T ransactons

CSEP 544
M cnday A pril 5, 2004
Alan Fekete U of Sydney)

O verview

e Transactons

- Concept

- ACD properties

— Exam ples and counter-exam ples
e Tn plem entation techniques
o W eak isolation issues

FurtherR eading

T ransaction concept: G arcia-M olina etal Chapter
86

In plem entation techniques: G arxcia-M olina etal
Chapters 17-19

B ig picture: “Principles of Transaction
Processing” by P.Bemsten and E . N ew com er
The gory details: “Transaction Processing” by J.
Gray and A .Reuter

D efiniton

® A transaction isa collection of one orm ore
operations on one orm ore databases, w hich
reflects a single real-w orld transition
- Tn the realw ord, thishappened (com pktely) orit
didn'thappen atall @ tom icity)
e Comm erce examples
- Trnsferm cney betw een accounts
- Purchase a group of products
e Studentrecord system
- Register fora class (eitherw aitlistorallocated)

Coding a transaction

Typically a com puterdbased system doing O LTP
has a collection of application program s
Each program isw riten In a high-level language,
which callsDBM S to perform individualSQL
statem ents
— Eitherthrough em bedded SQ L converted by
PrEPIOCESOr

— O rthrough CallLevel Interface w here application
constructs appropriate string and passes tto DBM S

W hy w rite program s?

e W hynotjustwrite a SQ L satem entto
express “whatyou w ant”’?
o An Ndividual SQ L statem entcan’tdo
enough
— can’tupdate m ultiple Ebles
— can’tperform com plicated Iogic
(conditionals, Jooping, etc)

COMM IT

® A sapp program isexecuting, tis “ha
transaction”
® DProgram can execute COM M IT
- SQL comm and to finish the transaction
successfully
- ThenextSQL statem entw illautom atically start
anew transaction

W aming

e The idea of a transaction ishard to see when
Interacting directly w ith DBM S, instead of
from an app program

e U sing an nteractive query interface to
DBM S, by defaulteach SQL satem ent is
treated as a sepamate transaction W ith
InplicitCOM M IT atend) unless you
explicitly say "START TRANSACTION”

A Lim iation
e Som e system s mile outhavingboth DM L

and DD L satem ents in a single transaction

e TE ., you can change the schem a, orchange
the data, butnotboth

ROLLBACK

e Tf the app gets to aplace where tcan’t
com plete the transaction successfiilly, itcan
execute ROLLBACK
e This causes the system to “abort” the
tansaction
— The database retums to the state w ithoutany of

the previous changesm ade by activity of the
transaction

R easons forR ollback

o U serchanges theirm ind (“ctl-C” fancel)
® App program finds a problem
- Eg gty on hand < gty being sold
e System -initiated abort
- System crash
- Housekesping
® Eg due to tin eouts

A tom icity

e Tw o possible outcom es fora transaction
— Ttcomm its: all the changes are m ade
— Traborts:no changesarem ade
e That is, transaction’s activites are allor
nothing

Integrity Tntegrity (ctd)

e A realword sate is reflected by collections e M any constraints are explicitly declared in the
of values In the Bblesof the DBM S schem a

e Butnotevery collection of values in a table - SotheDBM S w illenforce them
m akes sense in the ralw orld — Especially: prin ary key (som e colum n’s values are non

. . null, and different n every 1ow)

¢ ?he State ofthe ?ab]es:sxestactedby - And referential mtegrity : value of foreign key colm n
nEgrity constamnts isactually found in another “eferenced” tble

¢ Eg acoountnum ber isunique e Som e constraints are notdeclared

¢ Eg stock am ountcan’tbe negative - They are business miles thatare supposed to hold

Consistency System obligations

® Each transaction can be w ritten on the assum ption thatall

Integrity constraints hold i the data, before the transaction ¢ Provided the app program s have been

nns w ritten properly,
* Imustm ake ane that s changes leave the htegrity e Then the DBM S is supposed to m ake sure
constraints sdllholding :
- However, there are allow ed to be intem ediate satesw here the that the sate of the data in the DBM S
consaitsdo nothold reflects the realw orld accurately, as

e A transaction thatdoes this, is called consistent
e This isan obligation on the programm er
- Usually the organization has a testing/checking and sign-off
m echanisn before an application program isallow ed to get
Insalled in the production system

affected by all the com m itted transactions

Local to global reasoning Example -Tables
® O mganization checks each app program asa e System form anaging nventory
separate task e hStore fprodDD , storeD |, gty)
— Each app program nnning on isownm oves fiom sate
v hees oy consharite are vald o anofhersis e ProductforodD , desc, m nfx, ... ,
wheze they are valid W archouseQ ty)
e System m akes sure there are no nasty nteractions ® O derordeN o, prodD , qty, revd, ...)
e So the final state of the data w ill satisfy all the - Row sneverdeleted !
Integrity constraints - Untilgoods received, revd isnull
® A lso Store, Staff, etc ete

