Lecture 10:
Parallel Databases

Wednesday, December 1st, 2010
Announcements

• Take-home Final: this weekend

• Next Wednesday: last homework due at midnight (Pig Latin)

• Also next Wednesday: last lecture (data provenance, data privacy)
Reading Assignment: “Rethinking the Contract”

• What is today’s contract with the optimizer?
• What are the main limitations in today’s optimizers?
• What is a “plan diagram”?
Overview of Today’s Lecture

• Parallel databases (Chapter 22.1 – 22.5)

• Map/reduce

• Pig-Latin
 – Some slides from Alan Gates (Yahoo!Research)
 – Mini-tutorial on the slides
 – Read manual for HW7

• Bloom filters
 – Use slides extensively!
 – Bloom joins are mentioned on pp. 746 in the book
Parallel v.s. Distributed Databases

• Parallel database system:
 – Improve performance through parallel implementation
 – Will discuss in class (and are on the final)

• Distributed database system:
 – Data is stored across several sites, each site managed by a DBMS capable of running independently
 – Will not discuss in class
Parallel DBMSs

• **Goal**
 – Improve performance by executing multiple operations in parallel

• **Key benefit**
 – Cheaper to scale than relying on a single increasingly more powerful processor

• **Key challenge**
 – Ensure overhead and contention do not kill performance
Performance Metrics for Parallel DBMSs

• **Speedup**
 – More processors ➔ higher speed
 – Individual queries should run faster
 – Should do more transactions per second (TPS)

• **Scaleup**
 – More processors ➔ can process more data
 – **Batch scaleup**
 • Same query on larger input data should take the same time
 – **Transaction scaleup**
 • N-times as many TPS on N-times larger database
 • But each transaction typically remains small
Linear v.s. Non-linear Speedup

![Graph showing linear and non-linear speedup vs. number of processors (P).]
Linear v.s. Non-linear Scaleup

processors (=P) AND data size

× 1 × 5 × 10 × 15

Batch Scaleup

processors (=P) AND data size
Challenges to Linear Speedup and Scaleup

• **Startup cost**
 – Cost of starting an operation on many processors

• **Interference**
 – Contention for resources between processors

• **Skew**
 – Slowest processor becomes the bottleneck
Architectures for Parallel Databases

• Shared memory

• Shared disk

• Shared nothing
Shared Memory

Interconnection Network

Global Shared Memory

P P P
D D D
Shared Disk

Interconnection Network
Shared Nothing

Interconnection Network

P

M

D

P

M

D

P

M

D
Shared Nothing

• Most scalable architecture
 – Minimizes interference by minimizing resource sharing
 – Can use commodity hardware

• Also most difficult to program and manage

• Processor = server = node
• $P =$ number of nodes

We will focus on shared nothing
Taxonomy for Parallel Query Evaluation

- **Inter-query parallelism**
 - Each query runs on one processor

- **Inter-operator parallelism**
 - A query runs on multiple processors
 - An operator runs on one processor

- **Intra-operator parallelism**
 - An operator runs on multiple processors
Horizontal Data Partitioning

- Relation R split into P chunks R_0, \ldots, R_{P-1}, stored at the P nodes

- **Round robin**: tuple t_i to chunk $(i \mod P)$

- **Hash based partitioning on attribute A**:
 - Tuple t to chunk $h(t.A) \mod P$

- **Range based partitioning on attribute A**:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$
Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v_1<A<v_2}(R)$

- Conventional database:
 - Cost = $B(R)$

- Parallel database with P processors:
 - Cost = $B(R) / P$
Parallel Selection

Different processors do the work:
• Round robin partition: all servers do the work
• Hash partition:
 – One server for $\sigma_{A=v}(R)$,
 – All servers for $\sigma_{v_1<A<v_2}(R)$
• Range partition: one server does the work
Data Partitioning Revisited

What are the pros and cons?

