
1

5/27/03 1

10. Replication

CSEP 545 Transaction Processing
Philip A. Bernstein

Copyright ©2003 Philip A. Bernstein

5/27/03 2

Outline

1. Introduction
2. Primary-Copy Replication
3. Multi-Master Replication
4. Other Approaches
5. Products

2

5/27/03 3

1. Introduction
• Replication - using multiple copies of a server

(called replicas) for better availability and
performance.

• If you’re not careful, replication can lead to
– worse performance - updates must be applied to all

replicas and synchronized
– worse availability - some algorithms require multiple

replicas to be operational for any of them to be used

5/27/03 4

Replicated Server
• Can replicate servers on a common resource

– Data sharing - DB servers communicate with shared disk

Resource

Server Replica 1 Server Replica 2

Client

• Helps availability in primary-backup scenario
• Requires replica cache coherence mechanism …
• Hence, this helps performance only if

– little conflict between transactions at different servers or
– loose coherence guarantees (e.g. read committed)

3

5/27/03 5

Replicated Resource
• To get more improvement in availability,

replicate the resources (too)
• Also increases potential throughput
• This is what’s usually meant by replication
• It’s the scenario we’ll focus on

Resource replica

Server Replica 1 Server Replica 2

ClientClient

Resource replica

5/27/03 6

Synchronous Replication
• Replicas function just like non-replicated servers
• Synchronous replication - transaction updates all

replicas of every item it updates
Start

Write(x1)
Write(x2)
Write(x3)

Commit

x1

x2

x3

• Issues
– Too expensive for most applications, due to heavy

distributed transaction load (2-phase commit)
– Can’t control when updates are applied to replicas

4

5/27/03 7

Synchronous Replication - Issues

r1[xA]

r2[yD] w2[xB]

w1[yC]yD fails

xA fails

Not equivalent to a
one-copy execution,
even if xA and yD
never recover!

• DBMS products support it only in special situations

• If you just use transactions, availability suffers.
• For high-availability, the algorithms are complex and

expensive, because they require heavy-duty
synchronization of failures.

• … of failures? How do you synchronize failures?

5/27/03 8

Atomicity & Isolation Goal
• One-copy serializability

– An execution of transactions on the replicated
database has the same effect as an execution on a
one-copy database.

• Previous example was not one-copy serializable
(abbr. 1SR).

5

5/27/03 9

Asynchronous Replication
• Asynchronous replication

– Each transaction updates one replica.
– Updates are propagated later to other replicas.

• Primary copy: All transactions update the same copy
• Multi-master: Transactions update different copies

– Useful for disconnected operation, partitioned network
• Both approaches ensure that

– Updates propagate to all replicas
– If new updates stop, replicas converge to the same state

• Primary copy ensures serializability, and often 1SR
– Multi-master does not. … More later.

5/27/03 10

2. Primary-Copy Replication
• Designate one replica as the primary copy (publisher)
• Transactions may update only the primary copy
• Updates to the primary are sent later to secondary replicas

(subscribers) in the order they were applied to the primary

T1: Start
… Write(x1) ...

Commit

x1T2

Tn
... Primary

Copy

x2

xm

...

Secondaries

6

5/27/03 11

Update Propagation
• Collect updates at the primary using triggers or

by post-processing the log
• Triggers

– On every update at the primary, a trigger fires to store the
update in the update propagation table.

• Post-process (“sniff”) the log to generate update
propagations
– Saves trigger and triggered update overhead during on-line txn.
– But R/W log synchronization has a (small) cost
– Requires admin (what if the log sniffer fails?)

• Optionally identify updated fields to compress log
• Most DB systems support this today.

5/27/03 12

Update Processing
• At the replica, for each transaction T in the propagation

stream, execute a transaction that applies T’s updates to
the replica.

• Process the stream serially
– Otherwise, conflicting transactions may run in a different

order at the replica than at the primary.
– Suppose log contains w1[x] c1 w2[x] c2.