Exam ple - Constraints

e Prim ary keys

- hStore: (orodDD , storelD)

— Product: prodD

- O rder: orderid

- et

e Foreign keys

- IhstoreprodD references ProductprodID
- et

Exam ple - Constaints

® Datavalues

- hsoregty >= 0

- Oxerrcvd <= cunent date orO merrevd isnull
e Bushessmles

- foreach p, Sum of gty forproductp am ong all sores
and w arehouse) >= 50

- foreachp, Sum ofqty forproductp am ong all stores
and w arehouse) >= 70 orthere isan outstending order
of productp

Exam ple - ttansactions

M akeSale (store, product, gty)
A cceptR etum (store, product, qty)
R cvO rder(order)
Restock (store, product, gty)
- //move fiom warchouse to store
CJea1O ut(store, product)
- //move allhed from sore o w arehouse
Transfer(fom , ©, product, gty)
- //m ove goodsbetw een stores

Example -Clar©Out

* Validate lput (Eppropriate product, store)
e SELECT qty NTO 4mp
FROM hStore
W HERE StoreD = storeAND prodD = product
e UPDATE Product
SET W archous=Q ty = W archous=Q ty + fmp
W HERE prodDD = product
e UPDATE IhStore
SET Qty =0
W HERE prodD = product
e COMMIT

Exam ple -Restock

Thputvalidation
- Valid product, store, gty
- Amountofproduct in w arehouse >= gty
UPDATE Product
SET W archouseQ ty = W arshous=Q ty - gty
W HERE prodD = pmoduct
Tfno record yet forproduct in store
INSERT INTO hStore (product, sore, gty)
Else,UPDATE hStore
SET gty =qty + gty
W HERE prodD = pmductand soreD = store
COMM IT

Exam ple - Consistency

e How tow rte the app to keep ntegrity
holding?

e M akeSale logic:
- Reduce hstore gty
— Calculate sum overall stores and w arehouse
- Ifaum < 50,then ROLLBACK //Sak fails

— Ifsum < 70, check fororderw here date isnull
e Tfnone found, insertnew orerforsay 25

Exam ple - Consistency

e W edon’tneed any fancy logic forthe
business mules In A coeptR etum, R estock,
CleaO ut, Transfer

- W hy?
e W hatis logic needed forR cvO der?

Threats to data Integrity
® N eed forapplication olback

® System crash
e Concunentactiviy

® The system hasm echanian s to handle these

A pplication rolback

e A transaction m ay have m ade changes to the data
before discovering that these aren 't appropriate
- the data is In state where Integrity constraints are false
— Application executessROLLBACK
e System mustsom ehow retum to earlier sate
— W here hitegrity constraints hold
® So aborted transaction hasno effectatall

Example

e W hile mnning M akeSale, app changes
IhStore to rduce gty, then checksnew sum

o Tfthenew sum isbelow 50, txn aborts

e System mustchange Store © restore
previous value of gty

— Som ew here, system m ustrem em berw hatthe
previous value w as!

System crach

e Attin e of crash, an application program m ay be
partw ay through (end the data m ay notm eet
Integrity constaints)
e A lso, buffering can cause problem s
— Note thatsystem crash oses allbuffered data, restart
has only disk state

- Effectsofa comm itted b m ay be only in buffer, not
yetrecorded 1 disk sate

— Lack of coordination betw een fiushes of different

buffered pages, o even if cunent state satisfies
constraints, the disk satem ay not

Exampl

e Suppose crash occurs after
- M akeSak has reduced hStore gty
- found thatnew sum is65
- found there isno unfilled order
- //butbefore ithas nserted new order
e Attm e of cragh, integrity consrantdid nothold
e Resartprocessm ustclean thisup (effectively
aborting the tn thatw as n progress w hen the
crash happened)