- **Round robin**
 - Good load balance but always needs to read all the data

- **Hash based partitioning**
 - Good load balance but works only for equality predicates and full scans

- **Range based partitioning**
 - Works well for range predicates but can suffer from data skew
Parallel Group By: $\gamma_A, \text{sum}(B)(R)$

Step 1: server i partitions chunk R_i using a hash function $h(t.A): R_{i0}, R_{i1}, \ldots, R_{i,P-1}$

Step 2: server i sends partition R_{ij} to server j

Step 3: server j computes $\gamma_A, \text{sum}(B)$ on $R_{0j}, R_{1j}, \ldots, R_{P-1,j}$
Cost of Parallel Group By

Recall conventional cost $= 3B(R)$

- **Step 1**: Cost $= \frac{B(R)}{P}$ I/O operations
- **Step 2**: Cost $= \frac{(P-1)}{P} B(R)$ blocks are sent
 - Network costs $<<$ I/O costs
- **Step 3**: Cost $= 2 \frac{B(R)}{P}$
 - When can we reduce it to 0?

Total $= 3B(R) / P$ + communication costs
Parallel Join: $R \bowtie_{A=B} S$

Step 1
- For all servers in $[0,k]$, server i partitions chunk R_i using a hash function $h(t.A)$: $R_{i0}, R_{i1}, ..., R_{i,P-1}$
- For all servers in $[k+1,P]$, server j partitions chunk S_j using a hash function $h(t.A)$: $S_{j0}, S_{j1}, ..., R_{j,P-1}$

Step 2:
- Server i sends partition R_{iu} to server u
- Server j sends partition S_{ju} to server u

Steps 3: Server u computes the join of R_{iu} with S_{ju}
Cost of Parallel Join

• Step 1: Cost = (B(R) + B(S))/P

• Step 2: 0
 – (P-1)/P (B(R) + B(S)) blocks are sent, but we assume network costs to be << disk I/O costs

• Step 3:
 – Cost = 0 if small table fits in memory: B(S)/P <= M
 – Cost = 4(B(R)+B(S))/P otherwise
Parallel Query Plans

• Same relational operators

• Add special split and merge operators
 – Handle data routing, buffering, and flow control

• Example: exchange operator
 – Inserted between consecutive operators in the query plan
Map Reduce

- Google: paper published 2004
- Free variant: Hadoop

- Map-reduce = high-level programming model and implementation for large-scale parallel data processing
Data Model

Files!

A file = a bag of \((key, \ value)\) pairs

A map-reduce program:
• Input: a bag of \((inputkey, \ value)\) pairs
• Output: a bag of \((outputkey, \ value)\) pairs
Step 1: the MAP Phase

User provides the MAP-function:

- Input: one \((\text{input~key,~value})\)
- Output: bag of \((\text{intermediate~key,~value})\) pairs

System applies the map function in parallel to all \((\text{input~key,~value})\) pairs in the input file
Step 2: the REDUCE Phase

User provides the REDUCE function:

• Input: (intermediate key, bag of values)

• Output: bag of output values

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function
Example

• Counting the number of occurrences of each word in a large collection of documents

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```
(k1, v1) (k2, v2) (k3, v3) ...

(i1, w1) (i2, w2) (i3, w3) ...

MAP → REDUCE
Map = GROUP BY,
Reduce = Aggregate

R(documentKey, word)

```
SELECT word, sum(1)
FROM R
GROUP BY word
```
Implementation

• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M map tasks, keeps track of their progress
• Workers write their output to local disk, partition into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map workers’ local disks
MR Phases

Map Task

{P 1} Split Record Reader Map Combine {P 3} Copy Sort Reduce {P 4} {P 5}

Reduce Task

Local storage

HDFS

file
Interesting Implementation Details

• Worker failure:
 – Master pings workers periodically,
 – If down then reassigns its splits to all other workers → good load balance

• Choice of M and R:
 – Larger is better for load balancing
 – Limitation: master needs $O(M \times R)$ memory
Interesting Implementation Details

Backup tasks:

- **Straggler** = a machine that takes unusually long time to complete one of the last tasks. Eg:
 - Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine

- Stragglers are a main reason for slowdown

- Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Map-Reduce Summary

• Hides scheduling and parallelization details

• However, very limited queries
 – Difficult to write more complex tasks
 – Need multiple map-reduce operations

• Solution: PIG-Latin !
Following Slides provided by: Alan Gates, Yahoo!Research
What is Pig?

