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DBM S Internals
Execution and Optimization

M ay 10th, 2004

Agenda

• Questions on phase 2 of the project

• Today: DBM S internals part 2 --
– Query execution

– Query optimization

• Next week: 
– Thursday, not M onday.

– M ostly Phil Bernstein on meta-data 
management.

Query Execution

Query compiler

Execution engine

Index/record m gr.

Buffer m anager

Storage m anager

storage

User/
Application

Query
update

Query execution
plan

Record, index
requests

Page 
commands

Read/write
pages

Query Execution Plans

Purchase Person

Buyer=nam e

City=‘seattle’ phone>’5430000’

buyer

(Sim ple Nested Loops)

SELECT S.sname
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’ 

s

Query Plan:
•logical tree
•implementation 
choice at every 
node
•scheduling of 
operations.

(Table scan) (Index scan)

Som e operators are from  relational
algebra, and others (e.g., scan, group)
are not.

The Leaves of the Plan: Scans

• Table scan:iterate through the records of 
the relation.

• Index scan:go to the index, from there get 
the records in the file (when would this be 
better?)

• Sorted scan:produce the relation in order. 
Implementation depends on relation size.

How do we combine Operations?
• The iterator m odel.Each operation is implemented by 3 
functions:
– Open: sets up the data structures and performs initializations
– GetNext: returns the the next tuple of the result.

– Close: ends the operations. Cleans up the data structures.

• Enables pipelining!
• Contrast with data-driven materialize m odel.

• Som etimes it’s the same (e.g., sorted scan).
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Implementing Relational 
Operations

• W e will consider how to im plement:
– Selection (     )    Selects a subset of rows from relation.

– Projection (     )   Deletes unwanted columns from 
relation.

– Join (        )  Allows us to combine two relations.

– Set-difference Tuples in reln. 1, but not inreln. 2.

– Union Tuples in reln. 1 and inreln. 2.

– Aggregation (SUM , M IN, etc.) and GROUP BY

s
p

><

Schema for Examples

• Purchase:
– Each tuple is 40 bytes long,  100 tuples per page, 1000 
pages (i.e., 100,000 tuples, 4M B for the entire relation).

• Person:
– Each tuple is 50 bytes long,  80 tuples per page, 500 
pages (i.e, 40,000 tuples, 2M B for the entire relation).

Purchase (buyer:string, seller: string, product: integer), 

Person (name:string, city:string, phone: integer)

Simple Selections

• Of the form

• W ith no index, unsorted:  M ust essentially scan the whole relation; 
cost is M  (#pages in R).

• W ith an index on selection attribute:  Use index to find qualifying 
data entries, then retrieve corresponding data records.  (Hash index 
useful only for equality selections.) 

• Result size estim ation:

(Size of R)  * reduction factor.

M ore on this later.

SELECT *
FROM Person R
WHERE R.phone < ‘543%’

s R attr valueop R. ( )

Using an Index for Selections
• Cost depends on #qualifying tuples, and clustering.

– Cost of finding qualifying data entries (typically sm all) plus cost 
of retrieving records. 

– In exam ple, assum ing uniform  distribution of phones, about 54%  
of tuples qualify (500 pages, 50000 tuples).  W ith a clustered 
index, cost is little m ore than 500 I/Os; ifunclustered, up to 50000 
I/Os!

• Important refinement forunclustered indexes:  
1. Find sort the rid’s of the qualifying data entries. 
2. Fetch rids in order.  This ensures that each data page is looked at 
just once (though # of such pages likely to be higher than with 
clustering). 

Two Approaches to General 
Selections

• First approach:Find the most selective access path, 
retrieve tuples using it, and apply any remaining 
terms that don’t matchthe index:
– M ost selective access path: An index or file scan that 
we estimate will require the fewest page I/Os.

– Consider city=“seattle AND phone<“543% ” :

• A hash index on city can be used; then, 
phone<“543% ” must be checked for each retrieved 
tuple.

• Similarly, a b-tree index on phonecould be used; 
city=“seattle” must then be checked.

Intersection of Rids
• Second approach

– Get sets of rids of data records using each matching 
index.

– Then intersectthese sets of rids.