Concurrency

e W hen operations of concunent threads are
Interleaved, the effect on shared state can be
unexpected

e W ellknown issue In operating system s,
thread program m Ing

- 522 0S textbooks on critical section
- Java use of synchronized keyw ord

Fam ous anom alies

e DItydaa
- Onetask T eadsdataw ritten by T’ while T’ is mning, then T*
aborts (s0 its data w as not appropriate)
e Lostupdate
- TwotasksT and T’ both m odify the sam e data
- T and T’ both comm it
- Fialsate show seffectsofonly T, butnotof T’
e Thoonsistentread
- Onetask T sees som e butnotall changesm ade by T’
— The values cbserved m ay not satisfy integrity constaints

- Thiswasnotconsidered by the program m er, so code m oves Into
absurd path

Example - D vty data

pl |sl |25 pl |etc |10

pl |2 |70 D2 |ewm |44

AcceptRetum (ol s1,50) M akeSalke (pl &2 65)

p2 |sl |60
Update row 1:25 > 75 ete |etc |etc

update row 2:70->5 | € |etc | et
find sum : 90 .
/o need to insert Thital sate of MStore, Product

/frow mOxder |p1 |a |25

Abort pl |etc |10

//lback 1ow 1 to 35 pl &2 |5 p2 |etc |44
coMM I o |« |60

r e |ew [ew

etc |etc |etc

Tntegrity constraint is false:
Sum forpl isonly 40! Finalsate of Store, Product

Exam ple - Lostupdate

1 25
P st pl |ew |40

1 0
P 2 5 p2 |etc |55

ClemOutpl &1) AcopRetn P1A160) [o7 [|45

Query hStorm; qty 525 e |ec e

Add 25 oW archous=Q ty:40->65 er |ex e
Update row 1:25->85
Update row 1, setting itto 0

Thitial state of Store, Product

S =)
COMM T b ol lew &5
coMM T pl |2 |50
p2 |etc |55
p2 |s |45
60 retumed pl’shave vanished e |etc |etc
from system ; toal is sd11135 ew e e

Fial sate of Store, Product

Exam ple - loonsisEntread

'
pl [s1 |30 bl |ew |10

pl |2 |65 P2 |etc |44
ClaOutfpl &) MakeSale 01,260 [(o | g0 p pw
Query nStore: gty is30
Add 30 toW arshous=Q ty: 10->40 etc |etc |eto
update row 2:65->5 .
find sum : 75 Thital sate of hStore, Product
//no need to Insert] pl |s1 0
//1ow inO rder pl |ec |40
Update 1ow 1, setting 1o 0 pl |2 |5 D2 |etc |44
coMM IT > |s |60
comm r etc |er |er
. s etc |etc |etc
Thtegrity constraint is false:

Sum forpl isonly 45! Finalsate of Store, Product

Serializability

e Tom ake isolation precise, w e say thatan
execution is serializable w hen

e There exists som e serial (ie batch, no overlap at
all) execution of the sam e transactionsw hich has
the sam e fnal sate

— Hopefully, the real execution nins faster than the serial
one!

e NB :different serial ttn ordersm ay behave
differently; w e ask that som e serial order produces
the given sate