• An engine for executing programs on top of Hadoop
• It provides a language, Pig Latin, to specify these programs
• An Apache open source project
 http://hadoop.apache.org/pig/
Map-Reduce

- Computation is moved to the data
- A simple yet powerful programming model
 - Map: every record handled individually
 - Shuffle: records collected by key
 - Reduce: key and iterator of all associated values
- User provides:
 - input and output (usually files)
 - map Java function
 - key to aggregate on
 - reduce Java function
- Opportunities for more control: partitioning, sorting, partial aggregations, etc.
Romeo, Romeo, wherefore art thou Romeo? What, art thou hurt?
Map Reduce Illustrated

Romeo, Romeo, wherefore art thou Romeo?

What, art thou hurt?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

map

reduce

map

reduce

What, 1
art, 1
thou, 1
hurt, 1
Romeo, Romeo, wherefore art thou Romeo?

What, art thou hurt?

Romeo, 1
Romeo, 1
wherefore, 1
art, 1
thou, 1
Romeo, 1

art, (1, 1)
hurt (1),
thou (1, 1)

What, 1
art, 1
thou, 1
hurt, 1

Romeo, (1, 1, 1)
wherefore, (1)
what, (1)
Romeo, Romeo, wherefore art thou Romeo?

Map Reduce Illustrated

What, art thou hurt?

Romeo, art, thou, hurt

art, (1, 1)
hurt (1),thou (1, 1)

Romeo, 1
Romeo, wherefore, art, thou, Romeo, 1

What, 1
art, thou, hurt, 1

Romeo, 3
wherefore, what, 1

What, art thou hurt?
Making Parallelism Simple

- Sequential reads = good read speeds
- In large cluster failures are guaranteed; Map Reduce handles retries
- Good fit for batch processing applications that need to touch all your data:
 - data mining
 - model tuning
- Bad fit for applications that need to find one particular record
- Bad fit for applications that need to communicate between processes; oriented around independent units of work
Why use Pig?

Suppose you have user data in one file, website data in another, and you need to find the top 5 most visited sites by users aged 18 - 25.
In Map-Reduce

170 lines of code, 4 hours to write
In Pig Latin

Users = load ‘users’ as (name, age);
Fltrd = filter Users by
 age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Jnd = join Fltrd by name, Pages by user;
Grpd = group Jnd by url;
Smmd = foreach Grpd generate group,
 COUNT(Jnd) as clicks;
Srtd = order Smmd by clicks desc;
Top5 = limit Srtd 5;
store Top5 into ‘top5sites’;

9 lines of code, 15 minutes to write
But can it fly?

Pig Performance vs Map-Reduce

<table>
<thead>
<tr>
<th>Date</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 11 08</td>
<td>7.6</td>
</tr>
<tr>
<td>Nov 11 08</td>
<td>2.5</td>
</tr>
<tr>
<td>Jan 20 09</td>
<td>1.8</td>
</tr>
<tr>
<td>Feb 23 09</td>
<td>1.6</td>
</tr>
<tr>
<td>Mar 20 09</td>
<td>1.5</td>
</tr>
<tr>
<td>Apr 20 09</td>
<td>1.4</td>
</tr>
<tr>
<td>May 28 09</td>
<td>1.2</td>
</tr>
<tr>
<td>Jun 18 09</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Essence of Pig

- Map-Reduce is too low a level to program, SQL too high
- Pig Latin, a language intended to sit between the two:
 - Imperative
 - Provides standard relational transforms (join, sort, etc.)
 - Schemas are optional, used when available, can be defined at runtime
 - User Defined Functions are first class citizens
 - Opportunities for advanced optimizer but optimizations by programmer also possible
How It Works

