10. Replication

CSEP 545 Transaction Processing
Philip A. Bernstein

Copyright ©2003 Philip A. Bernstein

5/27/03

Outline

1. Introduction

2. Primary-Copy Replication
3. Multi-Master Replication
4. Other Approaches

5. Products

5/27/03

1. Introduction

* Replication - using multiple copies of a server
(called replicas) for better availability and
performance.

« If you’re not careful, replication can lead to

— worse performance - updates must be applied to all
replicas and synchronized

— worse availability - some algorithms require multiple
replicas to be operational for any of them to be used

5/27/03

Replicated Server
Can replicate servers on a common resource

— Data sharing - DB servers communicate with shared disk

Sever Replica 2

Server Replic 1

Resource

Helps availability in primary-backup scenario
» Requires replica cache coherence mechanism ...

Hence, this helps performance only if
— little conflict between transactions at different servers or

— loose coherence guarantees (e.g. read committed)
5/27/03

Replicated Resource

To get more improvement in availability,
replicate the resources (too)

Also increases potential throughput

This is what’s usually meant by replication
It’s the scenario we’ll focus on

Client
Server Replica 2

Server Replica 1

Resource replica

— >
Resource replica

5/27/03

Synchronous Replication

 Replicas function just like non-replicated servers

» Synchronous replication - transaction updates all
replicas of every item it updates

Sty
Write(x2) '
Be

2
Write(x3)
Commit

* Issues
— Too expensive for most applications, due to heavy
distributed transaction load (2-phase commit)
— Can’t control when updates are applied to replicas

5/27/03

Synchronous Replication - Issues

 Ifyou just use transactions, availability suffers.

* For high-availability, the algorithms are complex and
expensive, because they require heavy-duty
synchronization of failures.

* ... of failures? How do you synchronize failures?
r;[xa] —— yp fails —> w [y.] Notequivalenttoa

one-copy execution,

) even if x, and yp
nlYpl — X4 fails W,[Xg] never recover!

* DBMS products support it only in special situations

5/27/03

Atomicity & Isolation Goal

* One-copy serializability

— An execution of transactions on the replicated
database has the same effect as an execution on a
one-copy database.

* Previous example was not one-copy serializable
(abbr. /SR).

5/27/03 8

Asynchronous Replication

Asynchronous replication
— Each transaction updates one replica.
— Updates are propagated later to other replicas.

* Primary copy: All transactions update the same copy
Multi-master: Transactions update different copies
— Useful for disconnected operation, partitioned network

Both approaches ensure that

— Updates propagate to all replicas

— If new updates stop, replicas converge to the same state
* Primary copy ensures serializability, and often 1SR
— Multi-master does not. ... More later.

5/27/03

2. Primary-Copy Replication

* Designate one replica as the primary copy (publisher)

» Transactions may update only the primary copy

» Updates to the primary are sent later to secondary replicas
(subscribers) in the order they were applied to the primary

T1: Start

. -
... Write(x1) ...
Commit
= e
ey L

Tn Copy Secondaries

5/27/03

10

Update Propagation

Collect updates at the primary using triggers or
by post-processing the log
» Triggers

— On every update at the primary, a trigger fires to store the
update in the update propagation table.

Post-process (“sniff”) the log to generate update
propagations
— Saves trigger and triggered update overhead during on-line txn.
— But R/W log synchronization has a (small) cost
— Requires admin (what if the log sniffer fails?)

Optionally identify updated fields to compress log
* Most DB systems support this today.

5/27/03

11

Update Processing

At the replica, for each transaction T in the propagation
stream, execute a transaction that applies T’s updates to
the replica.

* Process the stream serially

— Otherwise, conflicting transactions may run in a different
order at the replica than at the primary.

— Suppose log contains w[X] ¢; W,[X] c,.
Obviously, T, must run before T, at the replica.

— So the execution of update transactions is serial.

5/27/03

12

Update Processing (cont’d)

» To get a 1SR execution at the replica

— Update transactions and read-only queries use an atomic and
isolated mechanism (e.g. using 2PL)

* Why this works

— The execution is serializable

— Each state in the serial execution is one that occurred at the
primary copy

— Each query reads one of those states.

5/27/03

13

Request Propagation

+ An alternative to propagating updates is to propagate
procedure calls (e.g., a DB stored procedure call).

DB-A 1 [sp1: write lx] o0
P— - WITe(Xx - SPL1: Write(X) ™=, o
BR[| ety | Reptoate [ey | wis] T

* Or propagate requests (e.g. txn-bracketed stored proc calls)

* Must ensure requests run in the same order at primary and
replica (same requirement as updates or procedure calls).
— As for updates, can propagate requests asynchronously, or ...

— can run requests synchronously at all replicas, but commit even if
one replica fails (need a recovery procedure for failed replicas).

S0s If supported, it’s often an app server (not DB) feature.

