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Overview

• Transactions
– Concept

– ACID properties

– Examples and counter-examples

• Implementation techniques

• W eak isolation issues

Further Reading

• Transaction concept: Garcia-M olina et al Chapter 
8.6

• Implementation techniques: Garcia-M olina et al 
Chapters 17-19

• Big picture: “Principles of Transaction 
Processing” by P. Bernstein and E. Newcomer

• The gory details: “Transaction Processing” by J. 
Gray and A. Reuter

Definition

• A transaction is a collection of one or more 
operations on one or more databases, which 
reflects a single real-world transition
– In the real world, this happened (com pletely) or it 
didn’t happen at all (Atom icity)

• Com merce examples 
– Transfer m oney between accounts
– Purchase a group of products 

• Student record system
– Register for a class (either waitlist or allocated)

Coding a transaction

• Typically a computer-based system doing OLTP 
has a collection of application programs

• Each program is written in a high-level language, 
which calls DBM S to perform individual SQL 
statements
– Either through embedded SQL converted by 
preprocessor

– Or through Call Level Interface where application 
constructs appropriate string and passes it to DBM S

W hy write programs?

• W hy not just write a SQL statement to 
express “what you want”?

• An individual SQL statement can’t do 
enough
– It can’t update multiple tables

– It can’t perform complicated logic 
(conditionals, looping, etc)
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COM M IT

• As app program is executing, it is “in a 
transaction”

• Program can execute COM M IT
– SQL command to finish the transaction 
successfully

– The next SQL statement will automatically start 
a new transaction

W arning

• The idea of a transaction is hard to see when 
interacting directly with DBM S, instead of 
from an app program

• Using an interactive query interface to 
DBM S, by default each SQL statement is 
treated as a separate transaction (with 
implicit COM M IT at end) unless you 
explicitly say “START TRANSACTION”

A Limitation

• Some system s rule out having both DM L 
and DDL statements in a single transaction

• I.E., you can change the schema, or change 
the data, but not both

ROLLBACK

• If the app gets to a place where it can’t 
complete the transaction successfully, it can 
execute ROLLBACK

• This causes the system to “abort” the 
transaction
– The database returns to the state without any of 
the previous changes made by activity of the 
transaction

Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)

• App program finds a problem 
– Egqty on hand < qty being sold

• System-initiated abort
– System crash

– Housekeeping
•Egdue to tim eouts

Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made

– It aborts: no changes are made

• That is, transaction’s activities are allor 
nothing
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Integrity

• A real world state is reflected by collections 
of values in the tables of the DBM S

• But not every collection of values in a table 
makes sense in the real world

• The state of the tables is restricted by 
integrity constraints

• Egaccount num ber is unique

• Egstock am ount can’t be negative

Integrity (ctd)

• M any constraints are explicitly declared in the 
schema
– So the DBM S will enforce them

– Especially: prim ary key (som e colum n’s values are non 
null, and different in every row)

– And referential integrity: value of foreign key colum n 
is actually found in another “referenced” table 

• Some constraints are not declared
– They are business rules that are supposed to hold

Consistency

• Each transaction can be written on the assumption that all 
integrity constraints hold in the data, before the transaction 
runs

• It must m ake sure that its changes leave the integrity 
constraints still holding
– However, there are allowed to be intermediate states where the 
constraints do not hold

• A transaction that does this, is called consistent
• This is an obligation on the programmer

– Usually the organization has a testing/checking and sign-off 
mechanism before an application program is allowed to get 
installed in the production system

System obligations

• Provided the app programs have been 
written properly, 

• Then the DBM S is supposed to make sure 
that the state of the data in the DBM S 
reflects the real world accurately, as 
affected by all the com mitted transactions

Local to global reasoning

• Organization checks each app program as a 
separate task
– Each app program running on its own m oves from state 
where integrity constraints are valid to another state 
where they are valid

• System makes sure there are no nasty interactions

• So the final state of the data will satisfy all the 
integrity constraints 

Example -Tables

• System for managing inventory

• InStore(prodID, storeID, qty)

• Product(prodID, desc, mnfr, … , 
W arehouseQty)

• Order(orderNo, prodID, qty, rcvd, … .)
– Rows never deleted!

