
1

112/27/04

1. Introduction

CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2005 Philip A. Bernstein

212/27/04

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

312/27/04

1.1 The Basics -W hat’s a Transaction?

• The executionof a program that performs an
administrative function by accessing a shared
database, usually on behalf of an on-lineuser.

Examples
• Reserve an airline seat. Buy an airline ticket

• W ithdraw money from an ATM .

• Verify a credit card sale.

• Order an item from an Internet retailer

• Place a bid at an on-line auction

• Submit a corporate purchase order
412/27/04

The “ities” are W hat M akes
Transaction Processing (TP) Hard
• Reliability -system should rarely fail

• Availability -system must be up all the time

• Response time -within 1-2 seconds

• Throughput -thousands of transactions/second

• Scalability -start small, ramp up to Internet-scale

• Security –for confidentiality and high finance

• Configurability -for above requirements + low cost

• Atomicity -no partial results

• Durability -a transaction is a legal contract

• Distribution -of users and data

512/27/04

W hat M akes TP Important?

• It’s at the core of electronic com merce

• M ost medium-to-large businesses use TP for
their production systems. The business can’t
operate without it.

• It’s a hugeslice of the computer system
market. One of the largest applications of
computers.

612/27/04

TP System Infrastructure
• User’s viewpoint

– Enter a request from a browser or other display device

– The system performs some application-specific work,
which includes database accesses

– Receive a reply (usually, but not always)

• The TP system ensures that each transaction
– is an independent unit of work

– executes exactly once, and

– produces permanent results.

• TP system makes it easy to program transactions

• TP system has tools to make it easy to manage

2

712/27/04

TP System Infrastructure …
Defines System and Application Structure

Presentation M anager

W orkflow Control
(routes requests and

supervises their execution)

Database System

Front-End
(Client)

Back-End
(Server)

End-User

Transaction Program

requests

812/27/04

System Characteristics
• Typically < 100 transaction types per application

• Transaction size has high variance. Typically,
– 0-30 disk accesses

– 10K -1M instructions executed

– 2-20 messages

• A large-scale example: airline reservations
– 150,000 active display devices

– plus indirect access via Internet

– thousands of disk drives

– thousands of transactions per second, peak

912/27/04

Availability
• Fraction of time system is able to do useful work

• Some systems are verysensitive to downtime
– airline reservation, stock exchange, telephone switching
– downtime is front page news

• Contributing factors
– failures due to environment, system mgmt, h/w, s/w
– recovery time

Downtime Availability
1 hour/day 95.8%
1 hour/week 99.41%
1 hour/month 99.86%
1 hour/year 99.9886%
1 hour/20years 99.99942%

1012/27/04

Application Servers
• A software product to create, execute and manage TP
applications

• Formerly called TP monitors.Some people say
App Server = TP monitor + web functionality.

• Programmer writes an app to process a single request.
App Server scales it up to a large, distributed system
– E.g. application developer writes program s to debit a checking
account and verify a credit card purchase.

– App Server helps system engineer deploy it to 10s/100s of
servers and 10Ks of displays

– App Server helps system engineer deploy it on the Internet,
accessible from web browsers

1112/27/04

Application Servers (cont’d)

• Components include
– an application programming interface (API)
(e.g., Enterprise Java Beans)

– tools for program development

– tools for system management (app deployment,
fault & performance monitoring, user mgmt, etc.)

• Enterprise Java Beans, IBM W ebsphere,
M icrosoft .NET (COM +), BEA W eblogic,
Oracle Application Server

1212/27/04

Presentation Server

W orkflow Controller

Transaction Server Transaction Server

Network

Requests

M essage
Inputs

App Server Architecture, pre-W eb
• Boxes below are distributed on an intranet

Queues

3

1312/27/04

Automated Teller M achine
(ATM) Application Example

W orkflow
Controller

CIRRUS
Accounts

Credit Card
Accounts

Loan
Accounts

W orkflow
Controller

ATM ATM ATM ATMATM ATM ATM ATM

Bank Branch 1 Bank Branch 2 Bank Branch 500

Checking
Accounts

1412/27/04

W eb Server

W orkflow Controller

Transaction Server Transaction Server

intranet

Requests

M essage
Inputs

Application Server Architecture

Queues

Web Browser
http http

other TP
systems

1512/27/04

Internet Retailer

W orkflow
Controller

M usic Com puters

W eb
Server

Electronics

The
Internet

Toys … …

1612/27/04

W eb Services

W orkflow
Controller

M usic Com puters

W eb
Server

Electronics

The
Internet

Toys … …

W eb Service W
e
b
 S
e
rv
ic
e

• Interface and protocol standards to do
application server functions over the internet.