Script
A = load
B = filter
C = group
D = foreach

Logical Plan ≈ relational algebra

Logical Plan
Parser

Semantic Checks

Logical Plan
Logical Optimizer

Logical Plan
Logical to Physical Translator

Physical Plan
Physical To MR Translator

Map-Reduce Plan
MapReduce Launcher

Map-Reduce Plan = physical operators broken into Map, Combine, and Reduce stages

Plan standard optimizations

Physical Plan

Physical Plan = physical operators to be executed

Jar to hadoop

Hadoop
Cool Things We’ve Added In the Last Year

- Multiquery – Ability to combine multiple group bys into a single MR job (0.3)
- Merge join – If data is already sorted on join key, do join via merge in map phase (0.4)
- Skew join – Hash join for data with skew in join key. Allows splitting of key across multiple reducers to handle skew. (0.4)
- Zebra – Contrib project that provides columnar storage of data (0.4)
- Rework of Load and Store functions to make them much easier to write (0.7, branched but not released)
- Owl, a metadata service for the grid (committed, will be released in 0.8).
Fragment Replicate Join

Aka “Broadcast Join”
Fragment Replicate Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "replicated";

Aka "Broadcast Join"
Fragment Replicate Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "replicated";
Fragment Replicate Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "replicated";
Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "replicated";

Aka “Broadcast Join”
Hash Join
Hash Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Users by name, Pages by user;
Hash Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Users by name, Pages by user;
Hash Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Users by name, Pages by user;
Hash Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1
User block n

Map 2
Page block m

(1, user)

(2, name)
Hash Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Users by name, Pages by user;
Skew Join

Pages

Users
Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Pages

Users
Skew Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "skewed";
Skew Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "skewed";

Map 1
Pages block n

Map 2
Users block m
Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1
Pages block n

Map 2
Users block m
Skew Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "skewed";

Map 1
Pages block n

Map 2
Users block m

(1, user)
(2, name)
Skew Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “skewed”;

Map 1
Pages
block n

Map 2
Users
block m

Reducer 1
(1, user)
(1, fred, p1)
(1, fred, p2)
(2, fred)

Reducer 2
(2, name)
(1, fred, p3)
(1, fred, p4)
(2, fred)
Merge Join

<table>
<thead>
<tr>
<th>Pages</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaron</td>
<td>aaron</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>zach</td>
<td>zach</td>
</tr>
</tbody>
</table>
Merge Join

Users = load 'users' as (name, age);
Pages = load 'pages' as (user, url);
Jnd = join Pages by user, Users by name using "merge";
Merge Join

\[
\text{Users} = \text{load} \ '\text{users}' \ as \ (\text{name}, \text{age}); \\
\text{Pages} = \text{load} \ '\text{pages}' \ as \ (\text{user}, \text{url}); \\
\text{Jnd} = \text{join} \ \text{Pages} \ \text{by} \ \text{user}, \ \text{Users} \ \text{by} \ \text{name} \ \text{using} \ "\text{merge}";
\]
Merge Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “merge”;
Multi-store script

A = load 'users' as (name, age, gender, city, state);
B = filter A by name is not null;
C1 = group B by age, gender;
D1 = foreach C1 generate group, COUNT(B);
 store D1 into 'bydemo';
C2 = group B by state;
D2 = foreach C2 generate group, COUNT(B);
 store D2 into 'bystate';
Multi-Store Map-Reduce Plan

map

filter

split

local rearrange local rearrange

reduce

demux

package

foreach

package

foreach
What are people doing with Pig

- At Yahoo ~70% of Hadoop jobs are Pig jobs
- Being used at Twitter, LinkedIn, and other companies
- Available as part of Amazon EMR web service and Cloudera Hadoop distribution

- What users use Pig for:
 - Search infrastructure
 - Ad relevance
 - Model training
 - User intent analysis
 - Web log processing
 - Image processing
 - Incremental processing of large data sets
What We’re Working on this Year

• Optimizer rewrite
• Integrating Pig with metadata
• Usability – our current error messages might as well be written in actual Latin
• Automated usage info collection
• UDFs in python
Research Opportunities