– Retrieve the records and apply any remaining terms.
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Implementing Projection

• Two parts:

(1) remove unwanted attributes, 

(2) remove duplicates from the result. 

• Refinements to duplicate removal:
– If an index on a relation contains all wanted 
attributes, then we can do an index-onlyscan.

– If the index contains a subset of the wanted 
attributes, you can remove duplicates locally.

SELECT DISTINCT
R.name,         
R.phone

FROM Person R

Equality Joins W ith One Join Column

• R       S is a common operation. The cross product is too large.Hence, 
perform ing  R    S and then a selection is too inefficient. 

• Assum e: M  pages in R,pR tuples per page, N pages in S,pS tuples per 
page.
– In our examples, R is Person and S is Purchase.

• Cost metric:  # of I/Os.  W e will ignore output costs.

SELECT *
FROM   Person R, Purchase S
WHERE R.name=S.buyer

><
·

JOIN

Discussion

• How would you implement join?

Simple Nested Loops Join

• For each tuple in the outerrelation R, we scan the entireinner
relation S. 
– Cost:  M  + (pR * M ) * N  =  1000 + 100*1000*500  I/Os:  140 hours!

• Page-oriented Nested Loops join:  For each pageof R, get each page
of S, and write out m atching pairs of tuples <r, s>, where r is in R-
page and S is in S-page.
– Cost:  M  + M *N = 1000 + 1000*500 (1.4 hours)

For each tuple r in R do
for each tuple s in S do

if ri == sj then add <r, s> to result

Index Nested Loops Join

• If there is an index on the join column of one relation (say S),can 
make it the inner. 
– Cost:  M  + ( (M *pR) * cost of finding matching S tuples) 

• For each R tuple, cost of probing S index is about 1.2 for hash 
index, 2-4 for B+ tree.  Cost of then finding S tuples depends on 
clustering.
– Clustered index:  1 I/O (typical),unclustered: up to 1 I/O per matching S 
tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj  do

add <r, s> to result

Examples of Index Nested Loops
• Hash-index on nameof Person (as inner):

– Scan Purchase:  1000 page I/Os, 100*1000 tuples.

– For each Person tuple:  1.2 I/Os to get data entry in index, plus 1 
I/O to get (the exactly one) m atching Person tuple.  Total:  
220,000 I/Os. (36 m inutes)

• Hash-index on buyerof  Purchase (as inner):
– Scan Person:  500 page I/Os, 80*500 tuples.
– For each Person tuple:  1.2 I/Os to find index page with data 
entries, plus cost of retrieving matching Purchase tuples.  
Assum ing uniform distribution, 2.5 purchases per buyer (100,000 
/ 40,000).  Cost of retrieving them   is 1 or 2.5 I/Os depending on 
clustering.
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Block Nested Loops Join

• Use one page as an input buffer for scanning the 
inner S, one page as the output buffer, and use all 
remaining pages to hold ̀ b̀lock’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add      
<r, s> to result.  Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Sort-M erge Join  (R     S)
• Sort R and S on the join column, then scan them to 
do a ̀ m̀ erge’’  on the join column.
– Advance scan of R until current R-tuple >= current S 
tuple, then advance scan of S until current S-tuple >= 
current R tuple; do this until current R tuple = current S 
tuple.

– At this point, all R tuples with same value and all S 
tuples with same value match;  output <r, s> for all pairs 
of such tuples.

– Then resume scanning R and S.

><
i=j

Cost of Sort-M erge Join

• R is scanned once; each S group is scanned once 
per matching R tuple. 

• Cost:  M  log M  + N log N + (M +N)

• But really, we can do it in 3(M +N) with some 
trickery.

– The cost of scanning, M +N, could be M *N (unlikely!)

• W ith 35, 100 or 300 buffer pages, both Person and 
Purchase can be sorted in 2 passes; total: 7500. (75 
seconds).

Hash-Join
• Partition both relations using 

hash fn h:  R tuples in 
partition i will only match S 
tuples in partition i.

v Read in a partition 
of R, hash it using 
h2 (<> h!). Scan 
matching partition 
of S, search for 
matches.

