Outline

- Relational Algebra: Ch. 4.2
- Overview of query evaluation: Ch. 12
- Evaluating relational operators: Ch. 14
The WHAT and the HOW

• In SQL we write WHAT we want to get form the data

• The database system needs to figure out HOW to get the data we want

• The passage from WHAT to HOW goes through the Relational Algebra
SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = 'Seattle'
Relational Algebra = HOW

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Temporary tables
T1, T2, ...

Product(pid, name, price, pid, cid, store)

Purchase(pid, cid, store)

Customer(cid, name, city)

price > 100 and city = 'Seattle'
cid = cid

Final answer

T4(name, name)

T3(. . .)

T2(. . .)
Relational Algebra = HOW

The order is now clearly specified:

Iterate over PRODUCT…
…join with PURCHASE…
…join with CUSTOMER…
…select tuples with Price>100 and City='Seattle'…
…eliminate duplicates…
…and that’s the final answer!
Sets v.s. Bags

- Sets: \{a, b, c\}, \{a, d, e, f\}, \{\}\, . . .
- Bags: \{a, a, b, c\}, \{b, b, b, b, b\}, . . .

Relational Algebra has two semantics:
- Set semantics
- Bag semantics
Extended Algebra Operators

- Union \(\cup \), intersection \(\cap \), difference \(- \)
- Selection \(\sigma \)
- Projection \(\Pi \)
- Join \(\Join \)
- Rename \(\rho \)
- Duplicate elimination \(\delta \)
- Grouping and aggregation \(\gamma \)
- Sorting \(\tau \)
Relational Algebra (1/3)

The Basic Five operators:

- Union: ▲
- Difference: -
- Selection: σ
- Projection: Π
- Join: ⋆
Relational Algebra (2/3)

Derived or auxiliary operators:

- Renaming: ρ
- Intersection, complement
- Variations of joins
 - natural, equi-join, theta join, semi-join, cartesian product
Relational Algebra (3/3)

Extensions for bags:

- Duplicate elimination: δ
- Group by: γ
- Sorting: τ
Union and Difference

$R1 \cup R2$
$R1 - R2$

What do they mean over bags?
What about Intersection?

- Derived operator using minus

\[R_1 \setminus R_2 = R_1 - (R_1 - R_2) \]

- Derived using join (will explain later)

\[R_1 \setminus R_2 = R_1 \bowtie \overline{R}_2 \]
Selection

• Returns all tuples which satisfy a condition

\[\sigma c(R) \]

• Examples
 - \(\sigma \text{Salary} > 40000 \) (Employee)
 - \(\sigma \text{name} = "\text{Smith}" \) (Employee)

• The condition \(c \) can be \(=, <, \geq, >, \leq, <> \)
Employee

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>200000</td>
</tr>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>500000</td>
</tr>
</tbody>
</table>

\[
\sigma_{\text{Salary} > 40000} (\text{Employee})
\]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5423341</td>
<td>Smith</td>
<td>600000</td>
</tr>
<tr>
<td>4352342</td>
<td>Fred</td>
<td>500000</td>
</tr>
</tbody>
</table>
Projection

- Eliminates columns

\[\Pi A_1, \ldots, A_n (R) \]

- Example: project social-security number and names:
 - \(\Pi \text{SSN, Name (Employee)} \)
 - Answer(SSN, Name)

Semantics differs over set or over bags

Dan Suciu -- CSEP544 Fall 2010
<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234545</td>
<td>John</td>
<td>20000</td>
</tr>
<tr>
<td>5423341</td>
<td>John</td>
<td>60000</td>
</tr>
<tr>
<td>4352342</td>
<td>John</td>
<td>20000</td>
</tr>
</tbody>
</table>

Which is more efficient to implement?
Cartesian Product

- Each tuple in R1 with each tuple in R2

\[
\begin{array}{c}
R1 \\
\times \\
R2
\end{array}
\]

