CSEP 544: Lecture 02

Relational Query Languages and Database Design
Homework 1

• Due next Tuesday, October 20, 11pm
• Please note update using SQL Azure
 – Use shared account (login in your email)
 – Database is already there, just run queries
• Create your own SQL Azure instance
 – Extra credit in HW1
 – Required for HW4
Homework 3

I know it’s far into the future, but…

• We will use Amazon Web Service

• You need to get a $100 student’s pass
 http://aws.amazon.com/grants
 – Use your uw.edu email address
Brief Review of 1st Lecture

- Database = collection of related files
- Physical data independence
- SQL:
 - Select-from-where
 - Nested loop semantics
 - Group by (you read the slides, right?)
 - Advanced stuff: nested queries, outerjoins
Big Data

What is it?
Big Data

What is it?

• Gartner report*
 – High Volume
 – High Variety
 – High Velocity

* http://www.gartner.com/newsroom/id/1731916
Big Data

What is it? Stonebraker:

• Big volumes, small analytics
• Big analytics, on big volumes
• Big velocity
• Big variety
Big Data

• “Small analytics” = select/join/aggregate/groupby
 – Discuss: column-oriented databases, shared-nothing, Hive/Hadoop

• “Big analytics” = linear algebra (R, ScalaPack)
 – Discuss: Sparse matrix multiplication = join/groupby

• High velocity = streaming data
 – Discuss: Streaming SQL engines, e.g. Microsoft’s Trill

• High variety = heterogeneous data models (XML, documents)
 – Discuss: ETL (“Extract Transform Load”)
Outline

• Relational Query Languages
 – Relational algebra
 – Recursion-free datalog with negation
 – Relational calculus

• Database Design

• Functional Dependencies and BCNF
• Suggested reading:
 Three Query Language Formalisms

1. Relational Algebra

• Used internally by the database engine to execute queries

• Book: chapter 4.2

• We will return to RA when we discuss query execution
1. Relational Algebra

The Basic Five operators:

- Union: \bigcup
- Difference: $-$
- Selection: σ
- Projection: Π
- Join: \Join
Find all actors who acted both in 1910 and in 1940:

Q: SELECT DISTINCT a.fname, a.lname
FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
WHERE a.id = c1.pid AND c1.mid = m1.id
AND a.id = c2.pid AND c2.mid = m2.id
AND m1.year = 1910 AND m2.year = 1940;
Two Perspectives

• Named Perspective:
 Actor(id, fname, lname)
 Casts(pid, mid)
 Movie(id, name, year)

• Unnamed Perspective:
 Actor = arity 3
 Casts = arity 2
 Movie = arity 3

Named perspective needs renaming
operator: ρ
1. Relational Algebra (Details)

- **Selection**: returns tuples that satisfy condition
 - Named perspective: $\sigma_{\text{year} = '1910'}(\text{Movie})$
 - Unnamed perspective: $\sigma_3 = '1910' (\text{Movie})$
1. Relational Algebra (Details)

- **Selection**: returns tuples that satisfy condition
 - Named perspective: \(\sigma_{\text{year} = '1910'}(\text{Movie}) \)
 - Unamed perspective: \(\sigma_3 = '1910' \) (Movie)

- **Projection**: returns only some attributes
 - Named perspective: \(\Pi_{\text{fname}, \text{name}}(\text{Actor}) \)
 - Unnamed perspective: \(\Pi_{2,3}(\text{Actor}) \)
1. Relational Algebra (Details)

- **Selection**: returns tuples that satisfy condition
 - Named perspective: \(\sigma_{\text{year} = '1910'}(\text{Movie}) \)
 - Unnamed perspective: \(\sigma_3 = '1910' \ (\text{Movie}) \)

- **Projection**: returns only some attributes
 - Named perspective: \(\Pi_{\text{fname}, \text{lname}}(\text{Actor}) \)
 - Unnamed perspective: \(\Pi_{2,3}(\text{Actor}) \)

- **Join**: joins two tables on a condition
 - Named perspective: \(\text{Casts} \bowtie_{\text{mid} = \text{id}} \text{Movie} \)
 - Unnamed perspective: \(\text{Casts} \bowtie_{2=1} \text{Movie} \)
1. Relational Algebra Example

Q: SELECT DISTINCT a.fname, a.lname
FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Note how we renamed year to year1, year2

Named perspective
1. Relational Algebra Example

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)
Joins and Cartesian Product

• Each tuple in R1 with each tuple in R2

\[R1 \times R2 \]

• Rare in practice; mainly used to express joins
Cartesian Product (aka Cross Product)

<table>
<thead>
<tr>
<th>Employee</th>
<th>Name</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>John</td>
<td>9999999999</td>
</tr>
<tr>
<td></td>
<td>Tony</td>
<td>7777777777</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent</th>
<th>EmpSSN</th>
<th>DepName</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td></td>
<td>7777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>