- Cost based optimization – how does current RDBMS technology carry over to MR world?
- Memory Usage – given that data processing is very memory intensive and Java offers poor control of memory usage, how can Pig be written to use memory well?
- Automated Hadoop Tuning – Can Pig figure out how to configure Hadoop to best run a particular script?
- Indices, materialized views, etc. – How do these traditional RDBMS tools fit into the MR world?
- Human time queries – Analysts want access to the petabytes of data available via Hadoop, but they don’t want to wait hours for their jobs to finish; can Pig find a way to answer analysts question in under 60 seconds?
- Map-Reduce-Reduce – Can MR be made more efficient for multiple MR jobs?
- How should Pig integrate with workflow systems?
- See more: http://wiki.apache.org/pig/PigJournal
Learn More

• Visit our website: http://hadoop.apache.org/pig/
• On line tutorials
• A couple of Hadoop books are available that include chapters on Pig, search at your favorite bookstore
• Join the mailing lists:
 – pig-user@hadoop.apache.org for user questions
 – pig-dev@hadoop.apache.com for developer issues
• Contribute your work, over 50 people have so far
Pig Latin Mini-Tutorial

(will skip in class; please read in order to do homework 7)
Outline

Based entirely on *Pig Latin: A not-so-foreign language for data processing*,
by Olston, Reed, Srivastava, Kumar, and Tomkins, 2008

Quiz section tomorrow: in CSE 403
(this is CSE, don’t go to EE1)
Pig-Latin Overview

• Data model = loosely typed *nested relations*

• Query model = a sql-like, dataflow language

• Execution model:
 – Option 1: run locally on your machine
 – Option 2: compile into sequence of map/reduce, run on a cluster supporting Hadoop
Example

- Input: a table of urls:
 (url, category, pagerank)
- Compute the average pagerank of all sufficiently high pageranks, for each category
- Return the answers only for categories with sufficiently many such pages
First in SQL…

```
SELECT category, AVG(pagerank)
FROM urls
WHERE pagerank > 0.2
GROUP BY category
HAVING COUNT(*) > 10^6
```
...then in Pig-Latin

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups
 BY COUNT(good_urls) > 10^6
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank)
Types in Pig-Latin

• Atomic: string or number, e.g. ‘Alice’ or 55

• Tuple: (‘Alice’, 55, ‘salesperson’)

• Bag: {('Alice’, 55, ‘salesperson’),
 (‘Betty’,44, ‘manager’), …}

• Maps: we will try not to use these
Types in Pig-Latin

Bags can be nested!

- {('a', {1,4,3}), ('c',{ }), ('d', {2,2,5,3,2})}

Tuple components can be referenced by number

- $0, $1, $2, …
$t = ('\text{alice}', \{ ('\text{lakers}', 1), ('\text{iPod}', 2) \}, ['\text{age} \rightarrow 20'])$

Let fields of tuple t be called $f1$, $f2$, $f3$

<table>
<thead>
<tr>
<th>Expression Type</th>
<th>Example</th>
<th>Value for t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>‘bob’</td>
<td>Independent of t</td>
</tr>
<tr>
<td>Field by position</td>
<td>0</td>
<td>‘alice’</td>
</tr>
<tr>
<td>Field by name</td>
<td>$f3$</td>
<td>‘age’ $\rightarrow 20$</td>
</tr>
<tr>
<td>Projection</td>
<td>$f2.$0$</td>
<td>${(lakers'), ('iPod')}$</td>
</tr>
<tr>
<td>Map Lookup</td>
<td>$f3 #'age'$</td>
<td>20</td>
</tr>
<tr>
<td>Function Evaluation</td>
<td>$\text{SUM}(f2.$1)$</td>
<td>$1 + 2 = 3$</td>
</tr>
<tr>
<td>Conditional Expression</td>
<td>$f3 #'age' > 18? 'adult': 'minor'$</td>
<td>‘adult’</td>
</tr>
<tr>
<td>Flattening</td>
<td>$\text{FLATTEN}(f2)$</td>
<td>$lakers$', 1 'iPod', 2</td>
</tr>
</tbody>
</table>
Loading data

• Input data = FILES!
 – Heard that before?