- Very rare in practice; mainly used to express joins
Employee

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
</tr>
</tbody>
</table>

Dependent

<table>
<thead>
<tr>
<th>EmpSSN</th>
<th>DepName</th>
</tr>
</thead>
<tbody>
<tr>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>7777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>

Employee X Dependent

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>EmpSSN</th>
<th>DepName</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>9999999999</td>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>John</td>
<td>9999999999</td>
<td>7777777777</td>
<td>Joe</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
<td>9999999999</td>
<td>Emily</td>
</tr>
<tr>
<td>Tony</td>
<td>7777777777</td>
<td>7777777777</td>
<td>Joe</td>
</tr>
</tbody>
</table>
Renaming

• Changes the schema, not the instance

\[\rho \ B_1, \ldots, B_n \ (R) \]

• Example:
 - \[\rho \ N, \ S(\text{Employee}) \quad \rightarrow \quad \text{Answer}(N, S) \]
Natural Join

\[
R_1 \Join \Box R_2
\]

- **Meaning:** \(R_1 \Join R_2 = \Pi A(\sigma(R_1 \times R_2)) \)

- **Where:**
 - The selection \(\sigma \) checks equality of all common attributes
 - The projection eliminates the duplicate common attributes
Natural Join

\[R \bowtie S = \Pi ABC(\sigma R.B=S.B(R \times S)) \]

\[
\begin{array}{|c|c|}
\hline
A & B \\
\hline
X & Y \\
X & Z \\
Y & Z \\
Z & V \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
B & C \\
\hline
Z & U \\
V & W \\
Z & V \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
A & B & C \\
\hline
X & Z & U \\
X & Z & V \\
Y & Z & U \\
Y & Z & V \\
Z & V & W \\
\hline
\end{array}
\]
Natural Join

• Given the schemas $R(A, B, C, D)$, $S(A, C, E)$, what is the schema of $R \bowtie S$?

• Given $R(A, B, C)$, $S(D, E)$, what is $R \bowtie S$?

• Given $R(A, B)$, $S(A, B)$, what is $R \bowtie S$?
Theta Join

- A join that involves a predicate

\[R_1 \bowtie_{\theta} R_2 = \sigma_{\theta} (R_1 \bowtie_{=} R_2) \]

- Here \(\theta \) can be any condition
Eq-join

- A theta join where \(\theta \) is an equality

\[
R_1 \bowtie A=B R_2 = \sigma A=B (R_1 \bowtie R_2)
\]

- This is by far the most used variant of join in practice
So Which Join Is It?

- When we write $R \bowtie S$ we usually mean an eq-join, but we often omit the equality predicate when it is clear from the context.
Semijoin

\[R \Join_C S = \Pi_{A_1, \ldots, A_n} (R \bowtie_C S) \]

- Where \(A_1, \ldots, A_n \) are the attributes in \(R \)

Formally, \(R \Join_C S \) means this: retain from \(R \) only those tuples that have some matching tuple in \(S \)

- Duplicates in \(R \) are preserved
- Duplicates in \(S \) don’t matter
Semijoins in Distributed Databases

Employee

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Dependent

<table>
<thead>
<tr>
<th>EmpSSN</th>
<th>DepName</th>
<th>Age</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Network

Task: compute the query with minimum amount of data transfer

Assumptions: Very few Employees have dependents.
Very few dependents have age > 71.
“Stuff” is big.

Employee ⋈ SSN=EmpSSN (σ age>71 (Dependent))
Semijoins in Distributed Databases

Employee ⨝ SSN=EmpSSN (σ age>71 (Dependents))

T(SSN) = Π SSN σ age>71 (Dependants)
Semijoins in Distributed Databases

Employee

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>......</td>
</tr>
</tbody>
</table>

Dependent

<table>
<thead>
<tr>
<th>EmpSSN</th>
<th>DepName</th>
<th>Age</th>
<th>Stuff</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>......</td>
</tr>
</tbody>
</table>

\[R = \text{Employee} \Join_{\text{SSN}=\text{EmpSSN}} T \]
\[T(\text{SSN}) = \Pi \text{SSN} \sigma \text{age}>71 \text{ (Dependent)} \]

\[\text{R} = \text{Employee} \Join_{\text{SSN}=\text{EmpSSN}} T \]
\[= \text{Employee} \Join_{\text{SSN}=\text{EmpSSN}} (\sigma \text{age}>71 \text{ (Dependent)}) \]
Semijoins in Distributed Databases

