COUNT, SUM, and AVERAGE relational algebra queries. In D. Dimitris Karagiannis,
editor, Database and Expert Systems Applications, Proceedings of the

[OR86] F. Olken and D. Rotem. Simple random sampling from relational databases. In

up fixpoint evaluation of logic programs. Trans. Knowledge and Data Engng.,

A. Full Iterator Pseudo-Code

int curstep; // global to query plan: current sampling step

class RIPL {
 iterator left, right; // operands
 int lcount, rcount; // our view of the operands' positions
 int lbeta, rbeta; // aspect ratio of left and right
 int lmax, rmax; // maximum position seen so far
 int llimit, rlimit; // maximum position for this sampling step
 bool leof, reof; // operand reported end-of-file
 iterator currrel; // relation currently acting as 'inner'
 iterator otherrel; // the other relation
 bool innerlooping; // are we in midst of inner loop?
 relation starter; // which relation (if any) is the starter relation

 // maintain max position so far, to distinguish ``old'' and ``new'' tuples
 incr_pos(Relation rel) {
 if (rel == left) {
 lcount++;
 if (lcount > lmax) lmax = lcount;
 } else {
 rcount++;
 if (rcount > rmax) rmax = rcount;
 }
 }
 pos(Relation rel) { if (rel == left) return lpos; else return rpos; }
 repos(Relation rel) { if (rel == left) lpos = 0; else rpos = 0; }
 max(Relation rel) { if (rel == left) return lmax; else return rmax; }
 eof(Relation rel) { if (rel == left) return leof; else return reof; }
setof(Relation rel) { if (rel == left) leaf = TRUE; else reof = TRUE; }
init()
 lcount = 0; rcount = 0; // cursor positions in left and right
 lmax = rmax = 0;
 llimit = rlimit = 1; // set up to fetch 1,1
 leaf = reof = false;
 curstep = 1;
 currel = left; otherrel = right;
 innerlooping = true;
 if (this node is the root of the tree) starter = right;
 else starter = NULL;
}
next()
 do { // loop until return() is called
 if (innerlooping) { // scanning one side of a rectangle
 while (pos(currel) < max(currel)) {
 currel.next(); incr_pos(currel);
 if (!eof(currel)) {
 if (predicate(R[R.pos], S[S.pos]))
 return(R[R.pos], S[S.pos])
 }
 }
 innerlooping = false; // no more matches for otherrel.pos
 } else { // done with one side of a rectangle, pos(currel)==max(currel)
 if (pos(currel) < limit(currel)
 && !eof(currel))
 swap(currel, otherrel); // at corner, start a new layer
 else if (eof(currel) && !eof(otherrel) && starter==currel) {
 // time to hand off starter role
 if (otherrel is a join) {
 starter = NULL;
 otherrel.starter = otherrel.inner;
 } else starter = otherrel;
 }
 else if ((pos(currel) == limit(currel) || eof(currel))
 && (pos(otherrel) == limit(otherrel) || eof(otherrel))
)
 // we are at end of step
 if (starter == currel) {
 updateStep();
 swap(currel, otherrel);
 } else return(NULL); // must be at eof for both rels
 } else if (!innerlooping) {
 // either pad side again, or step’s done
 if (pos(otherrel) < limit(otherrel))
 setoff(otherrel); // must have hit end-of-file
 swap(currel, otherrel); // always finish looping on currel
 } else {
 // we are at end of step
 ...
 }
 } while (true); // infinite loop
}

repos(current) = 0; // now proceed with a new layer
incr_pos(otherrel);
innerlooping = true;
}
}
}
updateStep() {
 if (left is a join) {
 left.updateStep();
 llimit = left.llimit * left.rlimit;
 }
 else llimit += lbeta;
 rlimit += rbeta;
}
}

B. An Updating Algorithm for $\tilde{T}_{n,1}(f, g)$

The algorithm in Figure 14 can be used to update the quantity $\tilde{T}_{n,1}(f, g)$ after a sampling step of a block ripple join. This quantity (with $f = uv$ and $g = u$ as in Section 4.2) is used in the computation of running confidence intervals for aggregation queries of the form (4.1) with op equal to AVG. Initialize the computation by setting $x_1^{(f)} = \cdots = x_K^{(f)} = 0$, $x_1^{(g)} = \cdots = x_K^{(g)} = 0$, $w_1 = \cdots = w_K = 0$, and $n = 0$. After each sampling step of the block ripple join, execute the algorithm given in Figure 14 with $\Delta n = 1$ and with $l_k = \alpha \beta_k (n - 1)$ and $\delta_k = \alpha \beta_k$ for $1 \leq k \leq K$. As with the algorithm in Figure 10, $l_k (1 \leq k \leq K)$ denotes the number of tuples read from R_k prior to the current sampling step and δ_k denotes the number of tuples read from R_k during the current sampling step. The quantity J denotes the set of index vectors (i_1, i_2, \ldots, i_K) such that

(i) $l_k < i_k \leq l_k + \delta_k$ for some $1 \leq k \leq K$; and

(ii) $f(L_1, i_1, L_2, i_2, \ldots, L_K, i_K) \neq 0$ or $g(L_1, i_1, L_2, i_2, \ldots, L_K, i_K) \neq 0$.

Just after the algorithm has executed for the nth time, the variable \tilde{z} is equal to $\tilde{T}_{n,1}(f, g)$, the variable $y^{(f)}$ is equal to $\tilde{T}_n(f)$, the variable $y^{(g)}$ is equal to $\tilde{T}_n(g)$, each variable $w_k/(L_k - 1)$ is equal to $Z_n(f; g; k)$, each variable $q_k^{(f)}/L_k$ is equal to $\tilde{T}_n(f; k, j)$, and each variable $q_{k,j}^{(g)}/L_k$ is equal to $\tilde{T}_n(g; k, j)$.

C. The I/O Cost of Block Ripple Joins

In this section we consider the number of I/O's required to execute $n \geq 1$ sampling steps of a K-relation ripple join with blocking factor α and aspect-ratio parameters $\beta_1, \beta_2, \ldots, \beta_K$. (More specifically, we consider a K-table query plan which consists of a left-deep tree of binary ripple joins, which in combination sweep out a sequence of K-dimensional hyper-rectangles with the appropriate aspect ratios.) As discussed in Section 5, we make