Employee × Dependent

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>EmpSSN</th>
<th>DepName</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>John</td>
<td>9999999999</td>
<td>7777777777</td>
<td>Joe</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
<td>7777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>
Natural Join

\[R_1 \Join R_2 \]

- **Meaning:** \(R_1 \Join R_2 = \Pi_A(\sigma(R_1 \times R_2)) \)

- **Where:**
 - Selection \(\sigma \) checks equality of all common attributes
 - Projection eliminates duplicate common attributes
Natural Join Example

Let's consider the natural join example with relation sets R and S:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>Z</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>U</td>
</tr>
<tr>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>Z</td>
<td>V</td>
</tr>
</tbody>
</table>

Result of Natural Join:

\[
R \Join S = \Pi_{ABC}(\sigma_{R.B=S.B}(R \times S))
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Z</td>
<td>U</td>
</tr>
<tr>
<td>X</td>
<td>Z</td>
<td>V</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>U</td>
</tr>
<tr>
<td>Y</td>
<td>Z</td>
<td>V</td>
</tr>
<tr>
<td>Z</td>
<td>V</td>
<td>W</td>
</tr>
</tbody>
</table>
Natural Join Example 2

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

Voters V

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>p2</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

$P \Join V$

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>p1</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>p2</td>
</tr>
</tbody>
</table>
Natural Join

• Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?

• Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?

• Given $R(A, B), S(A, B)$, what is $R \bowtie S$?
Theta Join

- A join that involves a predicate

\[R1 \bowtie_\theta R2 = \sigma_\theta (R1 \times R2) \]

- Here \(\theta \) can be any condition
- For our voters/disease example:

\[P \bowtie_\theta V \quad \text{if} \quad P.zip = V.zip \text{ and } P.age < V.age + 5 \text{ and } P.age > V.age - 5 \]
Equijoin

- A theta join where \(\theta \) is an equality

\[
R_1 \Join_{A=B} R_2 = \sigma_{A=B} (R_1 \times R_2)
\]

- This is by far the most used variant of join in practice
Equijoin Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
</tbody>
</table>

Voters V

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>p2</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

$P \bowtie_{P.age = V.age} V$

<table>
<thead>
<tr>
<th>P.age</th>
<th>P.zip</th>
<th>disease</th>
<th>name</th>
<th>V.age</th>
<th>V.zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
<td>p1</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
<td>p2</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

Note:
Optional, drop the redundant age
Join Summary

- **Theta-join**: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ

- **Equijoin**: $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes

- **Natural join**: $R \bowtie S = \pi_A (\sigma_{\theta}(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
So Which Join Is It?

- When we write $R \Join S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context.
More Joins

• **Outer join**
 – Include tuples with no matches in the output
 – Use NULL values for missing attributes

• **Variants**
 – Left outer join
 – Right outer join
 – Full outer join
Outer Join Example

AnonPatient P

<table>
<thead>
<tr>
<th>age</th>
<th>zip</th>
<th>disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>98125</td>
<td>heart</td>
</tr>
<tr>
<td>20</td>
<td>98120</td>
<td>flu</td>
</tr>
<tr>
<td>33</td>
<td>98120</td>
<td>lung</td>
</tr>
</tbody>
</table>

AnnonJob J

<table>
<thead>
<tr>
<th>job</th>
<th>age</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>lawyer</td>
<td>54</td>
<td>98125</td>
</tr>
<tr>
<td>cashier</td>
<td>20</td>
<td>98120</td>
</tr>
</tbody>
</table>

P ⟕ V
Some Examples

```
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)
```

Q2: Name of supplier of parts with size greater than 10
\[\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10} (Part))) \]

Q3: Name of supplier of red parts or parts with size greater than 10
\[\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10} (Part) \cup \sigma_{pcolor='red'} (Part))) \]
Outline

• Relational Query Languages
 – Relational algebra
 – Recursion-free datalog with negation
 – Relational calculus

• Database Design

• Functional Dependencies and BCNF
2. Datalog

• Very friendly notation for queries
• Designed in the 80’s for recursive queries
• Confined to academia, until the Big Data explosion. Commercial systems today: LogicBlox, Yedalog (google)
• This lecture: recursion-free datalog with negation. Later lecture: recursion
2. Datalog

How to try out datalog quickly:

• Download DLV from http://www.dbai.tuwien.ac.at/proj/dlv/

• Run DLV on this file:

parent(william, john).
parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.
2. Datalog: Facts and Rules

Facts

- Actor(344759, ‘Douglas’, ‘Fowley’).
- Casts(344759, 29851).
- Casts(355713, 29000).

Rules

- Q1(y) :- Movie(x, y, z, z='1940').
- Q2(f, l) :- Actor(z, f, l), Casts(z, x), Movie(x, y, ‘1940’).
- Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940).