– Until goods received, rcvd is null

• Also Store, Staff, etc etc
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Example -Constraints

• Primary keys
– InStore: (prodID, storeID)

– Product: prodID

– Order: orderId

– etc

• Foreign keys
– Instore.prodID references Product.prodID

– etc

Example -Constraints

• Data values
– Instore.qty>= 0

– Order.rcvd<= current_dateor Order.rcvdis null

• Business rules
– for each p, (Sum of qty for product p am ong all stores 
and warehouse) >= 50

– for each p, (Sum of qty for product p am ong all stores 
and warehouse) >= 70 or there is an outstanding order 
of product p

Example -transactions

• M akeSale(store, product, qty)

• AcceptReturn(store, product, qty)

• RcvOrder(order)

• Restock(store, product, qty)
– // m ove from  warehouse to store

• ClearOut(store, product)
– // m ove all held from  store to warehouse

• Transfer(from, to, product, qty)
– // m ove goods between stores

Example -ClearOut

• Validate Input (appropriate product, store)

• SELECT qty INTO :tmp

FROM  InStore

W HERE StoreID = :store AND prodID = :product

• UPDATE Product 

SET W arehouseQty= W arehouseQty+ :tmp

W HERE prodID = :product

• UPDATE InStore

SET Qty = 0

W HERE prodID = :product

• COM M IT

Example -Restock

• Input validation
– Valid product, store, qty
– Amount of product in warehouse >= qty

• UPDATE Product
SET W arehouseQty= W arehouseQty-:qty
W HERE prodID = :product

• If no record yet for product in store
INSERT INTO InStore(:product, :store, :qty)

• Else, UPDATE InStore
SET qty = qty+ :qty
W HERE prodID = :product and storeID = :store

• COM M IT

Example -Consistency

• How to write the app to keep integrity 
holding?

• M akeSalelogic:
– Reduce Instore.qty

– Calculate sum over all stores and warehouse

– If sum < 50, then ROLLBACK // Sale fails

– If sum < 70, check for order where date is null
•If none found, insert new order for say 25
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Example -Consistency

• W e don’t need any fancy logic for the 
business rules in AcceptReturn, Restock, 
ClearOut, Transfer
– W hy?

• W hat is logic needed for RcvOrder?

Threats to data integrity

• Need for application rollback

• System crash

• Concurrent activity

• The system has mechanisms to handle these

Application rollback

• A transaction may have made changes to the data 
before discovering that these aren’t appropriate
– the data is in state where integrity constraints are false

– Application executes ROLLBACK

• System must somehow return to earlier state
– W here integrity constraints hold

• So aborted transaction has no effect at all

Example

• W hile running M akeSale, app changes 
InStoreto reduce qty, then checks new sum

• If the new sum is below 50, txnaborts

• System must change InStoreto restore 
previous value of qty
– Somewhere, system must remember what the 
previous value was!

System crash

• At time of crash, an application program may be 
part-way through (and the data may not meet 
integrity constraints)

• Also, buffering can cause problems 
– Note that system  crash loses all buffered data, restart 
has only disk state

– Effects of a comm itted txnm ay be only in buffer, not 
yet recorded in disk state

– Lack of coordination between flushes of different 
buffered pages, so even if current state satisfies 
constraints, the disk state may not

Example

• Suppose crash occurs after 
– M akeSalehas reduced InStore.qty

– found that new sum is 65 
– found there is no unfilled order
– // but before it has inserted new order

• At time of crash, integrity constraint did not hold

• Restart process must clean this up (effectively 
aborting the txnthat was in progress when the 
crash happened)
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Concurrency

• W hen operations of concurrent threads are 
interleaved, the effect on shared state can be 
unexpected

• W ell known issue in operating system s, 
thread program ming
– see OS textbooks on critical section

– Java use of synchronized keyword

Famous anomalies

• Dirty data
– One task T reads data written by T’ while T’ is running, then T’
aborts (so its data was not appropriate)

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
– The values observed may not satisfy integrity constraints
– This was not considered by the programmer, so code moves into 
absurd path

Example –Dirty data

• AcceptReturn(p1,s1,50) M akeSale(p1,s2,65)

• Update row 1: 25 -> 75

• update row 2: 70->5

• find sum: 90

• // no need to insert

• // row in Order

• Abort

• // rollback row 1 to 35

• COM M IT

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of InStore, Product

Integrity constraint is false:
Sum for p1 is only 40!