• The LOAD command parses an input file into a bag of records

• Both parser (="deserializer") and output type are provided by user
Loading data

queries = LOAD 'query_log.txt'
 USING myLoad()
 AS (userID, queryString, timeStamped)
Loading data

- **USING userfuction()** -- is optional
 - Default deserializer expects tab-delimited file
- **AS type** – is optional
 - Default is a record with unnamed fields; refer to them as $0, $1, ...
- The return value of LOAD is just a handle to a bag
 - The actual reading is done in pull mode, or parallelized
expands_queries =
FOREACH queries
GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag
expanded_queries =
 FOREACH queries
 GENERATE userId,
 flatten(expandQuery(queryString))

Now we get a flat collection
queries:
(userId, queryString, timestamp)

(alice, lakers, 1)
(bob, iPod, 3)

FOREACH queries GENERATE
expandQuery(queryString)
(without flattening)

(alice, {lakers rumors})
(bob, {iPod nano, iPod shuffle})

(with flattening)

(alice, lakers rumors)
(alice, lakers news)
(bob, iPod nano)
(bob, iPod shuffle)
Note that it is NOT a first class function!

(that’s one thing I don’t like about Pig-latin)

• First class FLATTEN:
 – FLATTEN(\{\{2,3\},\{5\},\{\},\{4,5,6\}\}) = \{2,3,5,4,5,6\}
 – Type: \{\{T\}\} \rightarrow \{T\}

• Pig-latin FLATTEN
 – FLATTEN(\{4,5,6\}) = 4, 5, 6
 – Type: \{T\} \rightarrow T, T, T, ..., T ??????
FILTER

Remove all queries from Web bots:

\[
\text{real_queries} = \text{FILTER queries BY userId neq 'bot'}
\]

Better: use a complex UDF to detect Web bots:

\[
\text{real_queries} = \text{FILTER queries BY NOT isBot(userId)}
\]
JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
 revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}
results:
(queryString, url, rank)
(lakers, nba.com, 1)
(lakers, espn.com, 2)
(kings, nhl.com, 1)
(kings, nba.com, 2)

revenue:
(queryString, adSlot, amount)
(lakers, top, 50)
(lakers, side, 20)
(kings, top, 30)
(kings, side, 10)

JOIN

(lakers, nba.com, 1, top, 50)
(lakers, nba.com, 1, side, 20)
(lakers, espn.com, 2, top, 50)
(lakers, espn.com, 2, side, 20)
GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =
 FOREACH grouped_revenue
 GENERATE queryString,
 SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
query_revenues: {(queryString, totalRevenue)}
Simple Map-Reduce

\[
\text{input : } \{(\text{field1}, \text{field2}, \text{field3}, \ldots)\}
\]

\[
\text{map_result} = \text{FOREACH input}
\]
\[
\text{GENERATE FLATTEN(map(*))}
\]

\[
\text{key_groups} = \text{GROUP map_result BY } 0
\]

\[
\text{output} = \text{FOREACH key_groups}
\]
\[
\text{GENERATE reduce(1)}
\]

\[
\text{map_result} : \{(a1, a2, a3, \ldots)\}
\]
\[
\text{key_groups} : \{(a1, \{(a2, a3, \ldots)\})\}\]
Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped_data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general?
Co-Group

Is this an inner join, or an outer join?
Co-Group

grouped_data: {(queryString, results:{(url, position)}, revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search results and revenue information for a query string at a time, and outputs a bag of urls and the revenue attributed to them.
Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
 revenue:{(adSlot, amount)})}

\[
\text{grouped}_\text{data} = \text{COGROUP results BY queryString,}
\text{revenue BY queryString;}
\]
\[
\text{join}_\text{result} = \text{FOREACH grouped_data}
\]
\[
\text{GENERATE FLATTEN(results),}
\text{FLATTEN(revenue);}
\]

Result is the same as JOIN
Asking for Output: STORE

```
STORE query_revenues INTO `myoutput`
USING myStore();
```

Meaning: write query_revenues to the file ‘myoutput’
Implementation

• Over Hadoop!
• Parse query:
 – Everything between LOAD and STORE → one logical plan
• Logical plan → sequence of Map/Reduce ops
• All statements between two (CO)GROUPs → one Map/Reduce op
Implementation
Bloom Filters

We *WILL* discuss in class!
Lecture on Bloom Filters

Not described in the textbook!
Lecture based in part on:

