
6.7 THE NO-UNDO/NO-REDO ALGORITHM 201

database or cache. So the RM must find the value in the intentions list (i.e.,
step (1) of RM-Read). Doing this efficiently takes some care. One way is to
index the intentions list by data item name. On each RM-Read(Ti, x), the RM
checks the index for an entry for X. If there-is one, it returns the last intentions
list value for x. Otherwise< it finds x in the database (i.e., step (2) of RM-
Read).

Another way to solve the problem is by using shadowing; see Exer-
cise 6.30.

6.7 THE NO-UNDO/NO-REDO ALGORITHM

To avoid redo, all of a transaction 7’;s updates must be in the stable database
by the time T, is committed. To avoid undo, none of T:s updates can be in the
stable database before T; is committed. Hence, to eliminate both undo and
redo, all of Tis updates must be recorded in the stable database in a single
atomic operation, at the time T, commits. The RM-Commit(Ti) procedure
would have to be something like the following:

RM-Commit(Ti)

1. In a single atomic action:

q For each data item x updated by T,, write the after image of x wrt
T, in the stable database.

n Insert Ti into the commit list.

2. Acknowledge to the scheduler the processing of RM-Commit(Ti).

Incredible as it may sound, such a procedure is realizable! The difficulty, of
course, is to organize the data structures so that an atomic action - a single
atomic Write to stable storage - has the entire effect of step (1) in RM-
Commit. That is, it must indivisibly install all of a transaction’s updates in the
stable database and insert 7’j into the commit list. It should do this without
placing an unreasonable upper bound on the number of updates each transac-
tion may perform.

We can attain these goals by using a form of shadowing. The location of
each data item’s last committed value is recorded in a directory, stored in stable
storage, and possibly cached for fast access. There are also working directories
that point to uncommitted versions of some data items. Together, these direc-
tories point to all of the before and after images that would ordinarily be
stored in a log. We therefore do not maintain a log as a separate sequential file.

When a transaction Ti writes a data item x, a new version of x is created in
stable storage. The working directory that defines the database state used by Tj
is updated to point to this version. Conceptually, this new version is part of the
log until T; commits. When T; commits, the directory that defines the commit-
ted database state is updated to point to the versions that T, wrote. This makes

The after-image of x wrt Ti is the value of x written by Ti

The stable database is the portion of the database that is on disk.

The before-image of x wrt Ti is the value of x before x was overwritten by Ti.

from "Concurrency Control and Recovery in Database Systems," by Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman (Addison-Wesley 1987), now available at //www.research.microsoft.com/pubs/ccontrol

202 CHAPTER 6 I CENTRALIZED RECOVERY

the results of Tts Writes become part of the committed database state, thereby
committing T,.

With this structure, an Rh4-Commit procedure with the desired properties
requires atomically changing the directory entries for all data items written by
the transaction that is being committed. If the directory fits in a single data
item, then the problem is solved. Otherwise, it seems we have simply moved
our problem to a different structure. Instead of atomically installing updates in
the stable database, we now have to atomically install updates in the directory.

The critical difference is that since the directory is much smaller than the
database, it is feasible to keep two copies of it in stable storage: a current direc-
tory, pointing to the committed database, and a scrcztch copy. To commit a
transaction T,, the RM updates the scratch directory to represent the stable
database state that includes T,‘s updares. That is, for each data item x that T,
updates, the RM makes the scratch directory’s entry for x point to Tts new
version of x. For data items that T, did not update, it makes the scratch direc-
tory’s entries identical to the current directory’s entries. Then it swaps the
current and scratch directories in an atomic action. This atomic swap action is
implemented through a master record in stable storage, which has a bit indi-
cating which of the two directory copies is the current one. To swap the direc-
tories, the RM simply complements the bit in the master record, which is
surely an atomic action! Writing that bit is the operation that commits the
transaction. Notice that the RM can only process one Commit at a time. That
is, the activity of updating the scratch directory followed by complementing
the master record bit is a critical section.

Figure 6-4 illustrates the structures used in the algorithm to commit trans-
action T, which updated data items x and >f. In Fig. 6-4(a) the transaction has
created two new versions, leaving the old versions intact as shadows (appro-
priately shaded). In Fig. 6-4(b) T, has set up the scratch directory to reflect the
stable database as it should be after its commitment. In Fig. 6-4(c) the master
record’s bit is flipped, thereby committing T; and installing its updates in the
stable database. Note that there are two levels of indirection to obtain the
current value of a data item. First the master record indicates the appropri-
ate directory, and then the directory gives the data item’s address in the stable
database.

Before describing the five RM procedures, let us define some notation for
the stable storage organization used in this algorithm. We have a master
record, &l, that stores a single bit. We have two directories Do and D’. At any
time Db is the current directory, where b is the present value of M. Db[x]
denotes the entry for data item x in directory D6. It contains x’s address in the
stable database. We use - 6 to denote the complement of b, so D-b is the
scratch directory, There may be one or two versions of a data item at any given
time: one in the stable database (pointed to by Db and possibly a new version.
All this information - the stable database, the new versions, the two directo-
ries, and the master record - must be kept in stable storage. The master
record and the directories can also be cached for efficient access.