Employee network

Dependent

Employee $\bowtie SSN=\text{EmpSSN} \ (\sigma \text{age}>71 \ (\text{Dependents}))$

T(SSN) = \Pi SSN \ (\sigma \text{age}>71 \ (\text{Dependents}))

R = Employee $\bowtie SSN=\text{EmpSSN} \ T$

Answer = R $\bowtie SSN=\text{EmpSSN} \ \text{Dependents}$
Joins R US

- The join operation in all its variants (eq-join, natural join, semi-join, outer-join) is at the heart of relational database systems

- WHY?
Operators on Bags

- Duplicate elimination δ
 $\delta(R) = \text{select distinct * from } R$

- Grouping γ
 $\gamma A, \text{sum}(B) (R) = \text{select } A, \text{sum}(B) \text{ from } R \text{ group by } A$

- Sorting τ
Complex RA Expressions

\[\gamma \text{name=fred} \sigma \text{name=gizmo} \Pi \text{pid} \Pi \text{ssn} \gamma \text{u.name, count(*)} \]

Person x Purchase y Person z Product u

σ\text{name=fred} σ\text{name=gizmo} \Pi \text{pid} \Pi \text{ssn} \gamma \text{u.name, count(*)}
RA = Dataflow Program

- Several operations, plus strictly specified order

- In RDBMS the dataflow graph is always a tree

- Novel applications (s.a. PIG), dataflow graph may be a DAG
Limitations of RA

• Cannot compute “transitive closure”

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Mary</td>
<td>Father</td>
</tr>
<tr>
<td>Mary</td>
<td>Joe</td>
<td>Cousin</td>
</tr>
<tr>
<td>Mary</td>
<td>Bill</td>
<td>Spouse</td>
</tr>
<tr>
<td>Nancy</td>
<td>Lou</td>
<td>Sister</td>
</tr>
</tbody>
</table>

• Find all direct and indirect relatives of Fred
• Cannot express in RA !!! Need to write Java program
• Remember *the Bacon number* ? Needs TC too !
Steps of the Query Processor

1. Parse & Rewrite Query
2. Select Logical Plan
3. Select Physical Plan
4. Query Execution
5. Disk

Query optimization

SQL query

Logical plan

Physical plan
Example Database Schema

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

View: Suppliers in Seattle

```
CREATE VIEW NearbySupp AS
SELECT sno, sname
FROM Supplier
WHERE scity='Seattle' AND sstate='WA'
```
Example Query

Find the names of all suppliers in Seattle who supply part number 2

SELECT sname FROM NearbySupp
WHERE sno IN (SELECT sno
 FROM Supplies
 WHERE pno = 2)
Steps in Query Evaluation

• **Step 0: Admission control**
 - User connects to the db with username, password
 - User sends query in text format

• **Step 1: Query parsing**
 - Parses query into an internal format
 - Performs various checks using catalog
 • Correctness, authorization, integrity constraints

• **Step 2: Query rewrite**
 - View rewriting, flattening, etc.
Rewritten Version of Our Query

Original query:

```
SELECT sname
FROM NearbySupp
WHERE sno IN ( SELECT sno
FROM Supplies
WHERE pno = 2 )
```

Rewritten query:

```
SELECT S.sname
FROM Supplier S, Supplies U
WHERE S.scity='Seattle' AND S.sstate='WA'
AND S.sno = U.sno
AND U.pno = 2;
```
Continue with Query Evaluation

- **Step 3: Query optimization**
 - Find an efficient query plan for executing the query

- **A query plan is**
 - **Logical query plan**: an extended relational algebra tree
 - **Physical query plan**: with additional annotations at each node
 - Access method to use for each relation
 - Implementation to use for each relational operator
Extended Algebra Operators