Facts = tuples in the database
Rules = queries

Extensional Database Predicates = EDB
Intensional Database Predicates = IDB
2. Datalog: Terminology

\[Q2(f, l) :- \text{Actor}(z, f, l), \text{Casts}(z, x), \text{Movie}(x, y, '1940'). \]

- \(f, l \) = head variables
- \(x, y, z \) = existential variables
2. Datalog program

Find all actors with Bacon number ≤ 2

B0(x) :- Actor(x,'Kevin', 'Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
Q4(x) :- B1(x)
Q4(x) :- B2(x)

Note: Q4 is the union of B1 and B2
2. Datalog with negation

Find all actors with Bacon number ≥ 2

B0(x) :- Actor(x,'Kevin', 'Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
Q6(x) :- Actor(x,f,l), not B1(x), not B0(x)
2. Safe Datalog Rules

Here are *unsafe* datalog rules. What’s “unsafe” about them?

\[
U1(x,y) :- \text{Movie}(x,z,1994), y > 1910
\]

\[
U2(x) :- \text{Movie}(x,z,1994), \text{not Casts}(u,x)
\]

A datalog rule is *safe* if every variable appears in some positive relational atom.
2. Datalog v.s. SQL

• Non-recursive datalog with negation is very close to SQL; with some practice, you should be able to translate between them back and forth without difficulty; see example in the paper
Outline

• Relational Query Languages
 – Relational algebra
 – Recursion-free datalog with negation
 – Relational calculus

• Database Design

• Functional Dependencies and BCNF
3. Relational Calculus

• Also known as *predicate calculus*, or *first order logic*
• The most expressive formalism for queries: easy to write complex queries

• TRC = Tuple RC = named perspective
• DRC = Domain RC = unnamed perspective
3. Relational Calculus

Predicate P:

\[P ::= \text{atom} | P \land P | P \lor P | P \Rightarrow P | \text{not}(P) | \forall x.P | \exists x.P \]

Query Q:

\[Q(x_1, \ldots, x_k) = P \]

Example: find the first/last names of actors who acted in 1940

\[Q(f,l) = \exists x. \exists y. \exists z. (\text{Actor}(z,f,l) \land \text{Casts}(z,x) \land \text{Movie}(x,y,1940)) \]

What does this query return?

\[Q(f,l) = \exists z. (\text{Actor}(z,f,l) \land \forall x. (\text{Casts}(z,x) \Rightarrow \exists y. \text{Movie}(x,y,1940))) \]
Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]
3. Relational Calculus:

Example

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent *some* bar that serves *some* beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y) ∧ Serves(y, z) ∧ Likes(x, z)

Find drinkers that frequent *only* bars that serves *some* beer they like.
3. Relational Calculus: Example

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

Find drinkers that frequent only bars that serves some beer they like.

\[Q(x) = \forall y. \text{Frequents}(x, y) \Rightarrow (\exists z. \text{Serves}(y, z) \land \text{Likes}(x, z)) \]

Find drinkers that frequent some bar that serves only beers they like.
3. Relational Calculus: Example

- Likes(drinker, beer)
- Frequents(drinker, bar)
- Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = \forall y. \text{Frequents}(x, y) \Rightarrow (\exists z. \text{Serves}(y, z) \land \text{Likes}(x, z))

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = \exists y. \text{Frequents}(x, y) \land \forall z. (\text{Serves}(y, z) \Rightarrow \text{Likes}(x, z))

Find drinkers that frequent only bars that serves only beer they like.
3. Relational Calculus: Example

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

Find drinkers that frequent only bars that serves some beer they like.

\[Q(x) = \forall y. \text{Frequents}(x, y) \Rightarrow (\exists z. \text{Serves}(y, z) \land \text{Likes}(x, z)) \]

Find drinkers that frequent some bar that serves only beers they like.

\[Q(x) = \exists y. \text{Frequents}(x, y) \land \forall z. (\text{Serves}(y, z) \Rightarrow \text{Likes}(x, z)) \]

Find drinkers that frequent only bars that serves only beer they like.

\[Q(x) = \forall y. \text{Frequents}(x, y) \Rightarrow \forall z. (\text{Serves}(y, z) \Rightarrow \text{Likes}(x, z)) \]
3. Domain Independent Relational Calculus

• As in datalog, one can write “unsafe” RC queries; they are also called domain dependent

• See examples in the Three Query Languages paper

• Moral: make sure your RC queries are always domain independent
3. Relational Calculus

Take home message:
• Need to write a complex SQL query:
 • First, write it in RC
 • Next, translate it to datalog (see next)
 • Finally, write it in SQL

As you gain experience, take shortcuts
3. From RC to Non-recursive Datalog w/ negation