etcetcetc

60s1p2

5s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1

Example –Lost update

• ClearOut(p1,s1) AcceptReturn(p1,s1,60)

• Query InStore; qty is 25

• Add 25 to W arehouseQty: 40->65

• Update row 1: 25->85

• Update row 1, setting it to 0

• COM M IT

• COM M IT

Initial state of InStore, Product

Final state of InStore, Product

60 returned p1’s have vanished 
from  system ; total is still 135

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

0s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

Example –Inconsistent read

• ClearOut(p1,s1)          M akeSale(p1,s2,60)

• Query InStore: qty is 30

• Add 30 to W arehouseQty: 10->40

• update row 2: 65->5

• find sum: 75

• // no need to insert

• // row in Order

• Update row 1, setting it to 0

• COM M IT

• COM M IT

etcetcetc

60s1p2

65s2p1

30s1p1

Initial state of InStore, Product

Final state of InStore, Product

Integrity constraint is false:
Sum for p1 is only 45!

etcetcetc

60s1p2

5s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Serializability

• To make isolation precise, we say that an 
execution is serializablewhen

• There exists some serial (iebatch, no overlap at 
all) execution of the same transactions which has 
the same final state
– Hopefully, the real execution runs faster than the serial 
one!

• NB: different serial txnorders may behave 
differently; we ask that someserial order produces 
the given state
– Other serial orders may  give different final states
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Example –Serializableexecution

• ClearOut(p1,s1)          M akeSale(p1,s2,20)

• Query InStore: qty is 30

• update row 2: 45->25

• find sum: 65

• no order for p1 yet

• Add 30 to W arehouseQty: 10->40

• Update row 1, setting it to 0

• COM M IT

• Insert order for p1

• COM M IT

etcetcetc

60s1p2

45s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Execution is like serial
M akeSale; ClearOut

etcetcetc

60s1p2

25s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Order: em pty

etcNull 25p1

SerializabilityTheory

• There is a beautiful mathematical theory, based on 
formal languages
– Egthe task of testing whether an execution is 
serializableis NP

• There is a nice sufficient condition (iea 
conservative approximation) called conflict 
serializable, which can be efficiently tested
– based on absence of cycles in a graph 

• M ost people and books use the approximation, 
usually without mentioning it! 

ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txnm oves from a state where integrity holds, to 
another where integrity holds

• Isolated
– Effect of txnsis the sam e as txnsrunning one after 
another (ielooks like batch m ode)

• Durable
– Once a txnhas comm itted, its effects rem ain in the 
database

Big Picture

• If programmer writes applications so each txnis 
consistent

• And DBM S provides atomic, isolated, durable 
execution
– Ieactual execution has same effect as som e serial 
execution of those txnsthat comm itted (but not those 
that aborted)

• Then the final state will satisfy all the integrity 
constraints

NB true even though system does not know all integrity constraints!

Overview

• Transactions

• Implementation Techniques
– Ideas, not details!

– Implications for application programmers

– Implications for DBAs

• W eak isolation issues

M ain implementation techniques

• Logging
– Interaction with buffer management

– Use in restart procedure

• Locking

• Distributed Com mit
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Logging

• The log is an append-only collection of 
entries, showing all the changes to data that 
happened, in order as they happened

• Egwhen T1 changes field qty in row 3 from 
15 to 75, this fact is recorded as a log entry

• Log also shows when txns
start/com mit/abort

A log entry

• LSN: identifier for entry, increasing values

• Txnid

• Data item involved

• Old value

• New value
– Sometimes there are separate logs for old 
values and new values

Extra features

• Log also records changes made by system 
itself 
– Egwhen old value is restored during rollback

• Log entries are linked for easier access to 
past entries 
– Link to previous log entry

– Link to previous entry for the same txn

Buffer management

• Each page has place for LSN of most recent 
change to that page 

• W hen a page is fetched into buffer, DBM S 
remembers latest LSN at that time

• Log itself is produced in buffer, and flushed to 
disk (appending to previously flushed parts) from 
time to time

• Important rules govern when buffer flushes can 
occur, relative to LSNsinvolved
– Som etimes a flush is forced (eglog flush forced when 
txncomm its)