Pig Latin Example Continued

Users(name, age)
Pages(user, url)

```
SELECT Pages.url, count(*) as cnt
FROM Users, Pages
WHERE Users.age in [18..25]
  and Users.name = Pages.user
GROUP BY Pages.url
ORDER DESC cnt
```
Example

Problem: many Pages, but only a few visited by users with age 18..25

• Pig’s solution:
 – MAP phase sends all pages to the reducers

• How can we reduce communication cost?
Hash Maps

- Let $S = \{x_1, x_2, \ldots, x_n\}$ be a set of elements
- Let $m > n$
- Hash function $h : S \rightarrow \{1, 2, \ldots, m\}$

$$S = \{x_1, x_2, \ldots, x_n\}$$
Hash Map = Dictionary

The hash map acts like a dictionary

- **Insert(x, H) =** set bit h(x) to 1
 - Collisions are possible
- **Member(y, H) =** check if bit h(y) is 1
 - False positives are possible
- **Delete(y, H) =** not supported!
 - Extensions possible, see later
Example (cont’d)

• Map-Reduce task 1
 – Map task: compute a hash map H of **User** names, where age in [18..25]. Several Map tasks in parallel.
 – Reduce task: combine all hash maps using OR. One single reducer suffices.

• Map-Reduce task 2
 – Map tasks 1: map each **User** to the appropriate region
 – Map tasks 2: map only **Pages** where user in H to appropriate region
 – Reduce task: do the join

Why don’t we lose any Pages?
Analysis

• Let $S = \{x_1, x_2, \ldots, x_n\}$

• Let $j = a$ specific bit in H ($1 \leq j \leq m$)

• What is the probability that j remains 0 after inserting all n elements from S into H?

• Will compute in two steps
Analysis

• Recall $|H| = m$
• Let’s insert only x_i into H

• What is the probability that bit j is 0?
Analysis

- Recall \(|H| = m\)
- Let’s insert only \(x_i\) into \(H\)

- What is the probability that bit \(j\) is 0?

- Answer: \(p = 1 - 1/m\)
Analysis

• Recall $|H| = m$, $S = \{x_1, x_2, \ldots, x_n\}$
• Let’s insert all elements from S in H

• What is the probability that bit j remains 0?
Analysis

• Recall $|H| = m$, $S = \{x_1, x_2, \ldots, x_n\}$
• Let’s insert all elements from S in H

• What is the probability that bit j remains 0?

• Answer: $p = (1 - \frac{1}{m})^n$
Probability of False Positives

• Take a random element y, and check $\text{member}(y,H)$
• What is the probability that it returns $true$?
Probability of False Positives

• Take a random element y, and check `member(y,H)`
• What is the probability that it returns `true`?

• Answer: it is the probability that bit h(y) is 1, which is $f = 1 - (1 - 1/m)^n \approx 1 - e^{-n/m}$
Analysis: Example

- Example: $m = 8n$, then
 $$f \approx 1 - e^{-n/m} = 1 - e^{-1/8} \approx 0.11$$

- A 10% false positive rate is rather high…
- Bloom filters improve that (coming next)
Bloom Filters

• Introduced by Burton Bloom in 1970

• Improve the false positive ratio

• Idea: use k independent hash functions
Bloom Filter = Dictionary

• Insert(x, H) = set bits $h_1(x), \ldots, h_k(x)$ to 1
 – Collisions between x and x' are possible

• Member(y, H) = check if bits $h_1(y), \ldots, h_k(y)$ are 1
 – False positives are possible

• Delete(z, H) = not supported!
 – Extensions possible, see later
Example Bloom Filter $k=3$

$y_1 = \text{is not in } H \text{ (why ?)}$; $y_2 = \text{may be in } H \text{ (why ?)}$
Choosing k

Two competing forces:

- If $k = $ large
 - Test more bits for $\text{member}(y,H) \Rightarrow$ lower false positive rate
 - More bits in H are 1 \Rightarrow higher false positive rate

- If $k = $ small
 - More bits in H are 0 \Rightarrow lower positive rate
 - Test fewer bits for $\text{member}(y,H) \Rightarrow$ higher rate
Analysis

- Recall $|H| = m$, #hash functions = k
- Let’s insert only x_i into H

- What is the probability that bit j is 0?
Analysis

• Recall $|H| = m$, #hash functions = k
• Let’s insert only x_i into H

• What is the probability that bit j is 0 ?

