
1

Transactions

CSEP 544

M onday April 5, 2004

Alan Fekete (U of Sydney)

Overview

• Transactions
– Concept

– ACID properties

– Examples and counter-examples

• Implementation techniques

• W eak isolation issues

Further Reading

• Transaction concept: Garcia-M olina et al Chapter
8.6

• Implementation techniques: Garcia-M olina et al
Chapters 17-19

• Big picture: “Principles of Transaction
Processing” by P. Bernstein and E. Newcomer

• The gory details: “Transaction Processing” by J.
Gray and A. Reuter

Definition

• A transaction is a collection of one or more
operations on one or more databases, which
reflects a single real-world transition
– In the real world, this happened (com pletely) or it
didn’t happen at all (Atom icity)

• Com merce examples
– Transfer m oney between accounts
– Purchase a group of products

• Student record system
– Register for a class (either waitlist or allocated)

Coding a transaction

• Typically a computer-based system doing OLTP
has a collection of application programs

• Each program is written in a high-level language,
which calls DBM S to perform individual SQL
statements
– Either through embedded SQL converted by
preprocessor

– Or through Call Level Interface where application
constructs appropriate string and passes it to DBM S

W hy write programs?

• W hy not just write a SQL statement to
express “what you want”?

• An individual SQL statement can’t do
enough
– It can’t update multiple tables

– It can’t perform complicated logic
(conditionals, looping, etc)

2

COM M IT

• As app program is executing, it is “in a
transaction”

• Program can execute COM M IT
– SQL command to finish the transaction
successfully

– The next SQL statement will automatically start
a new transaction

W arning

• The idea of a transaction is hard to see when
interacting directly with DBM S, instead of
from an app program

• Using an interactive query interface to
DBM S, by default each SQL statement is
treated as a separate transaction (with
implicit COM M IT at end) unless you
explicitly say “START TRANSACTION”

A Limitation

• Some system s rule out having both DM L
and DDL statements in a single transaction

• I.E., you can change the schema, or change
the data, but not both

ROLLBACK

• If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

• This causes the system to “abort” the
transaction
– The database returns to the state without any of
the previous changes made by activity of the
transaction

Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)

• App program finds a problem
– Egqty on hand < qty being sold

• System-initiated abort
– System crash

– Housekeeping
•Egdue to tim eouts

Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made

– It aborts: no changes are made

• That is, transaction’s activities are allor
nothing

3

Integrity

• A real world state is reflected by collections
of values in the tables of the DBM S

• But not every collection of values in a table
makes sense in the real world

• The state of the tables is restricted by
integrity constraints

• Egaccount num ber is unique

• Egstock am ount can’t be negative

Integrity (ctd)

• M any constraints are explicitly declared in the
schema
– So the DBM S will enforce them

– Especially: prim ary key (som e colum n’s values are non
null, and different in every row)

– And referential integrity: value of foreign key colum n
is actually found in another “referenced” table

• Some constraints are not declared
– They are business rules that are supposed to hold

Consistency

• Each transaction can be written on the assumption that all
integrity constraints hold in the data, before the transaction
runs

• It must m ake sure that its changes leave the integrity
constraints still holding
– However, there are allowed to be intermediate states where the
constraints do not hold

• A transaction that does this, is called consistent
• This is an obligation on the programmer

– Usually the organization has a testing/checking and sign-off
mechanism before an application program is allowed to get
installed in the production system

System obligations

• Provided the app programs have been
written properly,

• Then the DBM S is supposed to make sure
that the state of the data in the DBM S
reflects the real world accurately, as
affected by all the com mitted transactions

Local to global reasoning

• Organization checks each app program as a
separate task
– Each app program running on its own m oves from state
where integrity constraints are valid to another state
where they are valid

• System makes sure there are no nasty interactions

• So the final state of the data will satisfy all the
integrity constraints

Example -Tables

• System for managing inventory

• InStore(prodID, storeID, qty)

• Product(prodID, desc, mnfr, … ,
W arehouseQty)

• Order(orderNo, prodID, qty, rcvd, … .)
– Rows never deleted!