Using the log

• To rollback txnT
– Follow chain of T’s log entries, backwards

– For each entry,restore data to old value, and 
produce new log record showing the restoration

– Produce log record for “abort T”

Restart

• After a crash, follow the log forward, 
replaying the changes 
– i.e. re-install new value recorded in log

• Then rollback all txnsthat were active at the 
end of the log

• Now normal processing can resume
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Optimizations

• Use LSNsrecorded in each page of data, to 
avoid repeating changes already reflected in 
page

• Checkpoints: flush pages that have been in 
buffer too long
– Record in log that this has been done

– During restart, only repeat history since last (or 
second-last) checkpoint

Don’t be too confident

• Crashes can occur during rollback or restart!
– Algorithm s must be idempotent

• M ust be sure that log is stored separately from 
data (on different disk array; often replicated off-
site!)
– In case disk crash corrupts data, log allows fixing this

– Also, since log is append-only, don’t want have random  
access to data m oving disk heads away

Complexities

• Changes to index structures
– Avoid logging every time index is rearranged

• M ultithreading in log writing
– Use standard OS latching to prevent different 
tasks corrupting the log’s structure

ARIES

• Until 1992, textbooks and research papers 
described only simple logging techniques 
that did not deal with complexities

• Then C. M ohan (IBM ) published a series of 
papers describing ARIES algorithms
– Papers are very hard to read, and omit crucial 
details, but at least the ideas of real systems are 
now available!

Implications 

• For application program mer
– Choose txnboundaries to include everything 
that must be atomic

– Use ROLLBACK to get out from a mess

• For DBA
– Tune for performance: adjust checkpoint 
frequency, amount of buffer for log, etc

– Look after the log!

M ain implementation techniques

• Logging

• Locking
– Lock manager

– Lock modes

– Granularity

– User control

• Distributed Com mit
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Lock manager

• A structure in (volatile memory) in the DBM S 
which remembers which txnshave set locks on 
which data, in which modes

• It rejects a request to get a new lock if a 
conflicting lock is already held by a different txn

• NB: a lock does not actually prevent access to the 
data, it only prevents getting a conflicting lock
– So data protection only com es if the right lock is 
requested before every access to the data

Lock modes

• Locks can be for writing (W ), reading (R) 
or other m odes

• Standard conflict rules: two W  locks on the 
same data item conflict, so do one W  and 
one R lock on the same data
– However, two R locks do not conflict

• Thus W =exclusive, R=shared

Automatic lock management

• DBM S requests the appropriate lock 
whenever the app program submits a 
request to read or write a data item

• If lock is available, the access is performed

• If lock is not available, the whole txnis 
blocked until the lock is obtained
– After a conflicting lock has been released by 
the other txnthat held it

Strict two-phase locking

• Locks that a txnobtains are kept until the 
txncompletes
– Once the txncommits or aborts, then all its 
locks are released (as part of the commit or 
rollback processing)

• Two phases:
– Locks are being obtained (while txnruns)

– Locks are released (when txnfinished)

Serializability

• If each transaction does strict two-phase 
locking (requesting all appropriate locks), 
then executions are serializable

• However, performance does suffer, as txns
can be blocked for considerable periods
– Deadlocks can arise, requiring system-initiated 
aborts

Example –No Dirty data
• AcceptReturn(p1,s1,50) M akeSale(p1,s2,65)
• Update row 1: 25 -> 75 
• //t1 W -locks InStore. row 1
• update row 2: 70->5
• //t2 W -locks Instore.row2
• try  find sum:// blocked 
• //  as R-lock on Instore.row1 
• // can’t be obtained
• Abort
• // rollback row 1 to 35; release lock 
• // now get locks
• find sum: 40
• ROLLBACK 
• // row 2 restored to 70
•

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of InStore, ProductIntegrity constraint is valid

etcetcetc

60s1p2

70s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1
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Example –No Lost update
• ClearOut(p1,s1)        AcceptReturn(p1,s1,60)

• Query InStore; qty is 25
• //t1 R-lock InStore.row1
• Add 25 to W arehouseQty: 40->65

• // t1 W -lock Product.row 1
• try Update row 1
• // blocked 

• // as W -lock on InStore.row1
• // can’t be obtained

• Update row 1, setting it to 0
• //t1 upgrades to W -lock on InStore.row1
• COM M IT // release t1’s locks