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

\[Q(x) = \exists y. \text{Likes}(x, y) \land \forall z. (\text{Serves}(z, y) \implies \text{Frequents}(x, z)) \]
3. From RC to Non-recursive Datalog w/ negation

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

\[Q(x) = \exists y. \text{Likes}(x, y) \land \forall z. (\text{Serves}(z, y) \implies \text{Frequents}(x, z)) \]

Step 1: Replace \(\forall \) with \(\exists \) using de Morgan’s Laws

\[Q(x) = \exists y. \text{Likes}(x, y) \land \neg \exists z. (\text{Serves}(z, y) \land \neg \text{Frequents}(x, z)) \]
3. From RC to Non-recursive Datalog w/ negation

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

\[Q(x) = \exists y. \text{Likes}(x, y) \land \forall z. (\text{Serves}(z, y) \Rightarrow \text{Frequents}(x, z)) \]

Step 1: Replace \(\forall \) with \(\exists \) using de Morgan’s Laws

\[Q(x) = \exists y. \text{Likes}(x, y) \land \neg \exists z. (\text{Serves}(z, y) \land \neg \text{Frequents}(x, z)) \]

Step 2: Make all subqueries domain independent

\[Q(x) = \exists y. \text{Likes}(x, y) \land \neg \exists z. (\text{Likes}(x, y) \land \text{Serves}(z, y) \land \neg \text{Frequents}(x, z)) \]
3. From RC to Non-recursive Datalog w/ negation

\[Q(x) = \exists y. \text{Likes}(x, y) \land \neg \exists z. (\text{Likes}(x, y) \land \text{Serves}(z, y) \land \neg \text{Frequents}(x, z)) \]

Step 3: Create a datalog rule for each subexpression; (shortcut: only for subexpressions under \(\neg \))

\[
\begin{align*}
\text{H}(x, y) & \quad : - \text{Likes}(x, y), \text{Serves}(y, z), \neg \text{Frequents}(x, z) \\
\text{Q}(x) & \quad : - \text{Likes}(x, y), \neg \text{H}(x, y)
\end{align*}
\]
3. From RC to Non-recursive Datalog w/ negation

H(x,y) :- Likes(x,y), Serves(y,z), not Frequent(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE L2.drinker=L.drinker and L2.beer=L.beer
 and L2.beer=S.beer
 and not exists (SELECT * FROM Frequent F
 WHERE F.drinker=L2.drinker
 and F.bar=S.bar))
3. From RC to Non-recursive Datalog w/ negation

H(x,y) :- Likes(x,y), Serves(y,z), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Unsafe rule

Improve the SQL query by using an unsafe datalog rule

```sql
SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
  (SELECT * FROM Serves S
   WHERE L.beer=S.beer
   and not exists (SELECT * FROM Frequents F
                        WHERE F.drinker=L.drinker
                        and F.bar=S.bar))
```
Summary of Translation

• **RC \(\rightarrow\)** recursion-free datalog w/ negation
 – Subtle: as we saw; more details in the paper

• **Recursion-free datalog w/ negation \(\rightarrow\) RA**
 – Easy: see paper

• **RA \(\rightarrow\) RC**
 – Easy: see paper
Summary

• All three have same expressive power:
 – RA
 – Non-recursive datalog w/ neg. (= “core” SQL)
 – RC

• Write complex queries in RC first, then translate to SQL
Outline

• Relational Query Languages

• Database Design:
 – On your own: slides and/or Chapters 2, 3
 – In class: What goes around

• Functional Dependencies and BCNF
Database Design
Database Design Process

Conceptual Model:
- Conceptual Schema
- Physical Schema
- Physical storage details

Relational Model:
- Tables + constraints
- And also functional dep.

Normalization:
- Eliminates anomalies
Entity / Relationship Diagrams

• Entity set = a class
 – An entity = an object

• Attribute

• Relationship
Keys in E/R Diagrams

- Every entity set must have a key
What is a Relation?

• A mathematical definition:
 – if A, B are sets, then a relation R is a subset of $A \times B$

• $A=\{1,2,3\}$, $B=\{a,b,c,d\}$,
 $A \times B = \{(1,a),(1,b), \ldots, (3,d)\}$
 $R = \{(1,a), (1,c), (3,b)\}$

• makes is a subset of Product \times Company:
Multiplicity of E/R Relations

- one-one:
 - ![Diagram of one-one relationship]

- many-one
 - ![Diagram of many-one relationship]

- many-many
 - ![Diagram of many-many relationship]
What does this say?
Notation in Class v.s. the Book

In class:

Product \(\xrightarrow{\text{makes}} \) Company

In the book:

Product \(\xrightarrow{\text{makes}} \) Company
Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (Q. how ?)

A. As a set of triples $\subseteq \text{Person} \times \text{Product} \times \text{Store}$
Q: What does the arrow mean?

A: A given person buys a given product from at most one store.

[Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]
Q: What does the arrow mean?

A: A given person buys a given product from at most one store
AND every store sells to every person at most one product.
Q: How do we say that every person shops at at most one store?

A: Cannot. This is the best approximation. (Why only approximation?)
Converting Multi-way Relationships to Binary

Arrows go in which direction?
Converting Multi-way Relationships to Binary

Make sure you understand why!
Design Principles

What’s wrong?

Moral: be faithful to the specifications of the app!
Design Principles: What’s Wrong?

Moral: pick the right kind of entities.
Moral: don’t complicate life more than it already is.
From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation
Entity Set to Relation

\[\text{Product}(\text{prod-ID}, \text{category}, \text{price}) \]

<table>
<thead>
<tr>
<th>prod-ID</th>
<th>category</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo55</td>
<td>Camera</td>
<td>99.99</td>
</tr>
<tr>
<td>Pokemn19</td>
<td>Toy</td>
<td>29.99</td>
</tr>
</tbody>
</table>
Create Table (SQL)

```
CREATE TABLE Product (  
    prod-ID CHAR(30) PRIMARY KEY,  
    category VARCHAR(20),  
    price double
)
```
Represent that in relations!
Orders\((\text{prod-ID}, \text{cust-ID}, \text{date})\)
Shipment\((\text{prod-ID}, \text{cust-ID}, \text{name}, \text{date})\)
Shipping-Co\((\text{name}, \text{address})\)

<table>
<thead>
<tr>
<th>prod-ID</th>
<th>cust-ID</th>
<th>name</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo55</td>
<td>Joe12</td>
<td>UPS</td>
<td>4/10/2011</td>
</tr>
<tr>
<td>Gizmo55</td>
<td>Joe12</td>
<td>FEDEX</td>
<td>4/9/2011</td>
</tr>
</tbody>
</table>
CREATE TABLE Shipment(
 name CHAR(30)
 REFERENCES Shipping-Co,
 prod-ID CHAR(30),
 cust-ID VARCHAR(20),
 date DATETIME,
 PRIMARY KEY (name, prod-ID, cust-ID),
 FOREIGN KEY (prod-ID, cust-ID)
 REFERENCES Orders
);
N-1 Relationships to Relations

Represent this in relations!
N-1 Relationships to Relations

Orders (prod-ID, cust-ID, date1, name, date2)

Shipping-Co (name, address)

Remember: no separate relations for many-one relationship
Multi-way Relationships to Relations

Purchase \((\text{prod-ID}, \text{cust-ssn}, \text{store-name})\)
Modeling Subclasses

Some objects in a class may be special
 define a new class
better: define a subclass

Products

 Software products
 Educational products

So --- we define subclasses in E/R
Subclasses

Product

name

category

price

isa

Software Product

Educational Product

platforms

Age Group

CSEP544 - Fall 2015
Understanding Subclasses

Think in terms of records:

Product

- field1
- field2

SoftwareProduct

- field1
- field2
- field3

EducationalProduct

- field1
- field2
- field4
- field5
Subclasses to Relations

Other ways to convert are possible

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>toddler</td>
</tr>
<tr>
<td>Toy</td>
<td>retired</td>
</tr>
</tbody>
</table>
Modeling Union Types With Subclasses

Say: each piece of furniture is owned either by a person or by a company
Modeling Union Types With Subclasses

Say: each piece of furniture is owned either by a person or by a company

Solution 1. Acceptable but imperfect (What’s wrong ?)
Modeling Union Types With Subclasses

Solution 2: better, more laborious
Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, number, universityName)
University(name)
What Are the Keys of R?
Constraints in E/R Diagrams

• Finding constraints is part of the modeling process.
• Commonly used constraints:

 • **Keys**: social security number uniquely identifies a person.

 • **Single-value constraints**: a person can have only one father.

 • **Referential integrity constraints**: if you work for a company, it must exist in the database.

 • **Other constraints**: peoples’ ages are between 0 and 150.
Keys in E/R Diagrams

No formal way to specify multiple keys in E/R diagrams

Underline:
Single Value Constraints

makes

V. S.

makes
Each product made by at most one company. Some products made by no company.

Each product made by *exactly* one company.

Note: For weak entity sets should be replaced by

(sec 4.4.2)
Q: What does this mean?
A: A Company entity cannot be connected by relationship to more than 99 Product entities.