14

Failure & Recovery Handling

» Secondary failure - nothing to do till it recovers
— At recovery, apply the updates it missed while down

— Needs to determine which updates it missed,
just like non-replicated log-based recovery

— If down for too long, it may be faster to get a whole copy

* Primary failure
— Normally, secondaries just wait till the primary recovers
— Can get higher availability by electing a new primary

— A secondary that detects primary’s failure announces a new
election by broadcasting its unique replica identifier

— Other secondaries reply with their replica identifier
— The largest replica identifier wins

5/27/03

15

Failure Handling (cont’d)

* Primary failure (cont’d)
— All replicas must now check that they have the
same updates from the failed primary

— During the election, each replica reports the id of the
last log record it received from the primary

— The most up-to-date replica sends its latest updates to
(at least) the new primary.
— Could still lose an update that committed at the primary and
wasn’t forwarded before the primary failed ...
but solving it requires synchronous replication
(2-phase commit to propagate updates to replicas)

5/27/03

16

5/27/03

Communications Failures

Secondaries can’t distinguish a primary failure from a
communication failure that partitions the network.

If the secondaries elect a new primary and the old primary
is still running, there will be a reconciliation problem
when they’re reunited. This is multi-master.

To avoid this, one partition must know it’s the only one
that can operate, and can’t communicate with other
partitions to figure this out.

Could make a static decision.
E.g., the partition that has the primary wins.

Dynamic solutions are based on Majority Consensus

17

5/27/03

Majority Consensus

Whenever a set of communicating replicas detects a
replica failure or recovery, they test if they have a
majority (more than half) of the replicas.
If so, they can elect a primary
Only one set of replicas can have a majority.
Doesn’t work well with even number of copies.
— Useless with 2 copies
Quorum consensus
— Give a weight to each replica
— The replica set that has a majority of the weight wins
— E.g. 2 replicas, one has weight 1, the other weight 2

18

3. Multi-Master Replication

Some systems must operate when partitioned.
— Requires many updatable copies, not just one primary
— Conflicting updates on different copies are detected late

Classic example - salesperson’s disconnected laptop
Customer table (rarely updated) Orders table (insert mostly)
Customer log table (append only)

— So conflicting updates from different salespeople are rare

Use primary-copy algorithm, with multiple masters

— Each master exchanges updates (“gossips”) with other replicas
when it reconnects to the network

— Conlflicting updates require reconciliation (i.e. merging)

In Lotus Notes, Access, SQL Server, Oracle, ...

5/27/03

19

Example of Conflicting Updates
A Classic Race Condition

Replica 1 Primary Replica 2
nitially x=0 Initiallyx=0 Initially x=0
Ty X=1 | O Tpxe2
Send (X= 1)\\> X=1 ~_Send (X=2)

Send (X=1

 Replicas end up in different states

5/27/03

20

10

Thomas’ Write Rule

* To ensure replicas end up in the same state
— Tag each data item with a timestamp

— A transaction updates the value and timestamp of data items
(timestamps monotonically increase)

— An update to a replica is applied only if the update’s timestamp
is greater than the data item’s timestamp

— You only need to keep timestamps of data items that were
recently updated (where an older update could still be floating
around the system)

 All multi-master products use some variation of this
» Robert Thomas, ACM TODS, June 79

— Same article that invented majority consensus

5/27/03 21

Thomas Write Rule & Serializability

Replica 1 - Primary - Replica 2
T,: read x=0 (TS=0) ' Initially x=0,TS=0 T,: read x=0 (TS=0)
TiX=1,TS=1 Ty X=2,TS=2

Send (X=1,TS=1)) o,

 Send (X=1, TS=1)y
 X=2,Ts=2%
— Send (X=2, TS=2).
X2, Tosg e o)

* Replicas end in the same state, but neither T, nor T, reads

N mthe other’s output, so the execution isn’t serializable. ”
5/27

Send (X=2, TS=2)

11

Multi-Master Performance

» The longer a replica is disconnected and
performing updates, the more likely it will
need reconciliation

» The amount of propagation activity increases
with more replicas

— If each replica is performing updates,
the effect is quadratic

5/27/03 23

Microsoft Access and SQL Server

* Multi-master replication without a primary

* Each row R of a table has 4 additional columns
— globally unique id (GUID)

— generation number, to determine which updates from other
replicas have been applied

— version number = the number of updates to R
— array of [replica, version number] pairs, identifying the largest
version number it got for R from every other replica
» Uses Thomas’ write rule, based on version numbers

— Access uses replica id to break ties. SQL Server 7 uses
subscriber priority or custom conflict resolution.

5/27/03 2

12

Generation Numbers (Access/SQL cont’d)

5/27/03

Each replica has a current generation number

A replica updates a row’s generation number
whenever it updates the row

A replica knows the generation number it had when it
last exchanged updates with R’, for every replica R".
A replica increments its generation number every time
it exchanges updates with another replica.

So, when exchanging updates with R’, it should send
all rows with a generation number larger than what it
had when it last exchanged updates with R'.

25

Duplicate Updates (Access/SQL cont’d)

» Some rejected updates are saved for later analysis

» To identify duplicate updates to discard them

— When applying an update to x, replace x’s array of
[replica, version#] pairs by the update’s array.