1712/27/04

Enterprise Application Integration
(EAI)

• A software product to route requests between
independent application systems. Often include
– A queuing system

– A message mapping system

– Application adaptors (SAP, PeopleSoft, etc.)

• EAI and Application Servers address a similar
problem, with different emphasis

• IBM W ebsphereM Q, TIBCO, Vitria, SeeBeyond

1812/27/04

ATM Example
with an EAI System

CIRRUS
Accounts

Credit Card
Accounts

Loan
Accounts

EAI Routing

ATM ATM ATM ATMATM ATM ATM ATM

Bank Branch 1 Bank Branch 2 Bank Branch 500

Checking
Accounts

EAI RoutingQueues Queues

4

1912/27/04

W orkflow Systems
• A software product that executes multi-transaction
long-running scripts (e.g. process an order)

• Product components
– A workflow script language

– W orkflow script interpreter and scheduler

– W orkflow tracking

– M essage translation

– Application and queue system adaptors

• Transaction-centric vs. document-centric

• Structured processes vs. case management

• IBM W ebsphereM Q W orkflow, M icrosoft BizTalk, SAP,
Vitria, Oracle W orkflow, FileNET, Documentum, … .

2012/27/04

System Software Vendor’s View

• TP is partly a component product problem
– Hardware

– Operating system

– Database system

– Application Server

• TP is partly a system engineering problem
– Getting all those components to work together
to produce a system with all those “ilities”.

• This course focuses primarily on the
Database System and Application Server

2112/27/04

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

2212/27/04

1.2 The ACID Properties

• Transactions have 4 main properties
– Atomicity -all or nothing

– Consistency -preserve database integrity

– Isolation -execute as if they were run alone

– Durability -results aren’t lost by a failure

2312/27/04

Atomicity
• All-or-nothing, no partial results.

– E.g. in a money transfer, debit one account, credit the
other. Either debit and credit both run, or neither runs.

– Successful completion is called Commit.

– Transaction failure is called Abort.

• Com mit and abort are irrevocable actions.

• An Abort undoes operations that already executed
– For database operations, restore the data’s previous value
from before the transaction

– But some real world operations are not undoable.
Examples -transfer money, print ticket, fire missile

2412/27/04

Example -ATM Dispenses M oney
(a non-undoable operation)

T1: Start
. . .
Commit

Dispense Money

T1: Start
. . .
Dispense Money

Commit

System crashes

Deferred operation
never gets executed

System crashes
Transaction aborts
M oney is dispensed

5

2512/27/04

Reading Uncommitted Output Isn’t
Undoable

T1: Start
...

Display output
...
If error, Abort

T2: Start
Get input from display
...

Commit

User reads output
…
User enters input

Brain
transport

2612/27/04

Compensating Transactions
• A transaction that reverses the effect of another
transaction (that committed). For example,
– “Adjustment” in a financial system

– Annul a marriage

• Not all transactions have com plete compensations
– E.g. Certain money transfers

– E.g. Fire missile, cancel contract

– Contract law talks a lot about appropriate compensations

G A well-designed TP application should have a
compensation for every transaction type

2712/27/04

Consistency
Every transaction should maintain DB consistency
– Referential integrity -E.g. each order references an
existing customer number and existing part numbers

– The books balance (debits = credits, assets = liabilities)

G Consistency preservation is a property of a
transaction, not of the TP system
(unlike the A, I, and D of ACID)

• If each transaction maintains consistency,
then serial executions of transactions do too.

2812/27/04

Some Notation

• ri[x] = Read(x) by transaction Ti
• wi[x] = W rite(x) by transaction Ti
• ci= Com mit by transaction Ti
• ai= Abort by transaction Ti
• A historyis a sequence of such operations,
in the order that the database system
processed them.

2912/27/04

Consistency Preservation Example
T1: Start;

A = Read(x);
A = A -1;
W rite(y, A);
Commit;

T2: Start;
B = Read(x);
C = Read(y);
If (B > C+1) then B = B -1;
W rite(x, B);
Commit;

• Consistency predicate is x > y.

• Serial executions preserve consistency.
Interleaved executions may not.

• H = r1[x] r2[x] r2[y] w2[x]w1[y]
– e.g. try it with x=4 and y=2 initially

3012/27/04

Isolation
• Intuitively, the effect of a set of transactions
should be the same as if they ran independently

• Formally, an interleaved execution of
transactions is serializable if its effect is
equivalent to a serial one.

• Implies a user view where the system runs each
user’s transaction stand-alone.

• Of course, transactions in fact run with lots of
concurrency, to use device parallelism.

6

3112/27/04

A Serializability Example
T1: Start;

A = Read(x);
A = A + 1;
W rite(x, A);
Commit;

T2: Start;
B = Read(x);
B = B + 1;
W rite(y, B);
Commit;

• H = r1[x] r2[x]w1[x] c1 w2[y] c2
• H is equivalent to executing T2 followed by T1
• Note, H is notequivalent to T1 followed by T2
• Also, note that T1 started before T2 and finished
before T2, yet the effect is that T2 ran first.