• // now get W -lock
• Update row 1: 0->60
• COM M IT

Initial state of InStore, Product

Final state of InStore, Product

Outcom e is sam e as serial
ClearOut; AcceptReturn

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

60s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

Granularity

• W hat is a data item (on which a lock is obtained)?
– M ost tim es, in m ost system s: item  is a tuplein a table

– Som etimes: item  is a page (with several tuples)

– Som etimes: item  is a whole table

• In order to manage conflicts properly, system gets 
“intention” mode locks on larger granules before 
getting actual R/W  locks on smaller granules

Explicit lock management

• W ith m ost DBM S, the application program 
can include statements to set or release 
locks on a table
– Details vary

• EgLOCK TABLE  InStoreIN 
EXCLUSIVE M ODE

Implications

• For application programmer
– If txnreads many rows in one table, consider locking 
the whole table first

– Consider weaker isolation (see later)

• For DBA
– Tune for perform ance: adjust max number of locks, 
granularity factors

– Possibly redesign schem a to prevent unnecessary 
conflicts

– Possibly adjust query plans if locking causes problem s

Implementation mechanisms

• Logging

• Locking

• Distributed Com mit

Transactions across multiple DBM S

• W ithin one transaction, there can be 
statements executed on m ore than one 
DBM S

• To be atomic, we still need all-or-nothing

• That means: every involved system must 
produce the same outcome
– All commit the txn

– Or all abort it
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W hy it’s hard

• Imagine sending to each DBM S to say 
“commit this txnT now”

• Even though this message is on its way,  
any DBM S might abort T spontaneously
– e.g. due to a system crash

Two-phase commit

• The solution is for each DBM S to first 
m ove to a special situation, where the txnis 
“prepared”

• A crash won’t abort a prepared txn, it will 
leave it in prepared state
– So all changes made by prepared txnmust be 
recovered during restart (including any locks 
held before the crash!)

NB unrelated to “two-phase locking”

Basic idea

• Two round-trips of messages
– Request to prepare/ prepared or aborted

– Either Commit/committed or Abort/aborted

Only if all DBM Ssare already prepared!

Read-only optimisation

• If a txnhas involved a DBM S only for 
reading (but no m odifications at that 
DBM S), then  it can drop out after first 
round, without preparing
– The outcome doesn’t matter to it!

– Special phase 1 reply: ReadOnly

Fault-tolerant protocol

• The interchange of messages between the 
“coordinator” (part of the TPM onitor
software) and each DBM S is tricky
– Each participant must record things in log at 
specific times

– But the protocol copes with lost messages, 
inopportune crashes etc

Implications

• For application programmer
– Avoid putting m odifications to m ultiple databases in a 
single txn
• Perform ance suffers a lot

• W -Locks are held during the message exchanges, which take 
much longer than usual txndurations

• For DBA
– M onitor perform ance carefully

– M ake sure you have DBM S that support protocol
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Overview

• Transactions

• Implementation techniques

• W eak isolation issues
– Explicit use of low levels

– Use of replicas

– Snapshot isolation

Problems with serializability

• The performance reduction from isolation is high
– Transactions are often blocked because they want to 
read data that another txnhas changed

• For many applications, the accuracy of the data 
they read is not crucial
– e.g. overbooking a plane is ok in practice

– e.g. your banking decisions would not be very different 
if you saw yesterday’s balance instead of the m ost up-
to-date

A and D matter!

• Even when isolation isn’t needed, no one is 
willing to give up atomicity and durability
– These deal with modifications a txnmakes

– W riting is less frequent than reading, so log 
entries and write locks are considered worth the 
effort

Explicit isolation levels

• A transaction can be declared to have 
isolation properties that are less stringent 
than serializability
– However SQL standard says that default should 
be serializable(also called “level 3 isolation”)

– In practice, most systems have weaker default 
level, and most txnsrun at weaker levels!