— To avoid processing the same update via many paths,
check version number of arriving update against the array

» Consider a rejected update to x at R from R’, where

5/27/03

— [R’, V] describes R" in x’s array, and
— V' is the version number sent by R".
— If V=V’ then R saw R"’s updates

— If V<V’ then R didn’t see R"’s updates, so store it in the
conflict table for later reconciliation

26

13

4. Other Approaches

+ Non-transactional replication using timestamped
updates and variations of Thomas’ write rule
— directory services are managed this way

* Quorum consensus per-transaction
— Read and write a quorum of copies
— Each data item has a version number and timestamp
— Each read chooses a replica with largest version number

— Each write increments version number one greater than any
one it has seen

— No special work needed during a failure or recovery

5/27/03 27

Other Approaches (cont’d)

» Read-one replica, write-all-available replicas
— Requires careful management of failures and recoveries
» E.g., Virtual partition algorithm
— Each node knows the nodes it can communicate with,
called its view

— Transaction T can execute if its home node has a
view including a quorum of T’s readset and writeset
(i.e. the data it can read or write)

— If a node fails or recovers, run a view formation protocol
(much like an election protocol)

— For each data item with a read quorum, read the latest
version and update the others with smaller version #.

5/27/03 28

14

Summary

» State-of-the-art products have rich functionality.
— It’s a complicated world for app designers
— Lots of options to choose from

» Most failover stories are weak
— Fine for data warehousing

— For 24x7 TP, need better integration with cluster
node failover

5/27/03

29

5. Products

* All major DBMS products have a rich primary-copy
replication mechanism. These are big subsystems.

 Differences are in detailed features
— performance
— ease of management
— richness of filtering predicates
— push vs. pull propagation
— stored procedure support
— transports (e.g. Sybase SQLanywhere can use email!)

* The following summary is an incomplete snapshot of
products as of May 2003.

5/27/03

30

15

Microsoft SQL Server 2000

Publication - a collection of articles to subscribe to

Article — a horiz/vertical table slice or stored proc
— Customizable table filter (WHERE clause or stored proc)

— Stored proc may be transaction protected (replicate on commit).
Replicates the requests instead of each update.

Snapshot replication makes a copy

Transactional replication maintains the copy by
propagating updates from publisher to subscribers

— Post-processes log to store updates in Distribution DB

— Distribution DB may be separate from the publisher DB

— Updates can be pushed to or pulled from subscriber

— Can customize propagated updates using stored procedures

5/27/03 31

SQL Server 2000 (cont’d)

» Immediate updating subscriber — Can update replicas
— Queued updates are synchronized with publisher via 2PC.

— Triggers capture local updates and forward them to the Subscriber
(trigger must not fire for replicated updates from the publisher).

— Subscriber’s forwarded update has before-value of row version-id.
— Publisher checks that its copy of row has the same version-id.

— If so, it performs the update and asyncrhonously forwards it to
other subscribers

— If not, it aborts the transaction (subscriber updated the row lately)

» Access control lists protect publishers from unauthorized
subscribers

* Merge replication- described later (multi-master)
5/27/03 32

16

Oracle 91

» Like SQL Server, can replicate updates to table fragments
or stored procedure calls at the master copy
» Uses triggers to capture updates in a deferred queue
— Updates are row-oriented, identified by primary key
— Can optimize by sending keys and updated columns only
* Group updates by transaction, which are propagated:
— Either serially in commit order or

— 1n parallel with some dependent transaction ordering:
each read(x) reads the “commit number” of x;
updates are ordered by dependent commit number

* Replicas are implemented as materialized views
* Replicas are updated in a batch refresh.

— Pushed from master to snapshots, using queue scheduler
» Replicas can be updatable (similar to SQL Server)

5/27/03

33

Oracle 91

* Materialized view replica is driven by one master

* Multi-master replication
— Masters replicate entire tables
— Push updates from master to masters (synch or asynch)
— Updates include before values (you can disable if conflicts are
impossible)
— They recommend masters should always be connected
* Conlflict detection
— Before-value at replica is different than in update
— Uniqueness constraint is violated
— Row with the update’s key doesn’t exist

5/27/03

34

17

Oracle 91 Conflict Resolution

* Conflict resolution strategies (defined per column-group)

— Add difference between the old and new values of the originating
site to the destination site

— Average the value of the current site and the originating site

— Min or max of the two values

— The one with min or max timestamp

— The site or value with maximum priority

— Can apply methods in sequence: e.g., by time , then by priority.
* Can call custom procs to log, notify, or resolve the conflict

— Parameters - update’s before/after value and row’s current value
» For a given update, if no built-in or custom conflict

resolution applies, then the entire transaction is logged.

5/27/03

35

IBM DB2

Very similar feature set to SQL Server and Oracle

Filtered subscriber
— Create snapshot, then update incrementally (push or pull)

Many table type options:
— Read-only snapshot copy, optionally with timestamp
— Aggregates, with cumulative or incremental values
— Consistent change data, optionally with row versions
— “Replica” tables, for multi-master updating

Interoperates with many third party DBMS’s
Captures DB2 updates from the DB2 log

— For other systems, captures updates using triggers

5/27/03

36

18