– Until goods received, rcvd is null

• Also Store, Staff, etc etc

4

Example -Constraints

• Primary keys
– InStore: (prodID, storeID)

– Product: prodID

– Order: orderId

– etc

• Foreign keys
– Instore.prodID references Product.prodID

– etc

Example -Constraints

• Data values
– Instore.qty>= 0

– Order.rcvd<= current_dateor Order.rcvdis null

• Business rules
– for each p, (Sum of qty for product p am ong all stores
and warehouse) >= 50

– for each p, (Sum of qty for product p am ong all stores
and warehouse) >= 70 or there is an outstanding order
of product p

Example -transactions

• M akeSale(store, product, qty)

• AcceptReturn(store, product, qty)

• RcvOrder(order)

• Restock(store, product, qty)
– // m ove from warehouse to store

• ClearOut(store, product)
– // m ove all held from store to warehouse

• Transfer(from, to, product, qty)
– // m ove goods between stores

Example -ClearOut

• Validate Input (appropriate product, store)

• SELECT qty INTO :tmp

FROM InStore

W HERE StoreID = :store AND prodID = :product

• UPDATE Product

SET W arehouseQty= W arehouseQty+ :tmp

W HERE prodID = :product

• UPDATE InStore

SET Qty = 0

W HERE prodID = :product

• COM M IT

Example -Restock

• Input validation
– Valid product, store, qty
– Amount of product in warehouse >= qty

• UPDATE Product
SET W arehouseQty= W arehouseQty-:qty
W HERE prodID = :product

• If no record yet for product in store
INSERT INTO InStore(:product, :store, :qty)

• Else, UPDATE InStore
SET qty = qty+ :qty
W HERE prodID = :product and storeID = :store

• COM M IT

Example -Consistency

• How to write the app to keep integrity
holding?

• M akeSalelogic:
– Reduce Instore.qty

– Calculate sum over all stores and warehouse

– If sum < 50, then ROLLBACK // Sale fails

– If sum < 70, check for order where date is null
•If none found, insert new order for say 25

5

Example -Consistency

• W e don’t need any fancy logic for the
business rules in AcceptReturn, Restock,
ClearOut, Transfer
– W hy?

• W hat is logic needed for RcvOrder?

Threats to data integrity

• Need for application rollback

• System crash

• Concurrent activity

• The system has mechanisms to handle these

Application rollback

• A transaction may have made changes to the data
before discovering that these aren’t appropriate
– the data is in state where integrity constraints are false

– Application executes ROLLBACK

• System must somehow return to earlier state
– W here integrity constraints hold

• So aborted transaction has no effect at all

Example

• W hile running M akeSale, app changes
InStoreto reduce qty, then checks new sum

• If the new sum is below 50, txnaborts

• System must change InStoreto restore
previous value of qty
– Somewhere, system must remember what the
previous value was!

System crash

• At time of crash, an application program may be
part-way through (and the data may not meet
integrity constraints)

• Also, buffering can cause problems
– Note that system crash loses all buffered data, restart
has only disk state

– Effects of a comm itted txnm ay be only in buffer, not
yet recorded in disk state

– Lack of coordination between flushes of different
buffered pages, so even if current state satisfies
constraints, the disk state may not

Example

• Suppose crash occurs after
– M akeSalehas reduced InStore.qty

– found that new sum is 65
– found there is no unfilled order
– // but before it has inserted new order

• At time of crash, integrity constraint did not hold

• Restart process must clean this up (effectively
aborting the txnthat was in progress when the
crash happened)

6

Concurrency

• W hen operations of concurrent threads are
interleaved, the effect on shared state can be
unexpected

• W ell known issue in operating system s,
thread program ming
– see OS textbooks on critical section

– Java use of synchronized keyword

Famous anomalies

• Dirty data
– One task T reads data written by T’ while T’ is running, then T’
aborts (so its data was not appropriate)

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
– The values observed may not satisfy integrity constraints
– This was not considered by the programmer, so code moves into
absurd path

Example –Dirty data

• AcceptReturn(p1,s1,50) M akeSale(p1,s2,65)

• Update row 1: 25 -> 75

• update row 2: 70->5

• find sum: 90

• // no need to insert

• // row in Order

• Abort

• // rollback row 1 to 35

• COM M IT

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of InStore, Product

Integrity constraint is false:
Sum for p1 is only 40!

