AR03

2. Atomicity &
Durability Using
Shadow Paging

CSEP 545 Transaction Processing
for E-Commerce

Philip A. Bernstein

Copyright ©2003 Philip A. Bernstein

403

Introduction

To get started on the Java-C# project, you need
to implement atomicity and durability in a
centralized resource manager (i.e. a database).
Recommend approach is shadowing.

This section provides a quick introduction.

A more thorough explanation of the overall topic
of database recovery will be presented in a
couple of weeks.

AR03

Review of Atomicity & Durability

* Atomicity - a transaction is all-or-nothing

* Durability - results of a committed
transaction will survive failures

* Problem

— The only hardware operation that is atomic with
respect to failure and whose result is durable is
“write one disk block”

— But the database doesn’t fit on one disk block!

A303

Shadowing in a Nutshell

The database is a tree whose root is a single disk block
There are two copies of the tree, the master and shadow
The root points to the master copy

Updates are applied to a shadow copy

To install the updates, overwrite the root so it points to
the shadow, thereby swapping the master and shadow

— Before writing the root, none of the transaction’s updates are
part of the disk-resident database

— After writing the root, all of the transaction’s updates are part
of the disk-resident database

— Which means the transaction is atomic and durable

More Specifically ...

Initial State of Filesa and b

The database consists of a set of files P [a] P1al
Each file consists of a page table P and D 11 haN Ptr[a]
a set of pages that P points to. State) \\P:Za | ; Main
A master page points to each file’s I Master] - < 3 Memory
master page table. 8 = ForT
Assume no concurrency. S b Pu[b] ,Pibj, | Pt,[b]
L.e., one transaction runs at any given time. K ;7 1
Assume the transaction has a private shadow 3 | p2ble—— 1 2
copy of each page table. 3
After Writing Page P2b
To Write a Page P, _
N Ptj[a] Pla
+ Transaction writes a shadow copy of page P, D 1 =" 7\ PtT[la]
to disk 2 \\Tm/,// > | Main
* Transaction updates its page table to point to I Master 3 L 3 |Memory
the shadow copy of P, S Z Pu[b] _4Plb Pt [b] For T
* Transaction marks P,’s entry in the page K 1 7\ \\Tl
table (to remember which pages were g popl P2b Ll 2 M
updated) 01d| [New 3

After Writing Page Pla

What if the System Fails?

7 Ptl[a]/,Pla Pla
— Pt . .
D 1 Old| New" T[la] + Main memory is lost
I g —T"P2a T2 * The current transaction is effectively aborted
MZSter — 3 Ml\e/[;i)nry + But the database is still consistent
K 2 — !
3| *[P2b| P2b [t 2 |M
Old| New 3
To Commit To Commit (cont’d)

1. First copy Pty[a] and Pt;[b] to disk

Initial
State

Master

a
b

~ = O

Ptl[a]/v Pl

3

1

2 T—{pra

1
2 —

3| *[p2b] P26 (- 2
Old| New 3

a| |Pla

1] |0ld| New \PtT[a]

/'2
3

AR03

2. Then overwrite Master to point to the new Pt’s.

Pt.[a Pla| [Pla
f[/]/01d New [Dtrl2]

2 1—lp2a

Master

D
I
S
K

A303

Shadow Paging with Shared Files

* What if two transactions update different pages of a file?
— If they share their main memory copy of the page table,
then committing one will commit the other’s updates too!
* One solution: File-grained locking (but poor concurrency)
* Better solution: use a private copy of page table, per
transaction. To commit T, within a critical section:

— get a private copy of the last committed value of the page table
of each file modified by T

— update their entries for pages modified by T
— store the updated page tables on disk
— write a new master record, which installs just 7"’s updates

AR03

403

Managing Available Disk Space

Treat the list of available pages like another file
The master record points to the master list
When a transaction allocates a page, update its
shadow list

When a transaction commits, write a shadow
copy of the list to disk

Commiting the transaction swaps the master list
and the shadow

Final Remarks

Don’t need to write shadow pages to disk until the
transaction is ready to commit

— Saves disk writes if a transaction writes a page multiple
times

Main benefit is that doesn’t require much code
Used in the Gemstone OO DBMS.
Not good for TPC benchmarks

— count disk updates per transaction

— how to do record level locking?

AR03

A303

References

e P. A. Bernstein, V. Hadzilacos, N. Goodman,
Concurrency Control and Recovery in Database
Systems, Chapter 6, Section 7 (pp. 201-204)

— The book is downloadable from
http://research.microsoft.com/pubs/ccontrol/

* Originally proposed by Raymond Lorie in
“Physical Integrity in a Large Segmented
Database”ACM Transactions on Database
Systems, March 1977.

16