Note: For “at least one”, you can use “≥ 1” in a many-many relationship.
Database Design Summary

• Conceptual modeling = design the database schema
 – Usually done with Entity-Relationship diagrams
 – It is a form of documentation the database schema; it is not executable code
 – Straightforward conversion to SQL tables
 – Big problem in the real world: the SQL tables are updated, the E/R documentation is not maintained

• Schema refinement using normal forms
 – Functional dependencies, normalization
Outline

• Relational Query Languages
• Database Design:
 – On your own: slides and/or Chapters 2, 3
 – In class: What goes around
• Functional Dependencies and BCNF
Data Models

"Data Model"

• Apps need to model real-world data
 – Typically includes entities and relationships between them
 – Entities: e.g. students, courses, products, clients
 – Relationships: e.g. course registrations, product purchases

• Data model enables a user to define the data using high-level constructs without worrying about many low-level details of how data will be stored on disk
Levels of Abstraction

- **External Schema**
 - Logical

- **Conceptual Schema**
 - Logical

- **Physical Schema**
 - Includes storage details, file organization, indexes

Classical picture. Remember it!
What goes around…

• **Structured data**
 – What is this? Examples?

• **Semistructured data**
 – What is this?
 – Examples?

• **Unstructured data**
 – What is this? Examples?
What goes around…

• **Structured data**
 – All data conforms to a schema. Ex: business data

• **Semistructured data**
 – Some structure in the data but implicit and irregular
 – Ex: resume, ads

• **Unstructured data**
 – No structure in data. Ex: text, sound, video, images

• In our class: structured data & relational DBMSs
Early Proposal 1: IMS

• What is it?
Early Proposal 1: IMS

- Hierarchical data model

- Record
 - **Type**: collection of named fields with data types (+)
 - **Instance**: must match type definition (+)
 - Each instance must have a **key** (+)
 - Record types must be arranged in a **tree** (-)

- **IMS database** is collection of instances of record types organized in a tree
IMS Example

Two Hierarchical Organizations

Figure 2
DL/1

• How does a programmer retrieve data in IMS?
DL/1

• Each record has a hierarchical sequence key (HSK)
 – Records are totally ordered: depth-first and left-to-right

• HSK defines semantics of commands:
 – get_next
 – get_next_within_parent

• DL/1 is a record-at-a-time language
 – Programmer constructs an algorithm for solving the query
 – Programmer must worry about query optimization
Data storage

• How is the data physically stored in IMS?
Data storage

• Root records
 – Stored sequentially (sorted on key)
 – Indexed in a B-tree using the key of the record
 – Hashed using the key of the record

• Dependent records
 – Physically sequential
 – Various forms of pointers

• Selected organizations restrict DL/1 commands
 – No updates allowed with sequential organization
 – No “get-next” for hashed organization
Data Independence

• What is it?
Data Independence

• **Physical data independence**: Applications are insulated from changes in physical storage details.

• **Logical data independence**: Applications are insulated from changes to logical structure of the data.
IMS Limitations

- Tree-structured data model
 - Redundant data
 - Existence depends on parent

- Record-at-a-time user interface

- Very limited physical independence
 - Phys. organization limits possible operations
 - Application programs break if organization changes

- Provides some logical independence
 - DL/1 program runs on logical database
 - Difficult to achieve good logical data independence with a tree model
Early Proposal 2: CODASYL

• What is it?
Early Proposal 2: CODASYL

- **Networked data model**

- **Record types with keys** (+)

- Organized in a **network**
 - More flexible than hierarchy (+)
 - A record can have multiple parents (-)
 - Arcs between records are named
 - At least one entry point to the network

- **Record-at-a-time** DML (-)
CODASYL Example

A CODASYL Network
Figure 5
CODASYL Limitations

• No physical data independence

• No logical data independence

• Very complex:
 – Programs must “navigate the hyperspace”
 – Load and recover as one gigantic object
Relational Model Overview

• Proposed by Ted Codd in 1970

• Motivation: better logical and physical data independence
Relational Model Overview

• Defines logical data model

• No physical data model

• Set-at-a-time query language
Great Debate

• Pro relational
 – What where the arguments?

• Against relational
 – What where the arguments?

• How was it settled?
Great Debate

• **Pro relational**
 – CODASYL is too complex
 – CODASYL does not provide sufficient data independence
 – Record-at-a-time languages are too hard to optimize
 – Trees/networks not flexible enough for common cases

• **Against relational**
 – COBOL programmers cannot understand relational languages
 – Impossible to represent the relational model efficiently
 – CODASYL can represent tables

• Ultimately settled by the market place
Other Data Models

- Entity-Relationship: 1970’s
 - Successful in logical database design (this lecture + hw2)
- Extended Relational: 1980’s
- Semantic: late 1970’s and 1980’s

- Object-oriented: late 1980’s and early 1990’s
 - Impedance mismatch: relational dbs ↔ OO languages
 - Interesting but ultimately failed (several reasons, see paper)
- Object-relational: late 1980’s and early 1990’s
 - User-defined types, ops, functions, and access methods
- Semi-structured: late 1990’s to the present
 - XML, JSON, Protobuf
Outline

• Relational Query Languages
• Database Design:
 – On your own: slides and/or Chapters 2, 3
 – In class: What goes around
• Functional Dependencies and BCNF
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city.