- Union \cup, intersection \cap, difference $-$
- Selection σ
- Projection π
- Join \Join
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ
- Rename ρ
Logical Query Plan

\[\Pi_{\text{name}} \]
\[\sigma \text{sscity='Seattle' } \land \text{sstate='WA' } \land \text{pno}=2 \]
\[\text{sno } = \text{sno} \]

 Suppliers

 Supplies
Query Block

- Most optimizers operate on individual query blocks
- A query block is an SQL query with no nesting
 - Exactly one
 - SELECT clause
 - FROM clause
 - At most one
 - WHERE clause
 - GROUP BY clause
 - HAVING clause
Typical Plan for Block (1/2)

\[\text{SELECT-PROJECT-JOIN Query} \]

\[\sigma \text{ selection condition} \]

\[\pi \text{ fields} \]

\[\text{JOIN condition} \]

\[R \quad S \]

Dan Suciu -- CSEP544 Fall 2010
Typical Plan For Block (2/2)

σ having-ondition

γ fields, sum/count/min/max(fields)

σ selection condition

join condition

... ...
How about Subqueries?

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100
How about Subqueries?

```
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate LIKE 'WA'
and not exists
    SELECT *
    FROM Supply P
    WHERE P.sno = Q.sno
    and P.price > 100
```
How about Subqueries?

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
 and not exists
 SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100

De-Correlation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
 and Q.sno not in
 SELECT P.sno
 FROM Supply P
 WHERE P.price > 100
How about Subqueries?

\[
\begin{align*}
&\text{(SELECT Q.sno} \\
&\text{FROM Supplier Q} \\
&\text{WHERE Q.sstate = 'WA')} \\
&\text{EXCEPT} \\
&\text{(SELECT P.sno} \\
&\text{FROM Supply P} \\
&\text{WHERE P.price > 100)}
\end{align*}
\]
How about Subqueries?

\[
\begin{align*}
\text{(SELECT } & \text{ Q.sno} \\
\text{FROM } & \text{ Supplier Q} \\
\text{WHERE } & \text{ Q.sstate = 'WA'} \text{)} \\
\text{EXCEPT} & \text{ (SELECT P.sno} \\
\text{FROM } & \text{ Supply P} \\
\text{WHERE } & \text{ P.price > 100)}
\end{align*}
\]
Physical Query Plan

• Logical query plan with extra annotations

• **Access path selection** for each relation
 - Use a file scan or use an index

• **Implementation choice** for each operator

• **Scheduling decisions** for operators
Physical Query Plan

\(\pi \text{sname} \)

\(\sigma \text{sscity='Seattle'} \land \text{sstate='WA'} \land \text{pno=2} \)

\(\text{sno} = \text{sno} \)

Suppliers (File scan)

Supplies (File scan)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)
Final Step in Query Processing

- **Step 4: Query execution**
 - How to synchronize operators?
 - How to pass data between operators?

- What techniques are possible?
 - One thread per query
 - Iterator interface
 - Pipelined execution
 - Intermediate result materialization
Iterator Interface

- Each **operator implements this interface**
- Interface has only three methods
 - **open()**
 - Initializes operator state
 - Sets parameters such as selection condition
 - **get_next()**
 - Operator invokes get_next() recursively on its inputs
 - Performs processing and produces an output tuple
 - **close()**: cleans-up state
Pipelined Execution

\[\pi \text{sname} \]

\[\sigma \text{sscity='Seattle' } \land \text{sstate='WA' } \land \text{pno=2} \]

\[\text{sno = sno} \]

Suppliers (File scan)

Supplies (File scan)
Pipelined Execution

- Applies parent operator to tuples directly as they are produced by child operators
- **Benefits**
 - No operator synchronization issues
 - Saves cost of writing intermediate data to disk
 - Saves cost of reading intermediate data from disk
 - Good resource utilizations on single processor
- This approach is used whenever possible
Intermediate Tuple Materialization

\(\pi \) sname

\(\sigma \text{ sscity='Seattle' sstate='WA'} \)