• Answer: $p = (1 - 1/m)^k$
Analysis

• Recall $|H| = m$, $S = \{x_1, x_2, \ldots, x_n\}$
• Let’s insert all elements from S in H

• What is the probability that bit j remains 0?
Analysis

• Recall $|H| = m$, $S = \{x_1, x_2, \ldots, x_n\}$
• Let’s insert all elements from S in H

• What is the probability that bit j remains 0?

• Answer: $p = (1 - 1/m)^{kn} \approx e^{-kn/m}$
Probability of False Positives

• Take a random element \(y \), and check \(\text{member}(y,H) \)

• What is the probability that it returns \(\text{true} \)?
Probability of False Positives

• Take a random element \(y \), and check \(\text{member}(y,H) \)

• What is the probability that it returns \textit{true}?

• Answer: it is the probability that all \(k \) bits \(h_1(y), \ldots, h_k(y) \) are 1, which is:

\[
f = (1-p)^k \approx (1 - e^{-kn/m})^k
\]
Optimizing k

- For fixed m, n, choose k to minimize the false positive rate f
- Denote $g = \ln(f) = k \ln(1 - e^{-kn/m})$
- Goal: find k to minimize g

\[
\frac{\partial g}{\partial k} = \ln \left(1 - e^{-\frac{kn}{m}}\right) + \frac{kn}{m} \frac{e^{-\frac{kn}{m}}}{1 - e^{-\frac{kn}{m}}}
\]

\[k = \ln 2 \times \frac{m}{n}\]
Bloom Filter Summary

Given \(n = |S|, \ m = |H|, \)
choose \(k = \ln 2 \times \frac{m}{n} \) hash functions

Probability that some bit \(j \) is 1
\[
p \approx e^{-kn/m} = \frac{1}{2}
\]

Expected distribution
\[
\text{m/2 bits 1, m/2 bits 0}
\]

Probability of false positive
\[
f = (1-p)^k \approx \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^{\frac{(\ln 2)m}{n}} \approx (0.6185)^{m/n}
\]
Bloom Filter Summary

- In practice one sets $m = cn$, for some constant c
 - Thus, we use c bits for each element in S
 - Then $f \approx (0.6185)^c = \text{constant}$

- Example: $m = 8n$, then
 - $k = 8(\ln 2) = 5.545$ (use 6 hash functions)
 - $f \approx (0.6185)^{m/n} = (0.6185)^8 \approx 0.02$ (2% false positives)
 - Compare to a hash table: $f \approx 1 - e^{-n/m} = 1 - e^{-1/8} \approx 0.11$

The reward for increasing m is much higher for Bloom filters
Set Operations

Intersection and Union of Sets:

• Set S \rightarrow Bloom filter H
• Set S’ \rightarrow Bloom filter H’

• How do we computed the Bloom filter for the intersection of S and S’?
Set Operations

Intersection and Union:
- Set S \rightarrow Bloom filter H
- Set S’ \rightarrow Bloom filter H’

- How do we computed the Bloom filter for the intersection of S and S’?
- Answer: bit-wise AND: $H \land H'$
Counting Bloom Filter

Goal: support delete(z, H)
Keep a counter for each bit j
• Insertion → increment counter
• Deletion → decrement counter
• Overflow → keep bit 1 forever
Using 4 bits per counter:
 Probability of overflow ≤ 1.37 \times 10^{-15} \times m
Application: Dictionaries

Bloom originally introduced this for hyphenation

- 90% of English words can be hyphenated using simple rules
- 10% require table lookup
- Use “bloom filter” to check if lookup needed
Application: Distributed Caching

• Web proxies maintain a cache of (URL, page) pairs
• If a URL is not present in the cache, they would like to check the cache of other proxies in the network
• Transferring all URLs is expensive!
• Instead: compute Bloom filter, exchange periodically