- Otherserialorersm ay give different final sates

Exam ple — Seralizable execution Serializability Theory
pl sl 130 pl |etc |10
pl |2 |45 D2 |et |44 e There isa beautifilm athem atical theory, based on
* Chaoutprel) Mokesakple20) [o (g | eo P D D, form al languages
* Query InStore:qty 3530 T - Eg the task of testing w hetheran execution is
; e 2 1] omenanny e A E
. 10 oncler forp1 yer i1 S Of TiStore, Product, O ey e There isanice sufficientcondition (ea
o Add30 oW aehouseD ty: 10->40 o1 = Jo conservative approxin atdon) called conflict
o Update 1ow 1, setting £100 pl jew |40 serializable, w hich can be efficiently tested
e COMMTT pL = |2 p2 |etc |44 — based on absence of cycles n a graph
. Tnsertorder forpl p2 |sl 60 . ,
. comm T et |er |etc e M ostpeople and books use the approxim ation,
Execution is Tke serial e et |etc T usually w ithoutm entioning it!
M akeSalk;C arOut --
Final state of Store, Product, O rder
ACD B ig Picture
* Atomic o Tf program m erw rites applications so each txn is
- State show s eitherall the effects of tan, ornone of them consisent
* Consistent e AndDBM S provides atom ic, isolated, dursble
- Txnmoves from a state w here integrity holds, to . provaesa e, 150 !
anotherw here Itegrity holds execution
e Tsolted - T actualexecution has sam e effectas som e serial
— Effectof txns is the sam e as tis minning one after execution of those tns thatcomm itted putnotthose
another (ie Iooks lke batch m ode) thataborted)
* Dumble e Then the final sate w ill satisfy all the ntegrity
— Oncea tm has comm ited, its effects rem ain In the .
database constramnts
NB twe even though system doesnotknow all ntegrity constaints!
O verview M amn in plem entation techniques
¢ Tmnsactions ® Logging
¢ Im plem entation Techniques - Interaction w ith bufferm anagem ent
- Heas, notdetails! - U se In restart procedure
— Tn plications forapplication program m ers e Locking
- InplicationsforDBA s e D igtributed Comm it
e W eak isolation issues

Logging

e The log is an append-only collection of
entries, show Ing all the changes to data that
happened, In orderas they happened

e Egwhen T1 changes field gty in 1ow 3 fiom
15 to 75, this fact is recorded as a log entry

e L.og also show swhen tms
start/oom m it/abort

A logentry

e I,SN : dentifier forentry, increasing values
e Txn id

e Data item Involved

e O 1d value

e New value

— Som etim es there are separate logs forold
values and new values

Exta features

® [.og also records changesm ade by system
itself

- Eg when old value is restored during rolback
¢ Log entres are Iinked foreasieraccess to
pastentries
- Link to previous Iog entry
- Link to previous entry forthe sam e tkn

Bufferm anagem ent

e Each page hasplace for LSN ofm ostrecent
change to thatpage

e W hen apage is fetrhed nto buffer, DBM S
rem em bers latest LSN atthattim e

¢ Log itself isproduced in buffer, and flushed to
disk (@ppending to previously flushed parts) from
tmetotime

e Tmporantmles govem w hen buffer flushes can
occur, relative to LSN s involved

— Som etin es a flush is foroed (g g flush foroed when
tm comm its)

U sing the Iog

e Tomwlback tn T
- Follow chain of T ’s log entries, backw ards
- Foreach entry, restore data to old value, and
produce new log record show Ing the restoration
- Produce log record for “abort T”

Resart

e A fitera crash, ollow the log forward,
replaying the changes
- ie.re-ns@llnew value recorded n log
e Then rolback all tms thatw ere active at the
end of the Iog

e Now norm alprocessing can resum e

O ptim izations

® Use LSN srecorded In each page of data, to
avoid repeating changes already reflected n
page
e Checkpomts: flush pages thathave been in
buffertoo long
- Record in Jog that thishasbeen done
- Durng restart, only repeathistory since last ©or
second-last) checkpoint

D on'tbe o confident

¢ Crashes can occur during rollback orrestart!
- A Igorithm sm ustbe idem potent
e M ustbe sure that log is stored separately from
data (on differentdisk anay; often replicated off-
site!)
— Th case disk crash comupts data, Iog allow s fixing this
— Also, since bog is append-only, don’tw anthave random
access o data m oving disk heads aw ay

Com plexities

e Changes to Index stuctures
- Avoid Jogging every tim e index is reananged
e M ultbthreading n log w riting
- U ee standard O S latching to preventdifferent
tasks conupting the log’s stucture

ARIES

e Until1992, textbooks and research papers
described only sim ple logging technigues
that did notdealw ith com plexities

e Then C .M chan (IBM) published a series of
papers describbing AR IES algorithm s

— Papers are very hard to read, and om itcrmucial
details, butat least the ideas of real system sare
now avaikble!

In plications

e Forapplication program m er
— Choose ttm boundaries to lnclude everything
thatm ustbe atom ic
- UseROLLBACK togetoutfrom amess
e ForDBA
- Tune forperfom ance: adjust checkpoint
frequency, am ountof buffer for log, etc
- Look afterthe Iog!