\(\sigma \text{ pno=2} \)

Suppliers (File scan)

Supplies (File scan)

(On the fly)

(Sort-merge join)

(Scan: write to T1)

(Scan: write to T2)

Supplier(sno, sname, scity, sstate)
Part(pno, pname, psize, pcolor)
Supply(sno, pno, price)
Intermediate Tuple Materialization

- Writes the results of an operator to an intermediate table on disk

- No direct benefit but
- Necessary data is larger than main memory
- Necessary when operator needs to examine the same tuples multiple times
Physical Operators

Each of the logical operators may have one or more implementations = physical operators

Will discuss several basic physical operators, with a focus on join
Question in Class

Logical operator:

\[
\text{Supply}(sno,pno,price) \quad pno=pno \\
\text{Part}(pno,pname,psize,pcolor)
\]

Propose three physical operators for the join, assuming the tables are in main memory:

1.
2.
3.
Logical operator:

$$\text{Supply}(\text{sno}, \text{pno}, \text{price}) \quad \text{pno} = \text{pno}$$

$$\text{Part}(\text{pno}, \text{pname}, \text{psize}, \text{pcolor})$$

Propose three physical operators for the join, assuming the tables are in main memory:

1. Nested Loop Join
2. Merge join
3. Hash join
1. Nested Loop Join

for S in Supply do {
 for P in Part do {
 if (S.pno == P.pno) output(S,P);
 }
}

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Supply = outer relation
Part = inner relation
Note: sometimes terminology is switched

Would it be more efficient to choose Part=inner, Supply=outer?
What if we had an index on Part.pno?
It’s more complicated…

- Each **operator** implements this interface
 - `open()`
 - `get_next()`
 - `close()`
Main Memory Nested Loop Join Revisited

open () {
 Supply.open();
 Part.open();
 S = Supply.get_next();
}

close () {
 Supply.close ();
 Part.close ();
}

get_next() {
 repeat {
 P= Part.get_next();
 if (P== NULL)
 { Part.close();
 S= Supply.get_next();
 if (S== NULL) return NULL;
 Part.open();
 P= Part.get_next();
 }
 until (S.pno == P.pno);
 return (S, P)
}
BRIEF Review of Hash Tables

A (naïve) hash function:

\[h(x) = x \mod 10 \]

Operations:

- \(\text{find}(103) = ?? \)
- \(\text{insert}(488) = ?? \)

Separate chaining:
BRIEF Review of Hash Tables

• insert(k, v) = inserts a key k with value v

• Many values for one key
 - Hence, duplicate k’s are OK

• find(k) = returns the list of all values v associated to the key k
2. Hash Join (main memory)

for S in Supply do insert(S.pno, S);

for P in Part do {
 LS = find(P.pno);
 for S in LS do { output(S, P); }
}

Recall: need to rewrite as open, get_next, close
3. Merge Join (main memory)

Part1 = sort(Part, pno);
Supply1 = sort(Supply,pno);
P=Part1.get_next(); S=Supply1.get_next();

While (P!=NULL and S!=NULL) {
 case:
 P.pno > S.pno: P = Part1.get_next();
 P.pno < S.pno: S = Supply1.get_next();
 P.pno == S.pno { output(P,S);
 S = Supply1.get_next();
 }
}

Why
Main Memory Group By

Grouping:
Product(name, department, quantity)
\(\gamma \)department, sum(quantity) (Product) \(\Rightarrow \)
Answer(department, sum)

Main memory hash table
Question: How ?
Duplicate Elimination IS
Group By

Duplicate elimination $\delta(R)$ is *the same* as group by $\gamma(R)$ WHY ???