Primary key is thus (SSN,PhoneNumber)

What is the problem with this schema?
Relational Schema Design

Anomalies:
Redundancy = repeat data
Update anomalies = what if Fred moves to “Bellevue”?
Deletion anomalies = what if Joe deletes his phone number?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:

- No more repeated data
- Easy to move Fred to “Bellevue” (how?)
- Easy to delete all Joe’s phone numbers (how?)
Relational Schema Design (or Logical Design)

How do we do this systematically?

Start with some relational schema

Find out its functional dependencies (FDs)

Use FDs to normalize the relational schema
Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]
Functional Dependencies (FDs)

Definition \(A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \) holds in \(R \) if:

\[
\forall t, t' \in R, \quad (t.A_1 = t'.A_1 \land \ldots \land t.A_m = t'.A_m \Rightarrow t.B_1 = t'.B_1 \land \ldots \land t.B_n = t'.B_n)
\]

<table>
<thead>
<tr>
<th>R</th>
<th>A_1</th>
<th>...</th>
<th>A_m</th>
<th>B_1</th>
<th>...</th>
<th>B_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if \(t, t' \) agree here then \(t, t' \) agree here
Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmpID → Name, Phone, Position
Position → Phone
but not Phone → Position
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position \rightarrow Phone
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not Phone → Position
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

Do all the FDs hold on this instance?

name \rightarrow color
category \rightarrow department
color, category \rightarrow price
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Black</td>
<td>Toys</td>
<td>99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Stationary</td>
<td>Green</td>
<td>Office-supp.</td>
<td>59</td>
</tr>
</tbody>
</table>

What about this one?
FD **holds** or **does not hold** on an instance

If we can be sure that *every instance of* R *will be one in which a given FD is true*, then we say that R **satisfies the FD**

If we say that R satisfies an FD F, we are **stating a constraint on** R
An Interesting Observation

If all these FDs are true:
- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price

Then this FD also holds:
- name, category \rightarrow price

If we find out from application domain that a relation satisfies some FDs, it doesn’t mean that we found all the FDs that it satisfies! There could be more FDs implied by the ones we have.
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The closure, $\{A_1, \ldots, A_n\}^+$ = the set of attributes B s.t. $A_1, \ldots, A_n \rightarrow B$

Example:
1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

$\text{name}^+ = \{\text{name, color}\}$
$\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$
$\text{color}^+ = \{\text{color}\}$
Closure Algorithm

\[X = \{A_1, \ldots, A_n\} \]

Repeat until \(X \) doesn’t change do:

if \(B_1, \ldots, B_n \rightarrow C \) is a FD and \(B_1, \ldots, B_n \) are all in \(X \)

then add \(C \) to \(X \).

Example:

1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

\(\{\text{name, category}\}^+ = \{\} \)
Closure Algorithm

X={A₁, …, Aₙ}.

Repeat until X doesn’t change do:

if B₁, …, Bₙ → C is a FD and B₁, …, Bₙ are all in X

then add C to X.

{\text{name, category}}^+ =

{\text{name, category, color, department, price}}
Closure Algorithm

\[X = \{A_1, \ldots, A_n\}. \]

Repeat until \(X \) doesn’t change do:

\[
\begin{align*}
\text{if} & \quad B_1, \ldots, B_n \rightarrow C \quad \text{is a FD and} \\
& \quad B_1, \ldots, B_n \quad \text{are all in} \ X \\
\text{then} & \quad \text{add} \ C \ \text{to} \ X.
\end{align*}
\]

Example:

1. \(\text{name} \rightarrow \text{color} \)
2. \(\text{category} \rightarrow \text{department} \)
3. \(\text{color, category} \rightarrow \text{price} \)

\[
\begin{align*}
\{\text{name, category}\}^+ &= \\
&\{ \text{name, category, color, department, price} \}
\end{align*}
\]

Hence:

\(\text{name, category} \rightarrow \text{color, department, price} \)
Example

In class:

\[R(A, B, C, D, E, F) \]

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

Compute \(\{A, B\}^+ \) \(X = \{A, B, \} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, \} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*} \]

Compute \(\{A, B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, \} \)
Example

In class:

\[R(A,B,C,D,E,F) \]

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

Compute \(\{A,B\}^+ \quad X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \quad X = \{A, F, B, C, D, E\} \)
Example

In class:

\[R(A, B, C, D, E, F) \]

\[A, B \rightarrow C \]
\[A, D \rightarrow E \]
\[B \rightarrow D \]
\[A, F \rightarrow B \]

Compute \(\{A, B\}^+ \) \(X = \{A, B, C, D, E\} \)

Compute \(\{A, F\}^+ \) \(X = \{A, F, B, C, D, E\} \)