Partitions
of R &  S

Input buffer
forSi

Hash table for partition
Ri (k < B-1 pages)

B m ain m em ory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B m ain m em ory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Cost of Hash-Join

• In partitioning phase, read+write both relations; 2(M +N). 
In matching phase, read both relations; M +N I/Os.

• In our running example, this is a total of 4500 I/Os. (45 
seconds!)

• Sort-M erge Join vs. Hash Join:

– Given a minimum amount of memory both have a cost 
of 3(M +N) I/Os.  Hash Join superior on this count if 
relation sizes differ greatly.  Also, Hash Join shown to 
be highly parallelizable.

– Sort-M erge less sensitive to data skew; result is sorted.

Double Pipelined Join (Tukwila)

Hash Join
8 Partially pipelined: no output 
until inner read

8 Asymmetric (inner vs. outer) —
optimization requires source 
behavior knowledge

Double Pipelined Hash Join

4 Outputs data immediately

4 Symm etric — requires less 
source knowledge to optim ize
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Query Optimization

Discussion

• How would you build a query optimizer?

Query Optimization Process
(simplified a bit)

• Parse the SQL query into a logical tree:
– identify distinct blocks (corresponding to nested sub-queries or 
views). 

• Query rewrite phase:
– apply algebraic transformationsto yield a cheaper plan.

– M erge blocks and move predicates between blocks. 

• Optim ize each block: join ordering.

• Complete the optim ization: select scheduling (pipelining 
strategy).

Building Blocks

• Algebraic transformations (many and 
wacky).

• Statistical model: estimating costs and sizes.

• Finding the best join trees:
– Bottom-up (dynamic programming): System-R

• Newerarchitectures:
– Starburst: rewrite and then tree find

– Volcano: all at once, top-down.

Key Lessons in Optimization

• There are many approaches and many 
details to consider in query optimization
– Classic search/optimization problem!

– Not completely solved yet!

• M ain points to take away are:
– Algebraic rules and their use in transformations 
of queries.

– Deciding on join ordering: System-R style 
(Selinger style) optimization.

– Estimating cost of plans and sizes of 
intermediate results.

Operations (revisited)

• Scan ([index], table, predicate):
– Either index scan or table scan.

– Try to push down sargablepredicates.

• Selection (filter)

• Projection (always need to go to the data?)

• Joins: nested loop (indexed), sort-merge, 
hash, outer join.

• Grouping and aggregation (usually the last).
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Algebraic Laws

• Com mutative and Associative Laws
– R U S = S U R,  R U (S U T) = (R U S) U T

– R ∩ S = S ∩ R,  R ∩ (S ∩ T) = (R ∩ S) ∩ T

– R     S = S     R,  R (S      T) = (R     S)     T

• Distributive Laws
– R     (S U T)  =  (R    S)  U  (R     T)

>< >< >< >< >< ><

>< >< ><

Algebraic Laws

• Laws involving selection:
– s C AND C’(R) = s C(s C’(R)) = s C(R) ∩ s C’(R)

– s C OR C’(R) = s C(R) U s C’(R)

– s C (R      S) = s C (R)      S 
•W hen C involves only attributes of R

– s C (R –S) = s C (R) –S

– s C (R U S) = s C (R) U s C (S)

– s C (R ∩ S)  = s C (R) ∩ S

>< ><

Algebraic Laws

• Example:  R(A, B, C, D), S(E, F, G)
– s F=3 (R      S) =                                     ?

– s A=5 AND G=9 (R      S) =        ?

><
D=E

><
D=E

Algebraic Laws

• Laws involving projections
– P M (R     S) = P N(P P(R)      P Q(S))

•W here N, P, Q are appropriate subsets of attributes 
of M

– P M (P N(R)) = P M ,N(R)

• Example R(A,B,C,D), S(E, F, G)
– P A,B,G(R    S) = P ? (P ?(R)       P ?(S)) 

>< ><

>< ><D=E
D=E

Query Rewrites: Sub-queries

SELECT Emp.Nam e

FROM  Em p

W HERE Emp.Age < 30

AND   Emp.Dept# IN

(SELECT Dept.Dept#

FROM  Dept

W HERE  Dept.Loc = “Seattle”

AND       Emp.Emp#=Dept.M gr)