etcetcetc

60s1p2

5s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1

Example –Lost update

• ClearOut(p1,s1) AcceptReturn(p1,s1,60)

• Query InStore; qty is 25

• Add 25 to W arehouseQty: 40->65

• Update row 1: 25->85

• Update row 1, setting it to 0

• COM M IT

• COM M IT

Initial state of InStore, Product

Final state of InStore, Product

60 returned p1’s have vanished
from system ; total is still 135

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

0s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

Example –Inconsistent read

• ClearOut(p1,s1) M akeSale(p1,s2,60)

• Query InStore: qty is 30

• Add 30 to W arehouseQty: 10->40

• update row 2: 65->5

• find sum: 75

• // no need to insert

• // row in Order

• Update row 1, setting it to 0

• COM M IT

• COM M IT

etcetcetc

60s1p2

65s2p1

30s1p1

Initial state of InStore, Product

Final state of InStore, Product

Integrity constraint is false:
Sum for p1 is only 45!

etcetcetc

60s1p2

5s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Serializability

• To make isolation precise, we say that an
execution is serializablewhen

• There exists some serial (iebatch, no overlap at
all) execution of the same transactions which has
the same final state
– Hopefully, the real execution runs faster than the serial
one!

• NB: different serial txnorders may behave
differently; we ask that someserial order produces
the given state
– Other serial orders may give different final states

7

Example –Serializableexecution

• ClearOut(p1,s1) M akeSale(p1,s2,20)

• Query InStore: qty is 30

• update row 2: 45->25

• find sum: 65

• no order for p1 yet

• Add 30 to W arehouseQty: 10->40

• Update row 1, setting it to 0

• COM M IT

• Insert order for p1

• COM M IT

etcetcetc

60s1p2

45s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Execution is like serial
M akeSale; ClearOut

etcetcetc

60s1p2

25s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Order: em pty

etcNull 25p1

SerializabilityTheory

• There is a beautiful mathematical theory, based on
formal languages
– Egthe task of testing whether an execution is
serializableis NP

• There is a nice sufficient condition (iea
conservative approximation) called conflict
serializable, which can be efficiently tested
– based on absence of cycles in a graph

• M ost people and books use the approximation,
usually without mentioning it!

ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txnm oves from a state where integrity holds, to
another where integrity holds

• Isolated
– Effect of txnsis the sam e as txnsrunning one after
another (ielooks like batch m ode)

• Durable
– Once a txnhas comm itted, its effects rem ain in the
database

Big Picture

• If programmer writes applications so each txnis
consistent

• And DBM S provides atomic, isolated, durable
execution
– Ieactual execution has same effect as som e serial
execution of those txnsthat comm itted (but not those
that aborted)

• Then the final state will satisfy all the integrity
constraints

NB true even though system does not know all integrity constraints!

Overview

• Transactions

• Implementation Techniques
– Ideas, not details!

– Implications for application programmers

– Implications for DBAs

• W eak isolation issues

M ain implementation techniques

• Logging
– Interaction with buffer management

– Use in restart procedure

• Locking

• Distributed Com mit

8

Logging

• The log is an append-only collection of
entries, showing all the changes to data that
happened, in order as they happened

• Egwhen T1 changes field qty in row 3 from
15 to 75, this fact is recorded as a log entry

• Log also shows when txns
start/com mit/abort

A log entry

• LSN: identifier for entry, increasing values

• Txnid

• Data item involved

• Old value

• New value
– Sometimes there are separate logs for old
values and new values

Extra features

• Log also records changes made by system
itself
– Egwhen old value is restored during rollback

• Log entries are linked for easier access to
past entries
– Link to previous log entry

– Link to previous entry for the same txn

Buffer management

• Each page has place for LSN of most recent
change to that page

• W hen a page is fetched into buffer, DBM S
remembers latest LSN at that time

• Log itself is produced in buffer, and flushed to
disk (appending to previously flushed parts) from
time to time

• Important rules govern when buffer flushes can
occur, relative to LSNsinvolved
– Som etimes a flush is forced (eglog flush forced when
txncomm its)