3212/27/04

Serializability Examples (cont’d)

• Client must control the relative order of transactions,
using handshakes
(wait for T1to com mit before submitting T2).

• Some m ore serializable executions:
r1[x] r2[y] w2[y]w1[x] ” T1 T2 ” T2 T1

r1[y] r2[y] w2[y]w1[x] ” T1 T2 ” T2 T1

r1[x] r2[y] w2[y]w1[y] ” T2 T1 ” T1 T2
• Serializability says the execution is equivalent to
someserial order, not necessarily to allserial orders

3312/27/04

Non-Serializable Examples
• r1[x] r2[x] w2[x]w1[x] (racecondition)

– e.g. T1 and T2 are each adding 100 to x

• r1[x] r2[y] w2[x]w1[y]
– e.g. each transaction is trying to make x = y,
but the interleaved effect is a swap

• r1[x] r1[y] w1[x] r2[x] r2[y] c2 w1[y] c1
(inconsistentretrieval)
– e.g. T1 is m oving $100 from x to y.

– T2 sees only half of the result of T1
• Compare to the OS view of synchronization

3412/27/04

Durability
• W hen a transaction commits, its results will
survive failures (e.g. of the application, OS,
DB system … even of the disk).

• M akes it possible for a transaction to be a legal
contract.

• Implementation is usually via a log
– DB system writes all transaction updates to its log

– to commit, it adds a record “commit(Ti)” to the log

– when the commit record is on disk, the transaction is
committed.

– system waits for disk ackbefore ackingto user

3512/27/04

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

3612/27/04

1.3 Atomicity and Two-Phase Commit

• Distributed system s make atomicity harder

• Suppose a transaction updates data managed by
two DB systems.

• One DB system could commit the transaction,
but a failure could prevent the other system from
com mitting.

• The solution is the two-phase com mit protocol.

• Abstract “DB system” by resource manager
(could be a SQL DBM S, message m gr, queue
m gr, OO DBM S, etc.)

7

3712/27/04

Two-Phase Commit
• M ain idea -all resource managers (RM s) save a
durablecopy of the transaction’s updates before
any of them com mit.

• If one RM fails after another com mits, the failed
RM can still commit after it recovers.

• The protocol to com mit transaction T
– Phase 1 -T’s coordinator asks all participant RM sto
“prepare the transaction”. Each participant RM replies
“prepared” after T’s updates are durable.

– Phase 2 -After receiving “prepared” from all
participant RM s, the coordinator tells all participant
RM sto commit.

3812/27/04

Two-Phase Commit
System Architecture

Resource
M anager

Transaction
M anager (TM)

Application Program

Other
Transaction
M anagers

1. Start transaction returns a unique transaction identifier
2. Resource accesses include the transaction identifier.
For each transaction, RM registers with TM

3. W hen application asks TM to com mit, the TM runs
two-phase commit.

Start
Commit, Abort

Read,
Write

3912/27/04

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

4012/27/04

1.4 Performance Requirements
• M easured in max transaction per second (tps) or
per minute (tpm), and dollars per tpsor tpm.

• Dollars measured by list purchase price plus 5 year
vendor maintenance (“cost of ownership”)

• W orkload typically has this profile:
– 10% application server plus application
– 30% communications system (not counting presentation)
– 50% DB system

• TP Performance Council (TPC)sets standards
– http://www.tpc.org.

• TPC A & B (‘89-’95), now TPC C &W

4112/27/04

TPC-A/B — Bank Tellers

Start
Read message from terminal (100 bytes)
Read+write account record (random access)
Write history record (sequential access)
Read+write teller record (random access)
Read+write branch record (random access)
Write message to terminal (200 bytes)

Commit

• End of history and branch records are bottlenecks

• Obsolete (a retired standard), but interesting
• Input is 100 byte message requesting deposit/withdrawal
• Database tables = {Accounts, Tellers, Branches, History}

4212/27/04

The TPC-C Order-Entry Benchmark

• TPC-C uses heavier weight transactions

Table Row s/W hse Bytes/row

W arehouse 1 89

D istrict 10 95
Custom er 30K 655
H istory 30K 46
O rder 30K 24
N ew -O rder 9K 8

O rderLine 300K 54
Stock 100K 306
Item 100K 82

8

4312/27/04

TPC-C Transactions
• New-Order

– Get records describing a warehouse, customer, & district

– Update the district

– Increment next available order number

– Insert record into Order and New-Order tables

– For 5-15 items, get Item record, get/update Stock record

– Insert Order-Line Record

• Payment, Order-Status, Delivery, Stock-Level have
similar complexity, with different frequencies

• tpmC = number of New-Order transaction per min.
4412/27/04

Comments on TPC-C

• Enables apples-to-apples comparison of TP
systems

• Does not predict how yourapplication will run,
or how much hardware you will need,
or which system will work best on your workload

• Not all vendors optimize for TPC-C.