The Un-Nested Query

SELECT Emp.Name

FROM  Emp, Dept

W HERE Emp.Age < 30

AND   Emp.Dept#=Dept.Dept#

AND   Dept.Loc = “Seattle”

AND    Emp.Emp#=Dept.M gr
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Converting Nested Queries

Selectdistinctx.name, x.maker
From product x
W herex.color= “blue”
AND x.price >= ALL (Selecty.price

From product y
W herex.maker = y.maker
AND y.color=“blue”)

Converting Nested Queries

Selectdistinctx.name, x.maker
From product x
W herex.color= “blue”
AND x.price < SOM E (Selecty.price

From product y
W herex.m aker = y.m aker
AND y.color=“blue”)

Let’s compute the complement first:

Converting Nested Queries

Select distinctx.name, x.maker
From product x, product y
W herex.color= “blue” AND x.maker = y.maker
AND y.color=“blue”  AND x.price < y.price

This one becomes a SFW  query:

This returns exactly the products we DON’T 
want, so…

Converting Nested Queries

(Selectx.name, x.maker
From product x
W herex.color = “blue”)

EXCEPT

(Selectx.name, x.maker
From product x, product y
W herex.color= “blue” AND x.maker = y.maker
AND y.color=“blue”  AND x.price < y.price)

Semi-Joins, M agic Sets

• You can’t always un-nest sub-queries (it’s tricky).

• But you can often use a sem i-join to reduce the 
computation cost of the inner query.

• A m agic set is a superset of the possible bindings in the 
result of the sub-query.

• Also called “sideways inform ation passing”.

• Great idea; reinvented every few years on a regular basis.

Rewrites: M agic Sets
Create View DepAvgSal AS

(SelectE.did, Avg(E.sal) as avgsal

From Emp E

Group ByE.did)

SelectE.eid, E.sal

From Emp E, Dept D, DepAvgSal V

W hereE.did=D.did AND D.did=V.did

And  E.age < 30 and D.budget > 100k

And  E.sal > V.avgsal
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Rewrites:SIPs
SelectE.eid, E.sal
From Emp E, Dept D, DepAvgSal V
W hereE.did=D.did AND D.did=V.did

And  E.age < 30 and D.budget > 100k
And  E.sal > V.avgsal

• DepAvgsal needs to be evaluated only for departm ents 
where V.did IN

SelectE.did
From Emp E, Dept D
W here E.did=D.did

And   E.age < 30  and D.budget > 100K

Supporting Views
1.  Create View PartialResult as

(Select E.eid, E.sal, E.did

From    Emp E, Dept D
W here  E.did=D.did
And   E.age < 30  and D.budget > 100K)

2. Create View Filter AS
Select DISTINCT P.did FROM  PartialResult P.

2. Create View Lim itedAvgSal as
(Select F.did Avg(E.Sal) as avgSal

From  Emp E, Filter F
W here E.did=F.did
Group By F.did)

And Finally…

Transformed query:

Select P.eid, P.sal

From  PartialResult P,  LimitedAvgSal V

W hereP.did=V.did

And  P.sal > V.avgsal

Rewrites: Group By and Join
• Schema:

– Product (pid, unitprice,… )

– Sales(tid, date, store, pid, units)

• Trees:

Join

groupBy(pid)
Sum(units)

Scan(Sales)
Filter(date in Q2,2000)

Products
Filter (in NW )

Join

groupBy(pid)
Sum(units)

Scan(Sales)
Filter(date in Q2,2000)

Products
Filter (in NW )

Rewrites:Operation Introduction
• Schema: (pid determines cid)

– Category (pid, cid, details)

– Sales(tid, date, store, pid, amount)

• Trees:

Join

groupBy(cid)
Sum(am ount)

Scan(Sales)
Filter(store IN 

{CA,W A})

Category
Filter (… )

Join

groupBy(cid)
Sum(am ount)

Scan(Sales)
Filter(store IN 

{CA,W A})

Category
Filter (… )

groupBy(pid)
Sum (am ount)

Schema for Some Examples

• Reserves:
– Each tuple is 40 bytes long,  100 tuples per page, 1000 
pages (4000 tuples)

• Sailors:
– Each tuple is 50 bytes long,  80 tuples per page, 500 
pages (4000 tuples). 

