the transaction swaps the master
list and the shadow

1/11/05 15

Final Remarks
• A transaction doesn’t need to write shadow pages to disk
until it is ready to com mit
– Saves disk writes if a transaction writes a page m ultiple times or
if it aborts

• M ain benefit of shadow paging is that doesn’t require
much code
– W as used in the Gem stone OO DBM S.

• But it is not good for TPC benchmarks
– How m any disk updates per transaction?
– How to do record level locking?

• M ost database products use logging.
– Faster execution tim e, and m ore functional, but m uch m ore
im plementation.

1/11/05 16

Your Project

• You need not use the exact data structure
presented here.

• In particular, you don’t necessarily need a page
abstraction.

• There are design tradeoffs for you to figure out.

1/11/05 17

References
• P. A. Bernstein, V. Hadzilacos, N. Goodman,
Concurrency Control and Recovery in Database
Systems, Chapter 6, Section 7 (pp. 201-204)
–The book is downloadable from
http://research.microsoft.com/pubs/ccontrol/

• Originally proposed by Raym ond Lorie in
“Physical Integrity in a Large Segmented
Database”ACM Transactions on Database
Systems, M arch 1977.