Obviously, T1 must run before T2 at the replica.
– So the execution of update transactions is serial.

7

5/27/03 13

Update Processing (cont’d)
• To get a 1SR execution at the replica

– Update transactions and read-only queries use an atomic and
isolated mechanism (e.g. using 2PL)

• Why this works
– The execution is serializable
– Each state in the serial execution is one that occurred at the

primary copy
– Each query reads one of those states.

5/27/03 14

Request Propagation

• Or propagate requests (e.g. txn-bracketed stored proc calls)
• Must ensure requests run in the same order at primary and

replica (same requirement as updates or procedure calls).
– As for updates, can propagate requests asynchronously, or …
– can run requests synchronously at all replicas, but commit even if

one replica fails (need a recovery procedure for failed replicas).
– If supported, it’s often an app server (not DB) feature.

• An alternative to propagating updates is to propagate
procedure calls (e.g., a DB stored procedure call).

SP1: Write(x)
Write(y)x, y

DB-A w[x]
w[y]

SP1: Write(x)
Write(y) x, y

DB-Bw[x]
w[y]Replicate

Call(SP1)

8

5/27/03 15

Failure & Recovery Handling
• Secondary failure - nothing to do till it recovers

– At recovery, apply the updates it missed while down
– Needs to determine which updates it missed,

just like non-replicated log-based recovery
– If down for too long, it may be faster to get a whole copy

• Primary failure
– Normally, secondaries just wait till the primary recovers
– Can get higher availability by electing a new primary
– A secondary that detects primary’s failure announces a new

election by broadcasting its unique replica identifier
– Other secondaries reply with their replica identifier
– The largest replica identifier wins

5/27/03 16

Failure Handling (cont’d)
• Primary failure (cont’d)

– All replicas must now check that they have the
same updates from the failed primary

– During the election, each replica reports the id of the
last log record it received from the primary

– The most up-to-date replica sends its latest updates to
(at least) the new primary.

– Could still lose an update that committed at the primary and
wasn’t forwarded before the primary failed …
but solving it requires synchronous replication
(2-phase commit to propagate updates to replicas)

9

5/27/03 17

Communications Failures
• Secondaries can’t distinguish a primary failure from a

communication failure that partitions the network.
• If the secondaries elect a new primary and the old primary

is still running, there will be a reconciliation problem
when they’re reunited. This is multi-master.

• To avoid this, one partition must know it’s the only one
that can operate, and can’t communicate with other
partitions to figure this out.

• Could make a static decision.
E.g., the partition that has the primary wins.

• Dynamic solutions are based on Majority Consensus

5/27/03 18

Majority Consensus
• Whenever a set of communicating replicas detects a

replica failure or recovery, they test if they have a
majority (more than half) of the replicas.

• If so, they can elect a primary
• Only one set of replicas can have a majority.
• Doesn’t work well with even number of copies.

– Useless with 2 copies
• Quorum consensus

– Give a weight to each replica
– The replica set that has a majority of the weight wins
– E.g. 2 replicas, one has weight 1, the other weight 2

10

5/27/03 19

3. Multi-Master Replication
• Some systems must operate when partitioned.

– Requires many updatable copies, not just one primary
– Conflicting updates on different copies are detected late

• Classic example - salesperson’s disconnected laptop
Customer table (rarely updated) Orders table (insert mostly)
Customer log table (append only)

– So conflicting updates from different salespeople are rare

• Use primary-copy algorithm, with multiple masters
– Each master exchanges updates (“gossips”) with other replicas

when it reconnects to the network
– Conflicting updates require reconciliation (i.e. merging)

• In Lotus Notes, Access, SQL Server, Oracle, …

5/27/03 20

Example of Conflicting Updates
A Classic Race Condition

Replica 1

Initially x=0

T1: X=1

Primary

Initially x=0

Send (X=1)

Replica 2

Initially x=0

T2: X=2
Send (X=1)