Browse

• SET TRANACTION ISOLATION LEVEL 
READ UNCOM M ITTED
– Do not set read locks at all

•Of course, still set write locks before updating data

•If fact, system  forces the txnto be read-only unless 
you say otherwise

– Allows txnto read dirty data (from a txnthat 
will later abort)

Cursor stability

• SET TRANACTION ISOLATION LEVEL 
READ COM M M ITTED
– Set read locks but release them  after the read has 
happened
• e.g. when cursor moves onto another element during scan of 
the results of a multirow query

– i.e. do not hold R-locks till txncommits/aborts
– Data is not dirty, but it can be inconsistent (between 
reads of different item s, or even between one read and a 
later one of the sam e item)
• Especially, weird things happen between different rows 
returned by a cursor

M ost comm on in practice!
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Repeatable read

• SET TRANACTION ISOLATION LEVEL 
REPEATABLE READ
– Set read locks on data item s, and hold them till txn
finished, but release locks on indices as soon as index 
has been exam ined

– Allows “phantom s”, rows that are not seen in a query 
that ought to have been (or vice versa)

– Problem s if one txnis changing the set of rows that 
meet a condition, while another txnis retrieving that set

Stale replicas

• In many distributed processing situations, copies 
of data are kept at several sites
– e.g. to allow cheap/fast local reading

• If updates try to alter all replicas, they become 
very slow and expensive (they need two-phase 
commit, and they’ll abort if a remote site is 
unavailable!)

• So allow replicas to be out-of-date
• Lazy propagation of updates

– Easily m anaged by shipping the log across from  tim e to 
tim e

Reading stale replicas

• If a txnreads a local replica which is a bit 
stale, then the value read can be out-of-date, 
and potentially inconsistent with other data 
seen by the txn

• Impact is essentially the same as READ 
COM M ITTED

Snapshot Isolation

• M ost DBM S vendors use variants of the 
standard algorithms

• However, one very major vendor uses a 
different approach: Oracle
– Before version 7.3 it did not support 
ISOLATION LEVEL SERIALIZABLE at all

– Now it allows the SQL command, but uses a 
different algorithm called Snapshot Isolation

Snapshot Isolation

• Read of an item does not give current value

• Instead, use the recovery log to find value that had 
been most recently committed at the time the txn
started
– Exception: if the txnhas m odified the item, use the 
value it wrote itself

• The transaction sees a “snapshot” of the database, 
at an earlier time
– Intuition: this should be consistent, if the database was 
consistent before

Checks for conflict

• If two overlapping txnstry to m odify the 
same item, one will be aborted

• Implemented with write locks on m odified 
rows
– NB one txnout of the conflicting pair is 
aborted, rather than delayed as in conventional 
approach
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Benefits of SI

• No cost for extra time-travel versions
– They are in log anyway!

• Reading is neverblocked

• Prevents the usual anomalies
– No dirty read

– No lost update

– No inconsistent read

Problems with SI

• SI does not always give serializable
executions 
– (despite Oracle using it for “ISOLATION 
LEVEL SERIALIZABLE)

• Integrity Constraints can be violated
– Even if every application is written to be 
consistent!

Example –Skew W rite

• M akeSale(p1,s1,26) M akeSale(p1,s2,25)

• Update row 1: 30->4 

• update row 2: 35->10

• find sum: 72

• // No need to  Insert row in Order

• Find  sum: 71

• // No need to insert row in Order

• COM M IT

• COM M IT

etcetcetc

60s1p2

35s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Integrity constraint is false:
Sum is 46

etcetcetc

60s1p2

10s2p1

4s1p1

etcetcetc

44etcp2

32etcp1

etcetcetc

44etcp2

32etcp1

Order: em pty

Order: em pty

NB: sum  uses old value of row1 and Product, 
and self-changed value of row2

Skew W rites

• SI breaks serializabilitywhen txnsmodify 
different items, each based on a previous state of 
the item the other modified

• This is fairly rare in practice

• Egthe TPC-C benchmark runs correctly under SI
– when txnsconflict due to m odifying different data, 
there is also a shared item they both m odify too (like a 
total quantity) so SI will abort one of them

Implications

• For the application program mer
– Think carefully about your programs behavior 
if reads are inaccurate

– If possible without compromising correctness, 
run at lower isolation level to improve 
performance

• For the DBA
– W atch like a hawk for corruption of the data, 
and have strong processes to correct it!

To learn more

• CSEP 545 Transaction Processing

• Taught by Prof Phil Bernstein (M icrosoft & 
UW  adjunct)
– author of one of the best books on the subject 
(and inventor of some of the important ideas!)