Using the log

• To rollback txnT
– Follow chain of T’s log entries, backwards

– For each entry,restore data to old value, and
produce new log record showing the restoration

– Produce log record for “abort T”

Restart

• After a crash, follow the log forward,
replaying the changes
– i.e. re-install new value recorded in log

• Then rollback all txnsthat were active at the
end of the log

• Now normal processing can resume

9

Optimizations

• Use LSNsrecorded in each page of data, to
avoid repeating changes already reflected in
page

• Checkpoints: flush pages that have been in
buffer too long
– Record in log that this has been done

– During restart, only repeat history since last (or
second-last) checkpoint

Don’t be too confident

• Crashes can occur during rollback or restart!
– Algorithm s must be idempotent

• M ust be sure that log is stored separately from
data (on different disk array; often replicated off-
site!)
– In case disk crash corrupts data, log allows fixing this

– Also, since log is append-only, don’t want have random
access to data m oving disk heads away

Complexities

• Changes to index structures
– Avoid logging every time index is rearranged

• M ultithreading in log writing
– Use standard OS latching to prevent different
tasks corrupting the log’s structure

ARIES

• Until 1992, textbooks and research papers
described only simple logging techniques
that did not deal with complexities

• Then C. M ohan (IBM) published a series of
papers describing ARIES algorithms
– Papers are very hard to read, and omit crucial
details, but at least the ideas of real systems are
now available!

Implications

• For application program mer
– Choose txnboundaries to include everything
that must be atomic

– Use ROLLBACK to get out from a mess

• For DBA
– Tune for performance: adjust checkpoint
frequency, amount of buffer for log, etc

– Look after the log!

M ain implementation techniques

• Logging

• Locking
– Lock manager

– Lock modes

– Granularity

– User control

• Distributed Com mit

10

Lock manager

• A structure in (volatile memory) in the DBM S
which remembers which txnshave set locks on
which data, in which modes

• It rejects a request to get a new lock if a
conflicting lock is already held by a different txn

• NB: a lock does not actually prevent access to the
data, it only prevents getting a conflicting lock
– So data protection only com es if the right lock is
requested before every access to the data

Lock modes

• Locks can be for writing (W), reading (R)
or other m odes

• Standard conflict rules: two W locks on the
same data item conflict, so do one W and
one R lock on the same data
– However, two R locks do not conflict

• Thus W =exclusive, R=shared

Automatic lock management

• DBM S requests the appropriate lock
whenever the app program submits a
request to read or write a data item

• If lock is available, the access is performed

• If lock is not available, the whole txnis
blocked until the lock is obtained
– After a conflicting lock has been released by
the other txnthat held it

Strict two-phase locking

• Locks that a txnobtains are kept until the
txncompletes
– Once the txncommits or aborts, then all its
locks are released (as part of the commit or
rollback processing)

• Two phases:
– Locks are being obtained (while txnruns)

– Locks are released (when txnfinished)

Serializability

• If each transaction does strict two-phase
locking (requesting all appropriate locks),
then executions are serializable

• However, performance does suffer, as txns
can be blocked for considerable periods
– Deadlocks can arise, requiring system-initiated
aborts

Example –No Dirty data
• AcceptReturn(p1,s1,50) M akeSale(p1,s2,65)
• Update row 1: 25 -> 75
• //t1 W -locks InStore. row 1
• update row 2: 70->5
• //t2 W -locks Instore.row2
• try find sum:// blocked
• // as R-lock on Instore.row1
• // can’t be obtained
• Abort
• // rollback row 1 to 35; release lock
• // now get locks
• find sum: 40
• ROLLBACK
• // row 2 restored to 70
•

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of InStore, ProductIntegrity constraint is valid

etcetcetc

60s1p2

70s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1

11

Example –No Lost update
• ClearOut(p1,s1) AcceptReturn(p1,s1,60)

• Query InStore; qty is 25
• //t1 R-lock InStore.row1
• Add 25 to W arehouseQty: 40->65

• // t1 W -lock Product.row 1
• try Update row 1
• // blocked

• // as W -lock on InStore.row1
• // can’t be obtained

• Update row 1, setting it to 0
• //t1 upgrades to W -lock on InStore.row1
• COM M IT // release t1’s locks

