
1

13/27/03

1. Introduction
CSEP 545 Transaction Processing

Philip A. Bernstein

Copyright ©2003 Philip A. Bernstein

23/27/03

Outline

1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

33/27/03

1.1 The Basics - What’s a Transaction?

• The execution of a program that performs an
administrative function by accessing a shared
database, usually on behalf of an on-line user.

Examples
• Reserve an airline seat. Buy an airline ticket

• Withdraw money from an ATM.

• Verify a credit card sale.

• Order an item from an Internet retailer

• Place a bid at an on-line auction

• Connect to video-on-demand and pay for it
43/27/03

The “ ities” are What Makes
Transaction Processing (TP) Hard
• Reliability - system should rarely fail

• Availability - system must be up all the time

• Response time - within 1-2 seconds

• Throughput - thousands of transactions/second

• Scalability - start small, ramp up to Internet-scale

• Security – for confidentiality and high finance

• Configurability - for above requirements + low cost

• Atomicity - no partial results

• Durability - a transaction is a legal contract

• Distribution - of users and data

53/27/03

What Makes TP Important?

• It’s at the core of electronic commerce

• Most medium-to-large businesses use TP for
their production systems. The business can’ t
operate without it.

• It’s a huge slice of the computer system
market. One of the largest applications of
computers.

63/27/03

TP System Infrastructure
• User’s viewpoint

– Enter a request from a browser or other display device
– The system performs some application-specific work,

which includes database accesses
– Receive a reply (usually, but not always)

• The TP system ensures that each transaction
– is an independent unit of work
– executes exactly once, and
– produces permanent results.

• TP system makes it easy to program transactions
• TP system has tools to make it easy to manage

2

73/27/03

TP System Infrastructure …
Defines System and Application Structure

Presentation Manager

Workflow Control
(routes requests and

supervises their execution)

Database System

Front-End
(Client)

Back-End
(Server)

End-User

Transaction Program

requests

83/27/03

System Characteristics
• Typically < 100 transaction types per application
• Transaction size has high variance. Typically,

– 0-30 disk accesses
– 10K - 1M instructions executed
– 2-20 messages

• A large-scale example: airline reservations
– 150,000 active display devices
– plus indirect access via Internet travel agents
– thousands of disk drives
– 3000 transactions per second, peak

93/27/03

Availability
• Fraction of time system is able to do useful work

• Some systems are very sensitive to downtime
– airline reservation, stock exchange, telephone switching
– downtime is front page news

• Contributing factors
– failures due to environment, system mgmt, h/w, s/w
– recovery time

Downtime Availability
1 hour/day 95.8%
1 hour/week 99.41%
1 hour/month 99.86%
1 hour/year 99.9886%
1 hour/20years 99.99942%

103/27/03

Application Servers
• A software product to create, execute and manage TP

applications

• Formerly called TP monitors. Some people say
App Server = TP monitor + web functionality.

• Programmer writes an app. to process a single request.
App Server scales it up to a large, distributed system
– E.g. application developer writes programs to debit a checking

account and verify a credit card purchase.

– App Server helps system engineer deploy it to 10s/100s of
servers and 10Ks of displays

– App Server helps system engineer deploy it on the Internet,
accessible from web browsers

113/27/03

Application Servers (cont’d)

• Components include
– an application programming interface (API) (e.g.,

Enterprise Java Beans)
– tools for program development
– tools for system management (app deployment,

fault & performance monitoring, user mgmt, etc.)

• Enterprise Java Beans, IBM Websphere,
Microsoft .NET (COM+), BEA Weblogic,
Oracle Application Server

123/27/03

Presentation Server

Workflow Controller

Transaction Server Transaction Server

Network

Requests

Message
Inputs

App Server Architecture, pre-Web
• Boxes below are distributed on an intranet

Queues

3

133/27/03

Automated Teller Machine
(ATM) Application Example

Workflow
Controller

CIRRUS
Accounts

Credit Card
Accounts

Loan
Accounts

Workflow
Controller

ATM ATM ATM ATMATM ATM ATM ATM

Bank Branch 1 Bank Branch 2 Bank Branch 500

Checking
Accounts

143/27/03

Web Server

Workflow Controller

Transaction Server Transaction Server

intranet

Requests

Message
Inputs

Application Server Architecture

Queues

Web Browser
http http

other TP
systems

153/27/03

Internet Retailer

Workflow
Controller

Music Computers

Web
Server

Electronics

The
Internet

Toys … …

163/27/03

Web Services

Workflow
Controller

Music Computers

Web
Server

Electronics

The
Internet

Toys … …

Web Service W
eb

 S
er

vi
ce

• Interface and protocol standards to do
application server functions over the internet.

173/27/03

Enterprise Application Integration
• A software product to route requests between

independent application systems. Often include
– A queuing system

– A message mapping system

– Application adaptors (SAP, PeopleSoft, etc.)