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
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Query Rewriting: Predicate 
Pushdown

Reserves Sailors

sid=sid

bid=100 rating > 5

snam e

Reserves Sailors

sid=sid

bid=100 

snam e

rating > 5
(Scan;
w rite to 
tem p T1)

(Scan;
w rite to
tem p T2)

The earlier we process selections, less tuples we need to m anipulate
higher up in the tree.
Disadvantages?

Query Rewrites: Predicate 
Pushdown (through grouping)

Select   bid, M ax(age)
From     Reserves R, Sailors S
W here  R.sid=S.sid  
GroupBy  bid
Having M ax(age) > 40

Select   bid, M ax(age)
From     Reserves R, Sailors S
W here  R.sid=S.sid  and

S.age > 40
GroupBy  bid

•For each boat, find the maximal age of sailors who’ve reserved it.
•Advantage: the size of the join will be sm aller.
•Requires transform ation rules specific to the grouping/aggregation
operators.

•W ill it work work if we replace M ax by M in?

Query Rewrite:
Predicate M ovearound

Create View V1 AS
Select   rating, M in(age)
From     Sailors S
W here  S.age < 20
Group By  rating

Create View V2 AS
Select   sid, rating, age, date
From     Sailors S, Reserves R
W here  R.sid=S.sid

Select   sid, date
From     V1, V2
W here   V1.rating = V2.rating  and

V1.age = V2.age

Sailing wiz dates: when did the youngest of each sailor level rent boats?

Query Rewrite: 
Predicate M ovearound

Create View V1 AS
Select   rating, M in(age)
From     Sailors S
W here  S.age < 20
Group By  rating

Create View V2 AS
Select   sid, rating, age, date
From     Sailors S, Reserves R
W here  R.sid=S.sid

Select   sid, date
From     V1, V2
W here   V1.rating = V2.rating  and

V1.age = V2.age, age < 20

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move 
predicates up the 
tree.

Query Rewrite: 
Predicate M ovearound

Create View V1 AS
Select   rating, M in(age)
From     Sailors S
W here  S.age < 20
Group By  rating

Create View V2 AS
Select   sid, rating, age, date
From     Sailors S, Reserves R
W here  R.sid=S.sid, and

S.age < 20.

Select   sid, date
From     V1, V2
W here   V1.rating = V2.rating  and

V1.age = V2.age, andage < 20

Sailing wiz dates: when did the youngest of each sailor level rent boats?

First, move 
predicates up the 
tree.

Then, move them
down.

Query Rewrite Summary

• The optim izer can use any semantically correctrule to 
transform  one query to another.

• Rules try to:
– move constraints between blocks (because each will be optimized 
separately)

– Unnest blocks

• Especially im portant in decision support applications 
where queries are very complex.

• In a few m inutes of thought, you’ll com e up with your own 
rewrite. Som e query, som ewhere, will benefit from  it.

• Theorem s?
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Cost Estimation

• For each plan considered, must estimate cost:
– M ust estimate costof each operation in plan tree.

•Depends on input cardinalities.

– M ust estimate size of result for each operation in tree!
•Use information about the input relations.
•For selections and joins, assume independence of predicates.

• W e’ll discuss the System R cost estimation 
approach.
– Very inexact, but works ok in practice.
– M ore sophisticated techniques known now.

Statistics and Catalogs
• Need information about the relations and indexes 
involved.  Catalogstypically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) andNPages for each index.

– Index height, low/high key values (Low/High) for each tree 
index.

• Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of 
approxim ation anyway, so slight inconsistency ok.

• M ore detailed information (e.g., histograms of the values 
in some field) are sometimes stored.

Size Estimation and Reduction 
Factors

• Consider a query block:

• M axim um # tuples in result is the product of the cardinalities of 
relations in the FROM  clause.

• Reduction factor (RF) associated with eachterm reflects the impact 
of the term in reducing result size.  Resultcardinality= M ax # tuples  
*  product of allRF’s.
– Implicit assumptionthat termsare independent!

– Term col=value has RF 1/NKeys(I), given index I oncol

– Term col1=col2 has RF 1/M AX(NKeys(I1),NKeys(I2))

– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Histograms

• Key to obtaining good cost and size 
estimates.