– Some high-end system sales require custom
benchmarks.

4512/27/04

Typical TPC-C Numbers
• All numbers are highly sensitive to date submitted.

• $1.50 -$9 / tpmC for results released in 2004.
– Low end numbers are alm ost all M S SQL Server & W indows.
– High end is m ostly Oracle and IBM , Linux, BEA Tuxedo

• System cost $27K (HP) -$17M (IBM)

• Examples of high throughput (64-processor systems)
– IBM , 3.2M tpm C, $16.7M , $5.19/tpm C
(5/15/05 IBM DB2, W indows, M S COM +)

– HP, 1.2M tpm C, $6.5M , $5.50/tpm C
(4/30/04, Oracle 10g, Red Hat Linux, BEA Tuxedo)

• Examples of low cost (M S SQL Server, W indows, COM +)
– HP ProLiant, 18K tpm C, $31K, $1.70/tpmC, 4/14/04
– Dell, 26K tpm C, $40K, $1.50/tpm C, 12/04

4612/27/04

TPC-W –W eb Retailer

• Introduced 12/99. Effectively retired in 2003 because it
allowed “benchmark special”solutions

• Features -dynamic web page generation, multiple browser
sessions, secure UI & payments (via secure socket layer)

• Profiles - shop (WIPS), browse (WIPSb), order (WIPSo)
– Tables – {Customer, Order, Order-Line, Item, Author,

CreditCardTxns, Address, Country}
– Transactions – HomeWeb, ShoppingCart, Admin-Request,

AdminConfirm, CustomerRegister, Buy-Request,
BuyConfirm, OrderInquiry, OrderDisplay, Search,
SearchResult, NewProducts, …

• W eb Interactions per sec (W IPS) @ ScaleFactor
– ScaleFactor=1K –10M item s (in the catalog).

4712/27/04

Coming Soon

• TPC App

– A replacem ent for TPC-W . Completely different but web-
focused. Unclear if it will be approved.

• TPC-E

– Like TPC-C, it’s database-centric, but a different application

– M ore realistic disk configuration (smaller % of total price)

– Possibly will have a processor scalability metric

4812/27/04

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

9

4912/27/04

1.5 Styles of Systems
• TP is System Engineering

• Compare TP to other kinds of system engineering …

• Batch processing -Submita job and receive file output.

• Time sharing -Invoke programs in a process, which
may interact with the process’s display

• Real time -Submit requests that have a deadline

• Client/server -PC callsa server over a network to
access files or run applications

• Decision support -Submit queriesto a shared database,
and process the result with desktop tools

• TP -Submit a requestto run a transaction
5012/27/04

TP vs. Batch Processing (BP)

• A BP application is usually uniprogrammed so
serializability is trivial. TP is multiprogrammed.

• BP performance is measured by throughput.
TP is also measured by response time.

• BP can optimize by sorting transactions by the file key.
TP must handle random transaction arrivals.

• BP produces new output file. To recover, re-run the app.

• BP has fixed and predictable load, unlike TP.

• But, where there is TP, there is almost always BP too.
– TP gathers the input. BP post-processes work that has weak
response tim e requirem ents

– So, TP system s must also do BP well.

5112/27/04

TP vs. Timesharing (TS)
• TS is a utility with highly unpredictable load. Different
programs run each day, exercising features in new
combinations.

• By comparison, TP is highly regular.

• TS has less stringent availability and atomicity
requirements. Downtime isn’t as expensive.

5212/27/04

TP vs. Real Time (RT)

• RT has more stringent response time requirements. It may
control a physical process.

• RT deals with more specialized devices.

• RT doesn’t need or use a transaction abstraction
– usually loose about atom icity and serializability

• In RT, response time goals are usually more important
than completeness or correctness. In TP, correctness is
paramount.

5312/27/04

TP and Client/Server (C/S)

• Is commonly used for TP, where client prepares
requests and server runs transactions

• In a sense, TP systems were the first C/S systems,
where the client was a terminal

5412/27/04

TP and Decision Support Systems
(DSSs)

• DSSsrun long queries, usually with lower data integrity
requirements than TP.

• A.k.a. data warehouse (DSS is the more generic term.)

• TP systems provide the raw data for DSSs.

10

5512/27/04

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

5612/27/04

W hat’s Next?

• This chapter covered TP system structure and
properties of transactions and TP system s

• The rest of the course drills deeply into each
of these areas, one by one.