• EAI and Application Servers address a similar
problem, with different emphasis

• IBM Websphere MQ, TIBCO, Vitria, SeeBeyond

183/27/03

ATM Example
with an EAI System

CIRRUS
Accounts

Credit Card
Accounts

Loan
Accounts

EAI Routing

ATM ATM ATM ATMATM ATM ATM ATM

Bank Branch 1 Bank Branch 2 Bank Branch 500

Checking
Accounts

EAI RoutingQueues Queues

4

193/27/03

Workflow Systems
• A software product that executes multi-transaction long-

running scripts (e.g. process an order)

• Product components
– A workflow script language

– Workflow script interpreter and scheduler

– Workflow tracking

– Message translation

– Application and queue system adaptors

• Transaction vs. document centric

• Structured processes vs. case management

• IBM Websphere MQ Workflow, Microsoft BizTalk, Vitria,
Oracle Workflow, FileNET, Documentum

203/27/03

System Software Vendor’s View
• TP is partly a component product problem

– Hardware
– Operating system
– Database system
– Application Server

• TP is partly a system engineering problem
– Getting all those components to work together

to produce a system with all those “ ilities” .

• This course focuses primarily on the
Database System and Application Server

213/27/03

Outline

�1. The Basics
2. ACID Properties
3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

223/27/03

1.2 The ACID Properties

• Transactions have 4 main properties
– Atomicity - all or nothing

– Consistency - preserve database integrity

– Isolation - execute as if they were run alone

– Durability - results aren’ t lost by a failure

233/27/03

Atomicity
• All-or-nothing, no partial results.

– E.g. in a money transfer, debit one account, credit the
other. Either debit and credit both run, or neither runs.

– Successful completion is called Commit.

– Transaction failure is called Abort.

• Commit and abort are irrevocable actions.

• An Abort undoes operations that already executed
– For database operations, restore the data’s previous value

from before the transaction

– But some real world operations are not undoable.
Examples - transfer money, print ticket, fire missile

243/27/03

Example - ATM Dispenses Money
(a non-undoable operation)

T1: Start
. . .
Commit

Dispense Money

T1: Start
. . .
Dispense Money

Commit

System crashes

Deferred operation
never gets executed

System crashes
Transaction aborts
Money is dispensed

5

253/27/03

Reading Uncommitted Output Isn’ t
Undoable

T1: Start
...

Display output
...
If error, Abort

T2: Start
Get input from display
...

Commit

User reads output
…
User enters input

Brain
transport

263/27/03

Compensating Transactions
• A transaction that reverses the effect of another

transaction (that committed). For example,
– “Adjustment” in a financial system

– Annul a marriage

• Not all transactions have complete compensations
– E.g. Certain money transfers (cf. “The Firm”)

– E.g. Fire missile, cancel contract

– Contract law talks a lot about appropriate compensations

� A well-designed TP application should have a
compensation for every transaction type

273/27/03

Consistency
� Every transaction should maintain DB consistency

– Referential integrity - E.g. each order references an
existing customer number and existing part numbers

– The books balance (debits = credits, assets = liabilities)

� Consistency preservation is a property of a
transaction, not of the TP system
(unlike the A, I, and D of ACID)

• If each transaction maintains consistency,
then serial executions of transactions do too.

283/27/03

Some Notation

• ri[x] = Read(x) by transaction Ti

• wi[x] = Write(x) by transaction Ti

• ci = Commit by transaction Ti

• ai = Abort by transaction Ti

• A history is a sequence of such operations,
in the order that the database system
processed them.

293/27/03

Consistency Preservation Example
T1: Start;

A = Read(x);
A = A - 1;
Write(y, A);
Commit;

T2: Start;
B = Read(x);
C = Read(y);
If (B > C+1) then B = B - 1;
Write(x, B);
Commit;

• Consistency predicate is x > y.

• Serial executions preserve consistency.
Interleaved executions may not.

• H = r1[x] r2[x] r2[y] w2[x] w1[y]
– e.g. try it with x=4 and y=2 initially

303/27/03

Isolation
• Intuitively, the effect of a set of transactions

should be the same as if they ran independently

• Formally, an interleaved execution of
transactions is serializable if its effect is
equivalent to a serial one.

• Implies a user view where the system runs each
user’s transaction stand-alone.

• Of course, transactions in fact run with lots of
concurrency, to use device parallelism.

6

313/27/03

A Serializability Example
T1: Start;

A = Read(x);
A = A + 1;
Write(x, A);
Commit;

T2: Start;
B = Read(x);
B = B + 1;
Write(y, B);
Commit;

• H = r1[x] r2[x] w1[x] c1 w2[y] c2

• H is equivalent to executing T2 followed by T1

• Note, H is not equivalent to T1 followed by T2

• Also, note that T1 started before T2 and finished
before T2, yet the effect is that T2 ran first.