M amn in plem entation techniques

* Logging
e Locking
— Lock m anager
— Lock m odes
- G ranularity
- U sercontrol
e D igrbuted Comm it

Lock m anager

e A stucture In (volatilem em ory) IntheDBM S
w hich rem em bers w hich tas have set Jocks on
w hich data, n which m odes
e Ttrefctsa requestto getanew lock ifa
conflicting Jock is already held by a different tm
® NB :a lock does notactually preventaccess to the
data, itonly prevents getting a conflicting lock
— So data protection only com es if the right Iock is
requested before every access to the data

Lock m odes

e TLocks can be forw riting W), rrading R)
orotherm odes

e Standard conflictmules:twoW Jockson the
sam e data item conflict, sodooneW and
oneR lock on the sam e data

— How ever, two R Jocks do notconflict
o ThusW =exclusive, R =shared

A utom atic Jock m anagem ent

e DBM S requests the appropriate lock
w henever the app program subm isa
1equest to read orw rite a data item

e If lock isavailable, the access is perform ed

e Tf lock isnotavailable, the whole ta is
blocked until the lock is cbtained

- A fiera conflicting Jock hasbeen released by
the other tn thatheld it

Strict tw o-phase lockng

e T,ocks thata txn obtains are keptuntil the
tn com pletes
— Once the ttm comm its oraborts, then all its
Jocks are released (@spartof the comm itor
wlback processing)
® Two phases:
— Locks are being cbtained w hile tkn nuns)
— Locksare released (when tm finished)

Serializability

e Tf each transaction does strict tw o-phase
locking (rquesting all appropriate Iocks),
then executions are serializable

e How ever, perform ance does suffer, as tkms
can be blocked for considerable periods

- D eadlocks can arise, requiring system -nitated
aborts

Example -NoD ity data

pl |sl |2 pl |etc
AcceptRetinn fpl s1,50) M akeSale ol 2 65)

10

Update row 1:25 - 75 pl |2 70

p2 |etc
/AW -locks hStore. row 1

44

update ow 2:70->5 | P2 | sl | 60 etc |etc
/2 W -locks hstore xow 2

ty £ind sum +//blocked | SF | €€ | &F

// asR -lock on hstore yow 1
//can'tbe cbtained

Abort

Thitial state of hStore, Product

//rolback 1ow 1 to 35 ; 1elease Jock pL |sk 25 pl |etc |10
//now getlocks 1 70
find sum : 40 P < p2 |etc |44
ROLLBACK
p2 |s1 |60
//1ow 2 restored to 7 e | et | eto

et et |etc

Thitegrity constramnt is valid

Fialsate of hStore, Product

10

Example — No Lostupdate

ClearOutfpl 1) AcosptRetum (pl £1,60)

Query hStore; gty 525
/L R -lock IStore xow 1
Add 25 toW arehouseQ ty:40->65
/LW <Jock Productiow 1
try Update row 1
//blocked
//asW -lock on InStore xow 1
//can'tbe dbtained
Update row 1, setting itto 0
/M upgrades to W -lock on Store xow 1
COMM IT //release t1's locks
//mow getW -lock
Update row 1:0->60
COMM IT

Outoom e Is sam e as serial
C JearO ut; A coeptR etum

1 sl 25
B pl |etc |40

1 |2 [so0
B p2 |et |55

2 sl 4
P s ete et |etc

et |etc |etc

Thital state of hStore, Product
pl sl 60

pl |etc |65

pl |2 |50
p2 |etc |55

p2 sl |45

ete et |etc

etc |ett |etc

Final state of lStore, Product

G ranularity

e W hatisadata t=m (on which a Jock is dbtained)?
— M osttin es, nm ostsystam s: item isa tuplke i atabke
— Som etin es: item isapage (w ith several uples)
— Som etin es: fem isawhok @bk

e Tn orderto m anage conflicts properly, system gets
“ntention” m ode locks on larger granules before
getting actualR N Jocks on am allergranules

Explicit lock m anagem ent

e W ithmostDBM S, the application program
can include satem ents to setorrelease

Jlockson a table
- D etails vary

e EgLOCK TABLE IhStore IN

EXCLUSIVEMODE

In plications

e Forapplication program m er
- Iftm madsm any 1ow s In one &bk, consider ocking
the whole table first