6.7 THE NO-UNDO/NO-REDO ALGORITHM 203

Directory
COPY 0

d Master 0

Directory
COPY 1

Directory
COPY 0

Ed Master 0

Directory
COPY 1

Directory
COPY 0

Master 1 T
Directory

COPY 1

Stable database + log
y; .‘~.,.~~:.‘..‘.‘.‘,.:::~.::,::.:~.~:: ,‘::,‘.:~:
!,i.Last comrktted value of x I;;:
,, ..‘,. .; . . ,., . . .: ;.. ..:; ,...‘i...

Y
.

0 ~.:.,::‘.~,....:;~~:~:.,;~~. ..:,,. ,.. .,... ,..
*I::Last committed value of y:.:ifi

Z :.... ;,._., ., .,. .; : .:...,.: . ., *;. .,:.‘:‘::

Last committed value of z

7s new version of x

T;s new version of y

Stable database + log

T;s new version of y
t I I I

Stable database + log

FlGURE 6-4
An Example of the No-Undo/No-Redo Algorithm
(a) Database state after creating new versions for Ti (b) Database state after preparing
directory for T/s commitment (c) Database state after committing Ti

204 CHAPTER 6 I CENTRALIZED RECOVERY

In addition, for each active transaction T, there is a directory D, with the
addresses of the new versions of the data items written by T,. D,[x] denotes the
entry of D, that corresponds to data item x (presumably T, wrote into x). These
directories need not be stored in stable storage. Given this organization of
data, the RM procedures are as follows.

RM-Write(T,, x, V)

1. Write zi into an unused location in stable storage and record this loca-
tion’s address in D,[x].”

2. Acknowledge to the scheduler the processing of RM-Write(T,, x, v).

RM-Read(T,, x)

2. If T, has previously written into x, return to the scheduler the value
stored in the location pointed to by D,[x].

2. Otherwise, return to the scheduler the value stored in the location
pointed to by @[xl, where 6 is the present value of the bit in the master
record M?

RM-Commit(T,)

1. For each x updated by T,: D-b[~} : = D,[x 1, where b is the value of
M.#L’

2. M := -b.“’

3. For each x updated by T,: D-“[xl : = D,[x], where b is the (new) value
of MaE,

4. Discard Dj (free any storage used by it).

5. Acknowledge to the scheduler the processing of RM-Commit(Ti).

RM-Abort(T,)

1. Discard D,.

2. Acknowledge to the scheduler the processing of RM-Abort(T,).

Restart

1. Copy Db into D-b.

2. Free any storage reserved for active transactions’ directories and their
new versions.

3. Acknowledge to the scheduler the processing of Restart,

Comments

A. [Step (1) of RM-Write] This step creates the new version of x, leaving
the shadow version in the stable database untouched.

6.8 MEDIA FAILURES 205

B. [Step (2) of RM-Read] If Ti has written into x it reads the new version
of x that it created when it wrote into x (see step (1) of RM-Write);
otherwise it reads the version of x in the stable database.

C. [Step (1) of RM-Commit] This step sets up the scratch directory to
reflect the updates of Ti.

D. [Step (2) of RM-Commit] This step complements the bit in the master
record, thereby making the scratch directory into the current one (and
what used to be the current into the scratch). It is the atomic action
that makes T; committed. Failure before this step will result in T/s
abortion.

E. [Step (3) of RM-Commit] This step records Tis changes in D-b, which
has now become the scratch directory. This ensures that when that
directory again becomes the current one, T/s updates will be properly
reflected in the stable database.

The algorithm satisfies the Undo Rule since the stable database never has
values written by uncommitted transactions. It also satisfies the Redo Rule
because at the time of commitment all of a transaction’s updates are in the
stable database. In fact, under this algorithm the stable database always
contains the last committed database state. As a result, virtually no work is
needed to abort a transaction or restart the system following a failure.

While Restart is efficient, this algorithm does have three important costs
during normal operation. First, accesses to stable storage are indirect and
therefore more expensive. However, this cost may be small if the directory is
small enough to be stored in cache. Second, finding uncommitted versions and
reclaiming their space may be difficult to do efficiently, given the absence of a
log. Third, and most importantly, the movement of data to new versions
destroys the original layout of the stable database. That is, when a data item is
updated, there may not be space for the new copy close to the original data
item’s (i.e., its shadow’s) location. When the update is committed, the data
item has changed location from the shadow to the new version. Thus, if the
database is designed so that related data items are stored in nearby stable stor-
age locations, that design will be compromised over time as some of those data
items are updated. For example, if records of a file are originally stored contig-
uously on disk for efficient sequential access, they will eventually be spread
into other locations thereby slowing down sequential access. This problem is
common to many implementations of shadowing.

Because of the organization of the log, this algorithm is also known as the
shadow version algorithm. And because of the way in which it commits a
transaction, by atomically recording all of a transaction’s updates in the stable
database, it has also been called the careful replacement algorithm.

You can ignore this paragraph about the Undo Rule and Redo Rule until we cover it in class, in the section on Database Recovery.

	Untitled