- Hash table in main memory

- Cost: $B(R)$
- Assumption: $B(\delta(R)) \leq M$
Selections, Projections

- Selection = easy, check condition on each tuple at a time

- Projection = easy (assuming no duplicate elimination), remove extraneous attributes from each tuple
Each operator implements this interface

- **open()**
 - Initializes operator state
 - Sets parameters such as selection condition

- **get_next()**
 - Operator invokes get_next() recursively on its inputs
 - Performs processing and produces an output tuple

- **close()**
 - Cleans-up state
Three algorithms for main memory join:
- Nested loop join
- Hash join
- Merge join

If $|R| = m$ and $|S| = n$, what is the asymptotic complexity for computing $R \bowtie S$?
External Memory Algorithms

- Data is too large to fit in main memory

- Issue: disk access is 3-4 orders of magnitude slower than memory access

- Assumption: runtime dominated by # of disk I/O’s; will ignore the main memory part of the runtime
Cost Parameters

The cost of an operation = total number of I/Os
Cost parameters:

- $B(R)$ = number of blocks for relation R
- $T(R)$ = number of tuples in relation R
- $V(R, a)$ = number of distinct values of attribute a
- M = size of main memory buffer pool, in blocks

Facts: (1) $B(R) << T(R)$:
(2) When a is a key, $V(R,a) = T(R)$
 When a is not a key, $V(R,a) << T(R)$
Ad-hoc Convention

- We assume that the operator *reads* the data from disk
- We assume that the operator *does not write* the data back to disk (e.g.: pipelining)
- Thus:

\[
\text{Any main memory join algorithms for } R \Join S: \text{Cost} = B(R) + B(S)
\]

\[
\text{Any main memory grouping } \gamma(R): \text{Cost} = B(R)
\]
Sequential Scan of a Table R

- **When R is clustered**
 - Blocks consists only of records from this table
 - $B(R) \ll T(R)$
 - Cost = $B(R)$

- **When R is unclustered**
 - Its records are placed on blocks with other tables
 - $B(R) \gg T(R)$
 - Cost = $T(R)$
Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$

```
for each tuple $r$ in $R$ do
  for each tuple $s$ in $S$ do
    if $r$ and $s$ join then output $(r,s)$
```

- Cost: $T(R) \cdot B(S)$ when S is clustered
- Cost: $T(R) \cdot T(S)$ when S is unclustered
Examples

M = 4; R, S are clustered

• Example 1:
 - B(R) = 1000, T(R) = 10000
 - B(S) = 2, T(S) = 20
 - Cost = ?

• Example 2:
 - B(R) = 1000, T(R) = 10000
 - B(S) = 4, T(S) = 40
 - Cost = ?

Can you do better?
Block-Based Nested-loop Join

for each (M-2) blocks \(bs \) of \(S \) do
 for each block \(br \) of \(R \) do
 for each tuple \(s \) in \(bs \)
 for each tuple \(r \) in \(br \) do
 if “\(r \) and \(s \) join” then output\((r,s)\)

Terminology alert: book calls \(S \) the\textit{ inner} relation

Dan Suciu -- CSEP544 Fall 2010
Block Nested-loop Join

Input buffer for R

Hash table for block of S (M-2 pages)

Output buffer

Join Result

R & S

...
Examples

M = 4; R, S are clustered

• Example 1:
 - B(R) = 1000, T(R) = 10000
 - B(S) = 2, T(S) = 20
 - Cost = B(S) + B(R) = 1002

• Example 2:
 - B(R) = 1000, T(R) = 10000
 - B(S) = 4, T(S) = 40
 - Cost = B(S) + 2B(R) = 2004

Note: T(R) and T(S) are irrelevant here.
Cost of Block Nested-loop Join

- Read S once: cost $B(S)$
- Outer loop runs $B(S)/(M-2)$ times, and each time need to read R: costs $B(S)B(R)/(M-2)$

Cost = $B(S) + B(S)B(R)/(M-2)$
Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

\[
\text{SELET } * \\
\text{FROM Movie} \\
\text{WHERE id = '12345'}
\]

\[
\text{SELET } * \\
\text{FROM Movie} \\
\text{WHERE year = '1995'}
\]

B(Movie) = 10k
T(Movie) = 1M

What is your estimate of the I/O cost?
Index Based Selection

Selection on equality: $\sigma a = v(R)$

- Clustered index on a: cost $B(R)/V(R,a)$
- Unclustered index: cost $T(R)/V(R,a)$
Index Based Selection