323/27/03

Serializability Examples (cont’d)

• Client must control the relative order of transactions,
using handshakes
(wait for T1to commit before submitting T2).

• Some more serializable executions:
r1[x] r2[y] w2[y] w1[x] ≡ T1 T2 ≡ T2 T1

r1[y] r2[y] w2[y] w1[x] ≡ T1 T2 ≡ T2 T1

r1[x] r2[y] w2[y] w1[y] ≡ T2 T1 ≡ T1 T2

• Serializability says the execution is equivalent to
some serial order, not necessarily to all serial orders

333/27/03

Non-Serializable Examples
• r1[x] r2[x] w2[x] w1[x] (race condition)

– e.g. T1 and T2 are each adding 100 to x

• r1[x] r2[y] w2[x] w1[y]
– e.g. each transaction is trying to make x = y,

but the interleaved effect is a swap

• r1[x] r1[y] w1[x] r2[x] r2[y] c2 w1[y] c1
(inconsistent retrieval)
– e.g. T1 is moving $100 from x to y.
– T2 sees only half of the result of T1

• Compare to the OS view of synchronization

343/27/03

Durability
• When a transaction commits, its results will

survive failures (e.g. of the application, OS,
DB system … even of the disk).

• Makes it possible for a transaction to be a legal
contract.

• Implementation is usually via a log
– DB system writes all transaction updates to its log

– to commit, it adds a record “commit(Ti)” to the log

– when the commit record is on disk, the transaction is
committed.

– system waits for disk ack before acking to user

353/27/03

Outline

�1. The Basics
�2. ACID Properties

3. Atomicity and Two-Phase Commit
4. Performance
5. Styles of System

363/27/03

1.3 Atomicity and Two-Phase Commit
• Distributed systems make atomicity harder
• Suppose a transaction updates data managed by

two DB systems.
• One DB system could commit the transaction,

but a failure could prevent the other system from
committing.

• The solution is the two-phase commit protocol.
• Abstract “DB system” by resource manager

(could be a SQL DBMS, message mgr, queue
mgr, OO DBMS, etc.)

7

373/27/03

Two-Phase Commit
• Main idea - all resource managers (RMs) save a

durable copy of the transaction’s updates before
any of them commit.

• If one RM fails after another commits, the failed
RM can still commit after it recovers.

• The protocol to commit transaction T
– Phase 1 - T’s coordinator asks all participant RMs to

“prepare the transaction” . Participant RMsreplies
“prepared” after T’s updates are durable.

– Phase 2 - After receiving “prepared” from all
participant RMs, the coordinator tells all participant
RMs to commit.

383/27/03

Two-Phase Commit
System Architecture

Resource
Manager

Transaction
Manager (TM)

Application Program

Other
Transaction
Managers

1. Start transaction returns a unique transaction identifier
2. Resource accesses include the transaction identifier.

For each transaction, RM registers with TM
3. When application asks TM to commit, the TM runs

two-phase commit.

Start
Commit, Abort

Read,
Write

393/27/03

Outline

�1. The Basics
�2. ACID Properties
�3. Atomicity and Two-Phase Commit

4. Performance
5. Styles of System

403/27/03

1.4 Performance Requirements
• Measured in max transaction per second (tps) or

per minute (tpm), and dollars per tps or tpm.
• Dollars measured by list purchase price plus 5 year

vendor maintenance (“cost of ownership”)
• Workload typically has this profile:

– 10% application server plus application
– 30% communications system (not counting presentation)
– 50% DB system

• TP Performance Council (TPC) sets standards
– http://www.tpc.org.

• TPC A & B (‘89-’95), now TPC C &W

413/27/03

TPC-A/B — Bank Tellers

Start
Read message from terminal (100 bytes)
Read+write account record (random access)
Write history record (sequential access)
Read+write teller record (random access)
Read+write branch record (random access)
Write message to terminal (200 bytes)

Commit

• End of history and branch records are bottlenecks

• Obsolete (a retired standard), but interesting
• Input is 100 byte message requesting deposit/withdrawal
• Database tables = { Accounts, Tellers, Branches, History}

423/27/03

The TPC-C Order-Entry Benchmark

• TPC-C uses heavier weight transactions

Table Rows/Whse Bytes/row

Warehouse 1 89

District 10 95
Customer 30K 655
History 30K 46
Order 30K 24
New-Order 9K 8
OrderLine 300K 54
Stock 100K 306
Item 100K 82

8

433/27/03

TPC-C Transactions
• New-Order

– Get records describing a warehouse, customer, & district

– Update the district

– Increment next available order number

– Insert record into Order and New-Order tables

– For 5-15 items, get Item record, get/update Stock record

– Insert Order-Line Record

• Payment, Order-Status, Delivery, Stock-Level have
similar complexity, with different frequencies

• tpmC = number of New-Order transaction per min.
443/27/03

Comments on TPC-C
• Enables apples-to-apples comparison of TP

systems

• Does not predict how your application will run,
or how much hardware you will need,
or which system will work best on your workload

• Not all vendors optimize for TPC-C.