• // now get W -lock
• Update row 1: 0->60
• COM M IT

Initial state of InStore, Product

Final state of InStore, Product

Outcom e is sam e as serial
ClearOut; AcceptReturn

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

60s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

Granularity

• W hat is a data item (on which a lock is obtained)?
– M ost tim es, in m ost system s: item is a tuplein a table

– Som etimes: item is a page (with several tuples)

– Som etimes: item is a whole table

• In order to manage conflicts properly, system gets
“intention” mode locks on larger granules before
getting actual R/W locks on smaller granules

Explicit lock management

• W ith m ost DBM S, the application program
can include statements to set or release
locks on a table
– Details vary

• EgLOCK TABLE InStoreIN
EXCLUSIVE M ODE

Implications

• For application programmer
– If txnreads many rows in one table, consider locking
the whole table first

– Consider weaker isolation (see later)

• For DBA
– Tune for perform ance: adjust max number of locks,
granularity factors

– Possibly redesign schem a to prevent unnecessary
conflicts

– Possibly adjust query plans if locking causes problem s

Implementation mechanisms

• Logging

• Locking

• Distributed Com mit

Transactions across multiple DBM S

• W ithin one transaction, there can be
statements executed on m ore than one
DBM S

• To be atomic, we still need all-or-nothing

• That means: every involved system must
produce the same outcome
– All commit the txn

– Or all abort it

12

W hy it’s hard

• Imagine sending to each DBM S to say
“commit this txnT now”

• Even though this message is on its way,
any DBM S might abort T spontaneously
– e.g. due to a system crash

Two-phase commit

• The solution is for each DBM S to first
m ove to a special situation, where the txnis
“prepared”

• A crash won’t abort a prepared txn, it will
leave it in prepared state
– So all changes made by prepared txnmust be
recovered during restart (including any locks
held before the crash!)

NB unrelated to “two-phase locking”

Basic idea

• Two round-trips of messages
– Request to prepare/ prepared or aborted

– Either Commit/committed or Abort/aborted

Only if all DBM Ssare already prepared!

Read-only optimisation

• If a txnhas involved a DBM S only for
reading (but no m odifications at that
DBM S), then it can drop out after first
round, without preparing
– The outcome doesn’t matter to it!

– Special phase 1 reply: ReadOnly

Fault-tolerant protocol

• The interchange of messages between the
“coordinator” (part of the TPM onitor
software) and each DBM S is tricky
– Each participant must record things in log at
specific times

– But the protocol copes with lost messages,
inopportune crashes etc

Implications

• For application programmer
– Avoid putting m odifications to m ultiple databases in a
single txn
• Perform ance suffers a lot

• W -Locks are held during the message exchanges, which take
much longer than usual txndurations

• For DBA
– M onitor perform ance carefully

– M ake sure you have DBM S that support protocol

13

Overview

• Transactions

• Implementation techniques

• W eak isolation issues
– Explicit use of low levels

– Use of replicas

– Snapshot isolation

Problems with serializability

• The performance reduction from isolation is high
– Transactions are often blocked because they want to
read data that another txnhas changed

• For many applications, the accuracy of the data
they read is not crucial
– e.g. overbooking a plane is ok in practice

– e.g. your banking decisions would not be very different
if you saw yesterday’s balance instead of the m ost up-
to-date

A and D matter!

• Even when isolation isn’t needed, no one is
willing to give up atomicity and durability
– These deal with modifications a txnmakes

– W riting is less frequent than reading, so log
entries and write locks are considered worth the
effort

Explicit isolation levels

• A transaction can be declared to have
isolation properties that are less stringent
than serializability
– However SQL standard says that default should
be serializable(also called “level 3 isolation”)

– In practice, most systems have weaker default
level, and most txnsrun at weaker levels!