- Example:
 - Table scan (assuming R is clustered):
 - $B(R) = 10k$ I/Os
 - Index based selection:
 - If index is clustered: $B(R)/V(R,a) = 100$ I/Os
 - If index is unclustered: $T(R)/V(R,a) = 10000$ I/Os

- Rule of thumb:
 - Don’t build unclustered indexes when $V(R,a)$ is small!
Index Based Join

• $R \bowtie S$
• Assume S has an index on the join attribute

\[
\text{for each tuple } r \text{ in } R \text{ do }
\text{lookup the tuple(s) } s \text{ in } S \text{ using the index output } (r,s)
\]
Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: $B(R) + T(R)B(S)/V(S,a)$
- If unclustered: $B(R) + T(R)T(S)/V(S,a)$
Operations on Very Large Tables

• Compute $R \bowtie S$ when each is larger than main memory

• Two methods:
 - Partitioned hash join (many variants)
 - Merge-join

• Similar for grouping
Partitioned Hash-based Algorithms

Idea:

- If $B(R) > M$, then partition it into smaller files: $R_1, R_2, R_3, \ldots, R_k$

- Assuming $B(R_1) = B(R_2) = \ldots = B(R_k)$, we have $B(R_i) = B(R)/k$

- Goal: each R_i should fit in main memory: $B(R_i) \leq M$

How big can k be?
Partitioned Hash Algorithms

- Idea: partition a relation R into $M-1$ buckets, on disk
- Each bucket has size approx. $B(R)/(M-1) \approx B(R)/M$

Assumption: $B(R)/M \leq M$, i.e. $B(R) \leq M^2$
Grouping

- $\gamma(R) =$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)

- Cost: $3B(R)$
- Assumption: $B(R) \leq M2$
Partitioned Hash Join

\[R \Join S \]

- **Step 1:**
 - Hash S into M buckets
 - send all buckets to disk

- **Step 2**
 - Hash R into M buckets
 - Send all buckets to disk

- **Step 3**
 - Join every pair of buckets
Hash-Join

- Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.

 Read in a partition of R, hash it using $h2 (<> h!)$. Scan matching partition of S, search for matches.
Partitioned Hash Join

- Cost: $3B(R) + 3B(S)$
- Assumption: $\min(B(R), B(S)) \leq M2$
External Sorting

• Problem:
• Sort a file of size B with memory M
• Where we need this:
 - ORDER BY in SQL queries
 - Several physical operators
 - Bulk loading of B+-tree indexes.
• Will discuss only 2-pass sorting, when B < M^2
External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort
External Merge-Sort: Step 2

- Merge $M - 1$ runs into a new run
- Result: runs of length $M (M - 1)^\geq M^2$

If $B \leq M^2$ then we are done
Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M2
Grouping

Grouping: γa, sum(b) (R)

- Idea: do a two step merge sort, but change one of the steps

- Question in class: which step needs to be changed and how?

Cost = 3B(R)
Assumption: $B(\delta(R)) \leq M2$
Merge-Join

Join $R \Join S$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join
Merge-Join

\[M1 = \frac{B(R)}{M} \text{ runs for } R \]
\[M2 = \frac{B(S)}{M} \text{ runs for } S \]

Merge-join \(M1 + M2 \) runs;

need \(M1 + M2 \leq M \)
Two-Pass Algorithms Based on Sorting

Join $R \bowtie S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: $3B(R)+3B(S)$
- Assumption: $B(R) + B(S) \leq M2$
Summary of External Join Algorithms

- Block Nested Loop: \(B(S) + B(R) \times B(S)/M \)

- Index Join: \(B(R) + T(R)B(S)/V(S,a) \)

- Partitioned Hash: \(3B(R) + 3B(S); \)
 - \(\text{min}(B(R),B(S)) \leq M^2 \)

- Merge Join: \(3B(R) + 3B(S) \)
 - \(B(R) + B(S) \leq M^2 \)