What is the key of \(R \)?
Practice at Home

Find all FD’s implied by:

- A, B → C
- A, D → B
- B → D
Practice at Home

Find all FD’s implied by:

<table>
<thead>
<tr>
<th>A, B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, D</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
</tbody>
</table>

Step 1: Compute X^+, for every X:

$A^+ = A, \quad B^+ = BD, \quad C^+ = C, \quad D^+ = D$

$AB^+ = ABCD, \quad AC^+ = AC, \quad AD^+ = ABCD,$

$\quad BC^+ = BCD, \quad BD^+ = BD, \quad CD^+ = CD$

$ABC^+ = ABD^+ = ACD^+ = ABCD$ (no need to compute—why?)

$BCD^+ = BCD, \quad ABCD^+ = ABCD$
Practice at Home

Find all FD’s implied by:

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow B \\
B & \rightarrow D
\end{align*}
\]

Step 1: Compute \(X^+\), for every \(X\):

\[
\begin{align*}
AB^+ &= ABCD, & AC^+ &= AC, & AD^+ &= ABCD, \\
& & BC^+ &= BCD, & BD^+ &= BD, & CD^+ &= CD \\
ABC^+ &= ABD^+ = ACD^+ = ABCD & \text{(no need to compute— why ?)} \\
BCD^+ &= BCD, & ABCD^+ &= ABCD
\end{align*}
\]

Step 2: Enumerate all FD’s \(X \rightarrow Y\), s.t. \(Y \subseteq X^+\) and \(X \cap Y = \emptyset\):

\[
\begin{align*}
AB & \rightarrow CD, & AD & \rightarrow BC, & ABC & \rightarrow D, & ABD & \rightarrow C, & ACD & \rightarrow B
\end{align*}
\]
Keys

• A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$

• A **key** is a minimal superkey
 – A superkey and for which no subset is a superkey
Computing (Super)Keys

• For all sets X, compute X^+

• If $X^+ = [\text{all attributes}]$, then X is a superkey

• Try only the minimal X’s to get the keys
Example

Product(name, price, category, color)

name, category \rightarrow price
category \rightarrow color

What is the key?
Example

Product(name, price, category, color)

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
Key or Keys?

Can we have more than one key?

Given $R(A, B, C)$ define FD’s s.t. there are two or more keys
Key or Keys?

Can we have more than one key?

Given $R(A,B,C)$ define FD’s s.t. there are two or more keys

- $A \rightarrow B$
- $B \rightarrow C$
- $C \rightarrow A$

or

- $AB \rightarrow C$
- $BC \rightarrow A$

or

- $A \rightarrow BC$
- $B \rightarrow AC$

what are the keys here?
Eliminating Anomalies

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

SSN → Name, City

What is the key?

Suggest a rule for decomposing the table to eliminate anomalies.
Eliminating Anomalies

Main idea:

• $X \rightarrow A$ is OK if X is a (super)key

• $X \rightarrow A$ is not OK otherwise
 – Need to decompose the table, but how?
Boyce-Codd Normal Form

There are no “bad” FDs:

Definition. A relation R is in BCNF if:
Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:
$\forall X$, either $X^+ = X$ or $X^+ = [\text{all attributes}]$.
BCNF Decomposition Algorithm

Normalize(R)
find X s.t.: X ≠ X⁺ ≠ [all attributes]
if (not found) then “R is in BCNF”
let Y = X⁺ - X; Z = [all attributes] - X⁺
decompose R into R₁(X ∪ Y) and R₂(X ∪ Z)
Normalize(R₁); Normalize(R₂);
Example

The only key is: \{SSN, PhoneNumber\}

Hence \(SSN \rightarrow \text{Name, City} \) is a “bad” dependency.

In other words:
\(SSN^+ = \text{Name, City} \) and is neither \(SSN \) nor All Attributes.
Example BCNF Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Let’s check anomalies:
- Redundancy?
- Update?
- Delete?
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age

age \rightarrow hairColor
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Find X s.t.: X \neq X^+ \neq \text{[all attributes]}

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

What are the keys?
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into:
P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose:
People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)
Practice at Home

R(A, B, C, D)

A → B
B → C

R(A, B, C, D)
A⁺ = ABC ≠ ABCD
R(A,B,C,D)

Practice at Home

R(A,B,C,D)
A⁺ = ABC ≠ ABCD

R₁(A,B,C)
B⁺ = BC ≠ ABC

R₁₁(B,C)

R₁₂(A,B)

R₂(A,D)

What are the keys?

What happens if in R we first pick B⁺? Or AB⁺?
Schema Refinements = Normal Forms

• 1st Normal Form = all tables are flat
• 2nd Normal Form = obsolete
• Boyce Codd Normal Form = today
• 3rd Normal Form = see book