Browse

• SET TRANACTION ISOLATION LEVEL
READ UNCOM M ITTED
– Do not set read locks at all

•Of course, still set write locks before updating data

•If fact, system forces the txnto be read-only unless
you say otherwise

– Allows txnto read dirty data (from a txnthat
will later abort)

Cursor stability

• SET TRANACTION ISOLATION LEVEL
READ COM M M ITTED
– Set read locks but release them after the read has
happened
• e.g. when cursor moves onto another element during scan of
the results of a multirow query

– i.e. do not hold R-locks till txncommits/aborts
– Data is not dirty, but it can be inconsistent (between
reads of different item s, or even between one read and a
later one of the sam e item)
• Especially, weird things happen between different rows
returned by a cursor

M ost comm on in practice!

14

Repeatable read

• SET TRANACTION ISOLATION LEVEL
REPEATABLE READ
– Set read locks on data item s, and hold them till txn
finished, but release locks on indices as soon as index
has been exam ined

– Allows “phantom s”, rows that are not seen in a query
that ought to have been (or vice versa)

– Problem s if one txnis changing the set of rows that
meet a condition, while another txnis retrieving that set

Stale replicas

• In many distributed processing situations, copies
of data are kept at several sites
– e.g. to allow cheap/fast local reading

• If updates try to alter all replicas, they become
very slow and expensive (they need two-phase
commit, and they’ll abort if a remote site is
unavailable!)

• So allow replicas to be out-of-date
• Lazy propagation of updates

– Easily m anaged by shipping the log across from tim e to
tim e

Reading stale replicas

• If a txnreads a local replica which is a bit
stale, then the value read can be out-of-date,
and potentially inconsistent with other data
seen by the txn

• Impact is essentially the same as READ
COM M ITTED

Snapshot Isolation

• M ost DBM S vendors use variants of the
standard algorithms

• However, one very major vendor uses a
different approach: Oracle
– Before version 7.3 it did not support
ISOLATION LEVEL SERIALIZABLE at all

– Now it allows the SQL command, but uses a
different algorithm called Snapshot Isolation

Snapshot Isolation

• Read of an item does not give current value

• Instead, use the recovery log to find value that had
been most recently committed at the time the txn
started
– Exception: if the txnhas m odified the item, use the
value it wrote itself

• The transaction sees a “snapshot” of the database,
at an earlier time
– Intuition: this should be consistent, if the database was
consistent before

Checks for conflict

• If two overlapping txnstry to m odify the
same item, one will be aborted

• Implemented with write locks on m odified
rows
– NB one txnout of the conflicting pair is
aborted, rather than delayed as in conventional
approach

15

Benefits of SI

• No cost for extra time-travel versions
– They are in log anyway!

• Reading is neverblocked

• Prevents the usual anomalies
– No dirty read

– No lost update

– No inconsistent read

Problems with SI

• SI does not always give serializable
executions
– (despite Oracle using it for “ISOLATION
LEVEL SERIALIZABLE)

• Integrity Constraints can be violated
– Even if every application is written to be
consistent!

Example –Skew W rite

• M akeSale(p1,s1,26) M akeSale(p1,s2,25)

• Update row 1: 30->4

• update row 2: 35->10

• find sum: 72

• // No need to Insert row in Order

• Find sum: 71

• // No need to insert row in Order

• COM M IT

• COM M IT

etcetcetc

60s1p2

35s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Integrity constraint is false:
Sum is 46

etcetcetc

60s1p2

10s2p1

4s1p1

etcetcetc

44etcp2

32etcp1

etcetcetc

44etcp2

32etcp1

Order: em pty

Order: em pty

NB: sum uses old value of row1 and Product,
and self-changed value of row2

Skew W rites

• SI breaks serializabilitywhen txnsmodify
different items, each based on a previous state of
the item the other modified

• This is fairly rare in practice

• Egthe TPC-C benchmark runs correctly under SI
– when txnsconflict due to m odifying different data,
there is also a shared item they both m odify too (like a
total quantity) so SI will abort one of them

Implications

• For the application program mer
– Think carefully about your programs behavior
if reads are inaccurate

– If possible without compromising correctness,
run at lower isolation level to improve
performance

• For the DBA
– W atch like a hawk for corruption of the data,
and have strong processes to correct it!

To learn more

• CSEP 545 Transaction Processing

• Taught by Prof Phil Bernstein (M icrosoft &
UW adjunct)
– author of one of the best books on the subject
(and inventor of some of the important ideas!)

