Schema Refinement and Normalization

The Evils of Redundancy
- Redundancy is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: decomposition (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)
- A functional dependency $X \rightarrow Y$ holds over relation R if, for every allowable instance r of R:
 - $t_1 \in r$, $t_2 \in r$, $t_1.X = t_2.X$ implies $t_1.Y = t_2.Y$
 - i.e., given two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)
- An FD is a statement about all allowable relations.
 - Identified by DBA based on semantics of application.
 - Given some allowable instance r of R, we can check if it violates some FD f, but we cannot tell if f holds over R!
- K is a candidate key for R means that $K \rightarrow R$
 - However, $K \rightarrow R$ does not require K to be minimal!

Example: Constraints on Entity Set
- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- Notation:
 - We will denote this relation schema by listing the attributes: SNLRWH
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - ssn is the key: $S \rightarrow SNLRWH$
 - rating determines hrly_wages: $R \rightarrow W$
 - Problems due to $R \rightarrow W$:
 - Update anomaly: Can we change W in just the 1st tuple of SNLRWH?
 - Insertion anomaly: What if we want to insert an employee and don’t know the hourly wage for his rating?
 - Deletion anomaly: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Refining an ER Diagram
- 1st diagram translated:
 - Workers(S,N,L,D,S)
 - Departments(D,M,B)
 - Lots associated with workers.
 - Suppose all workers in a dept are assigned the same lot: $D \rightarrow L$
 - Redundancy; fixed by:
 - Workers2(S,N,D,S)
 - Dept_Lots(D,L)
 - Can fine-tune this:
 - Works_In Departments Employees
 - ssn is the key: $S \rightarrow SNLRWH$
 - rating determines hrly_wages: $R \rightarrow W$
Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - $ssn \rightarrow did, did \rightarrow lot$ implies $ssn \rightarrow lot$
- An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.
- $F^* = \text{closure of } F$ is the set of all FDs that are implied by F.
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These are sound and complete inference rules for FDs!

Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from AA):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If F holds, then $X \rightarrow YZ$.
- Example: $\text{Contracts(cid, sid, jid, did, pid, qty, value)}$, and:
 - C is the key: $C \rightarrow CSJDPQV$
 - Project purchases each part using single contract: $JP \rightarrow C$
 - Dept purchases at most one part from a supplier: $SD \rightarrow P$
 - $JP \rightarrow C, C \rightarrow CSJDPQV$ imply $JP \rightarrow CSJDPQV$

Reasoning About FDs (Contd.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F. An efficient check:
 - Compute attribute closure of X (denoted X^+) wrt F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 - There is a linear time algorithm to compute this.
 - Check if Y is in X^+
- Does $F = \{A, B, B, C, D, E\}$ imply $A \rightarrow E$?
 - i.e., is $A \rightarrow E$ in the closure F^+? Equivalently, is $E \in X^+$?

Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given $A \rightarrow B$: Several tuples could have the same A value, and if so, they’ll all have the same B value!

First Normal Form

- Each field is an atomic (scalar) value
- All relations are in first normal form (1NF)

Second Normal Form (2NF)

- A non-key field must not be a fact about a subset of a key (no partial dependencies)
- If $X=A \cup B$ is a candidate key, A does not determine Y for any non-empty A, non-empty B, and non-prime Y.
- All candidate keys have 1 field \Rightarrow 2NF
- Example: $R = (\text{part, wh, qty, wh-addr})$, with FDs $\{\text{part, wh} \rightarrow \text{qty and wh} \rightarrow \text{wh-addr}\}$
- Is R in 2NF?
2NF (continued)

- No, it’s in 1NF only. Only candidate key is [part, wh], and 2nd dependency violates 2NF.
- So what?
- We’re storing wh-addr once for each part stored at that warehouse.
- Solution: R1 (part, wh, qty) and R2 (wh, wh-addr)
- Are R1, R2 in 2NF?

Third Normal Form (3NF)

- A non-key field is not a fact about another non-key field.
- Reln R with FDs F is in 3NF if, for all X → A in F+
 - A ∈ X (called a trivial FD), or
 - X is a superkey for R, or
 - A is prime
- Example: ED = (enum, ename, sal, dnum, dname, mgr)
 - FDs: enum → ename, sal, dnum and dnum → dname, mgr
 - Is ED in 2NF?
- The problem: dname, mgr stored for all employees in a department

3NF (continued)

- One solution:
 - Emp (enum, ename, sal, mgr)
 - Dept (dnum, dname, mgr)
 - Removes the redundancy
 - A problem remains:
- This is an example of a lossy-join decomposition, which is avoidable in 3NF.
- Use Emp1 (enum, ename, sal, dnum) instead of Emp.

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if, for all X → A in F+
 - A ∈ X (called a trivial FD), or
 - X is a superkey
- 3NF plus: no prime field describes a non-prime field
- Example: R = (branch, cust, banker)
 - FDs: banker → branch and cust, branch → banker
 - Is R in 3NF? BCNF?
- Problems:
 - Bankers must have at least one customer
 - Branch stored redundantly for each of a banker’s customers

BCNF (continued)

- Decomposition: R1 (banker, branch) and R2 (cust, banker)
 - avoids redundancy and other problems
 - A problem remains:
- In this case, no dependency-preserving decomposition into BCNF is possible.

Decomposition of a Relation Scheme

- Suppose that relation R contains attributes A1 ... An. A decomposition of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a proper subset of the attributes of R (and no attributes not in R) and
 - Every attribute of R appears as an attribute of one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.
Problems with Decompositions

- There are three potential problems to consider:
 1. Some queries become more expensive.
 2. Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 3. Checking some dependencies may require joining the instances of the decomposed relations.
- First 3NF decomposition attempt

Tradeoff: Must consider these issues vs. redundancy.

Lossless Join Decompositions

- Decomposition of R into X and Y is **lossless-join** w.r.t. a set of FDs F if, for every instance r that satisfies F:
 - \(\pi_X(r) \mid \times \mid \pi_Y(r) = r \)
- It is always true that \(r \subseteq \pi_X(r) \mid \times \mid \pi_Y(r) \)
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (avoids Problem 2, previous slide)

More on Lossless Join

- The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - \(X \cap Y \rightarrow X \), or
 - \(X \cap Y \rightarrow Y \)
- In particular, the decomposition of R into UV and R - V is lossless-join if \(U \rightarrow V \) holds over R.

Dependency Preserving Decomposition

- Consider CSJPQV, C is key, JP \(\rightarrow C \) and SD \(\rightarrow P \).
 - BCNF decomposition: CSJDQV and SDP
 - Problem: Checking JP \(\rightarrow C \) requires a join!
- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold.
- Projection of set of FDs F: If R is decomposed into X, ..., projection of F onto X (denoted \(F_X \)) is the set of FDs \(U \rightarrow V \) in \(F^+ \) such that U, V are in X.

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency preserving if \(F_X \cup F_Y \) = \(F^+ \)
 - i.e., if we consider only dependencies in the closure \(F^+ \) that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in \(F^+ \).
- Important to consider \(F^+ \), not F, in this definition:
 - ABC, A \(\rightarrow B \), B \(\rightarrow C \), C \(\rightarrow A \), decomposed into AB and BC.
 - Is this dependency preserving? Is C \(\rightarrow A \) preserved?????
- Dependency preserving does not imply lossless join:
 - ABC, A \(\rightarrow B \), decomposed into AB and BC.
- And vice-versa! (Example?)

Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
 - Various decompositions of a single schema are possible.