– IBM has claimed DB2 is optimized for a different
workload, so they only started publishing TPC
numbers a few years ago.

453/27/03

Typical TPC-C Numbers
• $3 - $50 / tpmC. Most are under $20 / tpmC.

– Top 24 price/performance results on MS SQL Server & Windows.
– One of the top 56 is Oracle, Linux, BEA Tuxedo

• System cost $36K (Dell) - $12M (Fujitsu)

• Examples of high throughput
– HP ProLiant cluster, 709K tpmC, $10.6M, $15/tpmC

(MS SQL, MS COM+)
– IBM 428K tpmC, $7.6M, $18/tpmC (Oracle, Websphere)

• Examples of low cost (all use MS SQL Server, COM+)
– HP ProLiant cluster, 411K tpmC, $5.3M, $13/tpmC
– Dell, 16.7K tpmC, $47K, $3/tpmC

• Resultsare very sensitive to date published.

463/27/03

TPC-W – Web Retailer
• Introduced 12/99.

• Features - dynamic web page generation, multiple browser
sessions, secure UI & payments (via secure socket layer)

• Profiles - shop (WIPS), browse (WIPSb), order (WIPSo)

• Tables – {Customer, Order, Order-Line, Item, Author,
CreditCardTxns, Address, Country}

• Transactions – HomeWeb, ShoppingCart,
AdminRequest, AdminConfirm, CustomerRegister,
BuyRequest, BuyConfirm, OrderInquiry,
OrderDisplay, Search, SearchResult, NewProducts,
BestSellers, ProductDetail,

473/27/03

TPC-W (cont’d)

• Scale factor: 1K – 10M items (in the catalog).

• Web Interactions per sec (WIPS) @ ScaleFactor

– IBM: 21K WIPS@10K items; $33 / WIPS; $690K total

– Dell: 8K WIPS@10K items; $25 / WIPS; $190K total

483/27/03

Outline

�1. The Basics
�2. ACID Properties
�3. Atomicity and Two-Phase Commit
�4. Performance

5. Styles of System

9

493/27/03

1.5 Styles of Systems
• TP is System Engineering

• CompareTP to other kinds of system engineering …

• Batch processing - Submit a job and receive file output.

• Time sharing - Invoke programs in a process, which
may interact with the process’s display

• Real time - Submit requests that have a deadline

• Client/server - PC calls a server over a network to
access files or run applications

• Decision support - Submit queries to a shared database,
and process the result with desktop tools

• TP - Submit a request to run a transaction
503/27/03

TP vs. Batch Processing (BP)

• A BP application is usually uniprogrammed so
serializability is trivial. TP is multiprogrammed.

• BP performance is measured by throughput.
TP is also measured by response time.

• BP can optimize by sorting transactions by the file key.
TP must handle random transaction arrivals.

• BP produces new output file. To recover, re-run the app.
• BP has fixed and predictable load, unlike TP.
• But, where there is TP, there is almost always BP too.

– TP gathers the input. BP post-processes work that has weak
response time requirements

– So, TP systems must also do BP well.

513/27/03

TP vs. Timesharing (TS)
• TS is a utility with highly unpredictable load. Different

programs run each day, exercising features in new
combinations.

• By comparison, TP is highly regular.

• TS has less stringent availability and atomicity
requirements. Downtime isn’ t as expensive.

523/27/03

TP vs. Real Time (RT)
• RT has more stringent response time requirements. It may

control a physical process.

• RT deals with more specialized devices.

• RT doesn’ t need or use a transaction abstraction
– usually loose about atomicity and serializability

• In RT, response time goals are usually more important
than completeness or correctness. In TP, correctness is
paramount.

533/27/03

TP and Client/Server (C/S)

• Is commonly used for TP, where client prepares
requests and server runs transactions

• In a sense, TP systems were the first C/S systems,
where the client was a terminal

543/27/03

TP and Decision Support Systems
(DSSs)

• DSSs run long queries, usually with lower data integrity
requirements than TP.

• A.k.a. data warehouse (DSS is the more generic term.)

• TP systems provide the raw data for DSSs.

10

553/27/03

Outline

�1. The Basics
�2. ACID Properties
�3. Atomicity and Two-Phase Commit
�4. Performance
�5. Styles of System

563/27/03

What’s Next?

• This chapter covered TP system structure and
properties of transactions and TP systems

• The rest of the course drills deeply into each
of these areas, one by one.