• Come in several flavors:
– Equi-depth

– Equi-width

• W hich is better?

• Compressed histograms: special treatment 
of frequent values.

Histograms

• Statistics on data maintained by the 
RDBM S

• M akes size estimation m uch m ore accurate 
(hence, cost estimations are m ore accurate)

Histograms

Employee(ssn, name, salary, phone)

• M aintain a histogram  on salary:

• T(Employee) = 25000, but now we know the distribution

500

> 100k

6500

80k..100k

120005000800200Tuples

60k..80k40k..60k20k..40k0..20kSalary:
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Histograms

Ranks(rankName, salary)

• Estimate the size of Employee          Ranks

500

> 100k

6500

80k..100k

120005000800200

60k..80k40k..60k20k..40k0..20kEmployee

2

> 100k

100

80k..100k

8040208

60k..80k40k..60k20k..40k0..20kRanks

Salary

Histograms

• Assume:
– V(Em ployee, Salary) = 200

– V(Ranks, Salary) = 250

• Then T(Employee            Ranks) =
= Si=1,6 TiTi’ / 250
= (200x8 + 800x20 + 5000x40 +

12000x80 + 6500x100 + 500x2)/250
= … .

Salary

Plans for Single-Relation Queries
(Prep for Join ordering)

• Task:create a query execution plan for a single 
Select-project-group-by block.

• K ey idea:consider each possible access path to 
the relevant tuples of the relation. Choose the 
cheapest one.

• The different operations are essentially carried out 
together (e.g., if an index is used for a selection, 
projection is done for each retrieved tuple, and the 
resulting tuples are pipelinedinto the aggregate 
computation). 

Example
• If we have an Index on rating:

– (1/NKeys(I)) *NTuples(R) = (1/10) * 40000 tuples retrieved.

– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10) * (50+500) 
pages are retrieved (= 55). 

– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10) * 
(50+40000) pages are retrieved.  

• If we have an index onsid:
– W ould have to retrieve all tuples/pages.  W ith a clusteredindex, the cost is 
50+500.

• Doing a file scan: we retrieve all file pages(500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Determining Join Ordering

• R1       R2        … .       Rn

• Join tree:

• A join tree represents a plan. An optim izer needs to inspect 
many (all ?) join trees

R3 R1 R2 R4

Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4
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Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5

Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4

Problem

• Given: a query  R1     R2      …       Rn

• Assume we have a function cost() that gives 
us the cost of every join tree

• Find the best join tree for the query

Dynamic Programming

• Idea: for each subset of {R1, … , Rn}, compute the best 
plan for that subset

• In increasing order of set cardinality:
– Step 1: for {R1}, {R2}, … , {Rn}

– Step 2: for {R1,R2}, {R1,R3}, … , {Rn-1, Rn}

– …

– Step n: for {R1, … , Rn}

• A subset of {R1, … , Rn} is also called a subquery

Dynamic Programming

• For each subquery Q �{R1, … , Rn} 
compute the following:
– Size(Q)

– A best plan for Q: Plan(Q)

– The cost of that plan: Cost(Q)

Dynamic Programming

• Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)

– Plan({Ri}) = Ri

– Cost({Ri}) = (cost of scanning Ri)
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Dynamic Programming

• Step i: For each Q �{R1, … ,Rn} of 
cardinality i do:
– Compute Size(Q)    (later… )

– For every pair of subqueries Q’, Q’’ 
s.t. Q = Q’ U Q’’
compute cost(Plan(Q’)       Plan(Q’’))

– Cost(Q) = the smallest such cost

– Plan(Q) = the corresponding plan

Dynamic Programming

• Return Plan({R1, … , Rn})

Dynamic Programming

• Summary: computes optimal plans for subqueries:
– Step 1: {R1},  {R2}, … , {Rn}

– Step 2:  {R1, R2}, {R1, R3}, … , {Rn-1, Rn}
– …
– Step n: {R1, … , Rn}

• W e used naïve size/cost estimations
• In practice:

– more realistic size/cost estimations (next)
– heuristics for Reducing the Search Space 

• Restrict to left linear trees

• Restrict to trees “without cartesian product”

– need more than just one plan for each subquery:
• “interesting orders”