X=1

X=1

X=2

Send (X=2)

X=2
Send (X=2)

• Replicas end up in different states

11

5/27/03 21

Thomas’ Write Rule
• To ensure replicas end up in the same state

– Tag each data item with a timestamp
– A transaction updates the value and timestamp of data items

(timestamps monotonically increase)
– An update to a replica is applied only if the update’s timestamp

is greater than the data item’s timestamp
– You only need to keep timestamps of data items that were

recently updated (where an older update could still be floating
around the system)

• All multi-master products use some variation of this
• Robert Thomas, ACM TODS, June ’79

– Same article that invented majority consensus

5/27/03 22

Thomas Write Rule ⇒ Serializability
Replica 1

T1: read x=0 (TS=0)
T1: X=1, TS=1

Primary

Initially x=0,TS=0

Send (X=1, TS=1)

Replica 2

T1: read x=0 (TS=0)

T2: X=2, TS=2
Send (X=1, TS=1)

X=1, TS=1

X=1,TS=1X=2, TS=2
Send (X=2, TS=2)

• Replicas end in the same state, but neither T1 nor T2 reads
the other’s output, so the execution isn’t serializable.

X=2, TS=2

Send (X=2, TS=2)

12

5/27/03 23

Multi-Master Performance
• The longer a replica is disconnected and

performing updates, the more likely it will
need reconciliation

• The amount of propagation activity increases
with more replicas
– If each replica is performing updates,

the effect is quadratic

5/27/03 24

Microsoft Access and SQL Server
• Multi-master replication without a primary
• Each row R of a table has 4 additional columns

– globally unique id (GUID)
– generation number, to determine which updates from other

replicas have been applied
– version number = the number of updates to R
– array of [replica, version number] pairs, identifying the largest

version number it got for R from every other replica

• Uses Thomas’ write rule, based on version numbers
– Access uses replica id to break ties. SQL Server 7 uses

subscriber priority or custom conflict resolution.

13

5/27/03 25

Generation Numbers (Access/SQL cont’d)
• Each replica has a current generation number
• A replica updates a row’s generation number

whenever it updates the row
• A replica knows the generation number it had when it

last exchanged updates with R´, for every replica R´.
• A replica increments its generation number every time

it exchanges updates with another replica.
• So, when exchanging updates with R′, it should send

all rows with a generation number larger than what it
had when it last exchanged updates with R′.

5/27/03 26

Duplicate Updates (Access/SQL cont’d)
• Some rejected updates are saved for later analysis
• To identify duplicate updates to discard them

– When applying an update to x, replace x’s array of
[replica, version#] pairs by the update’s array.

– To avoid processing the same update via many paths,
check version number of arriving update against the array

• Consider a rejected update to x at R from R´, where
– [R´, V] describes R´ in x’s array, and
– V´ is the version number sent by R´.
– If V ≥ V´, then R saw R´’s updates
– If V < V´, then R didn’t see R´’s updates, so store it in the

conflict table for later reconciliation

14

5/27/03 27

4. Other Approaches

• Non-transactional replication using timestamped
updates and variations of Thomas’ write rule
– directory services are managed this way

• Quorum consensus per-transaction
– Read and write a quorum of copies
– Each data item has a version number and timestamp
– Each read chooses a replica with largest version number
– Each write increments version number one greater than any

one it has seen
– No special work needed during a failure or recovery

5/27/03 28

Other Approaches (cont’d)
• Read-one replica, write-all-available replicas

– Requires careful management of failures and recoveries
• E.g., Virtual partition algorithm

– Each node knows the nodes it can communicate with,
called its view

– Transaction T can execute if its home node has a
view including a quorum of T’s readset and writeset
(i.e. the data it can read or write)

– If a node fails or recovers, run a view formation protocol
(much like an election protocol)

– For each data item with a read quorum, read the latest
version and update the others with smaller version #.

15

5/27/03 29

Summary
• State-of-the-art products have rich functionality.

– It’s a complicated world for app designers
– Lots of options to choose from

• Most failover stories are weak
– Fine for data warehousing
– For 24×7 TP, need better integration with cluster

node failover

5/27/03 30

5. Products
• All major DBMS products have a rich primary-copy

replication mechanism. These are big subsystems.

• Differences are in detailed features
– performance
– ease of management
– richness of filtering predicates
– push vs. pull propagation
– stored procedure support
– transports (e.g. Sybase SQLanywhere can use email!)
– …

• The following summary is an incomplete snapshot of
products as of May 2003.

16

5/27/03 31

Microsoft SQL Server 2000
• Publication - a collection of articles to subscribe to
• Article – a horiz/vertical table slice or stored proc

– Customizable table filter (WHERE clause or stored proc)
– Stored proc may be transaction protected (replicate on commit).

Replicates the requests instead of each update.
• Snapshot replication makes a copy
• Transactional replication maintains the copy by

propagating updates from publisher to subscribers
– Post-processes log to store updates in Distribution DB
– Distribution DB may be separate from the publisher DB
– Updates can be pushed to or pulled from subscriber
– Can customize propagated updates using stored procedures

5/27/03 32

SQL Server 2000 (cont’d)
• Immediate updating subscriber – Can update replicas

– Queued updates are synchronized with publisher via 2PC.
– Triggers capture local updates and forward them to the Subscriber

(trigger must not fire for replicated updates from the publisher).
– Subscriber’s forwarded update has before-value of row version-id.
– Publisher checks that its copy of row has the same version-id.
– If so, it performs the update and asyncrhonously forwards it to

other subscribers
– If not, it aborts the transaction (subscriber updated the row lately)

• Access control lists protect publishers from unauthorized
subscribers

• Merge replication- described later (multi-master)

17

5/27/03 33

Oracle 9i
• Like SQL Server, can replicate updates to table fragments

or stored procedure calls at the master copy
• Uses triggers to capture updates in a deferred queue

– Updates are row-oriented, identified by primary key
– Can optimize by sending keys and updated columns only

• Group updates by transaction, which are propagated:
– Either serially in commit order or
– in parallel with some dependent transaction ordering:

each read(x) reads the “commit number” of x;
updates are ordered by dependent commit number

• Replicas are implemented as materialized views
• Replicas are updated in a batch refresh.

– Pushed from master to snapshots, using queue scheduler
• Replicas can be updatable (similar to SQL Server)

5/27/03 34

Oracle 9i
• Materialized view replica is driven by one master
• Multi-master replication

– Masters replicate entire tables
– Push updates from master to masters (synch or asynch)
– Updates include before values (you can disable if conflicts are

impossible)
– They recommend masters should always be connected

• Conflict detection
– Before-value at replica is different than in update
– Uniqueness constraint is violated
– Row with the update’s key doesn’t exist

18

5/27/03 35

Oracle 9i Conflict Resolution
• Conflict resolution strategies (defined per column-group)

– Add difference between the old and new values of the originating
site to the destination site

– Average the value of the current site and the originating site
– Min or max of the two values
– The one with min or max timestamp
– The site or value with maximum priority
– Can apply methods in sequence: e.g., by time , then by priority.

• Can call custom procs to log, notify, or resolve the conflict
– Parameters - update’s before/after value and row’s current value

• For a given update, if no built-in or custom conflict
resolution applies, then the entire transaction is logged.

5/27/03 36

IBM DB2
• Very similar feature set to SQL Server and Oracle
• Filtered subscriber

– Create snapshot, then update incrementally (push or pull)
• Many table type options:

– Read-only snapshot copy, optionally with timestamp
– Aggregates, with cumulative or incremental values
– Consistent change data, optionally with row versions
– “Replica” tables, for multi-master updating

• Interoperates with many third party DBMS’s
• Captures DB2 updates from the DB2 log

– For other systems, captures updates using triggers