- Considerw eskerisoltion (see bter)
e ForDBA

— Tune forperfom ance: adjustm ax num berof ocks,
granulrity factors

— Possibly redesign schem a to preventunnecessary
conflicts

— Possibly adjustquery plns if Jocking causes problem s

In plem entation m echanism s

¢ Logging
e Locking
e D istrbuted Comm it

T ransactions acrossm ultiple DBM S

e W ithin one transaction, there can be
statem ents executed on m ore than one
DBM S

e To be atom ic, w e sillneed all-ornothing

e Thatm eans: every nvolved system must
produce the sam e cutcom e
- Allcomm itthe tkn
- Orallabort it

11

W hy i'shard

e Tnaghe sending to each DBM S to say
“comm it this tm T now ”

e Even though thism essage ison itsway,
any DBM S m ightabort T spontanecusly

- eg.duetoasysEm crash

NB unrehted to “tw o-phase Iocking”

Tw o-phase comm it

e The solution is foreach DBM S to first
m ove to a pecial situation, w here the tm is
“prepared”
e A crash won’taborta prepared tm, itw ill
leave it in prepared sate
- So allchangesm ade by prepared tm m ustbe
recovered during resart (ncluding any locks
held before the crash)

Basic dea
e Tw o round-trips of m essages

- Request to prepare/ prepared oraborted
- EitherComm it/com m itted orA bort/aborted

Only ifallDBM Ssare already prepared !

R ead-only optim isation

e Tfa ttm has nvolved aDBM S only for
reading butno m odifications atthat
DBM S), then itcan drop outafter first
wund, w ithout preparing

— The outoom e doesn‘tm atter to it!
— Specialphase 1 reply: ReadOnly

Faultolerantprotocol

e The Iterchange of m essages betw een the
“coordinator’ fpartof the TPM onitor
softw are) and each DBM S is tricky

- Each participantm ust record things in log at
specific tim es

- Butthe protocolaopes w ith Jostm essages,
Inopportine crashes et

In plications

e Forapplication program m er
— Avoid putting m odifications to m ultiple datebases n a
single tm
® Perform ance suffersa ot
® W -Locksare held during the m essage exchanges, w hich take
much Jongerthan usual ta durations
e ForDBA
- M onitorperfom ance carefully
— M ake sure you have DBM S that supportprotocol

12

O verview

e Transactions
e T plem entation techniques
e W eak isolation issues

- Explicituse of Iow levels

- Use of replicas

- Snapshot isolation

Problem sw ith serializability

e The perform ance reduction firom isolation ishigh
- Transactions are often blocked because they w ant to
read data thatanothertm has changed
e Form any applications, the accuracy of the data
they read isnotcmicial
- eg.overbooking aplkne isok i practice
- eg.yourbanking decisions w ould notbe very different
ifyou saw yesterday’s balance stead of the m ostup-
to-date

A andD m atter!

e Even w hen isolation isn’tneeded, no one is
w lling to give up atom icity and durability
— These dealw ith m odifications a txn m akes
- W rting is Jess frequent than reading, so Iog
entries and w rite Jocks are considered w orth the
effort

Explicit isolation levels

e A transaction can be declared to have
isolation properties thatare less stringent
— HoweverSQL standard says thatdefault should
be serializable (@lso called “level 3 isolation”)
— Tn practice, m ost system shave w eakerdefault
Jevel, and m ost ttns mun atw eaker levels!

Brow e

e SET TRANACTION ISOLATION LEVEL
READ UNCOMM II'TED
— Donotsetread locksatall
® O foourse, stdll setw rite Jocks before updating data
o If fact, system forces the t t© be read-only unless
you say otherw ise
- ATow stxn to read ditty data (Bom a ta that
w i1l later abort)

Cursor sability

e SET TRANACTION ISOLATION LEVEL

READ COM M M ITTED

- Setread Iocksbutelease them afterthe read ha
happened
® eg.when cursorm oves onto anotherelem entduring scan of
the resultsofam ulthiow query
- ie.donothold R -locks till tkn com m its/aborts
- Data isnotditty, but itcan be inconsistent (oetw een
reads of different item s, oreven betw een one read and a
bterone of the sam e item)
* Egpecially, weird things happen betw een different row s
retumed by a cursor

13

R epeatable read

e SET TRANACTON ISOLATION LEVEL

REPEATABLE READ

— Setread ocks on data item s, and hold them tlltkn
finished, butrelease Iocks on Indices as soon as index
hasbeen exam ed

— ATow s “phantom s”, 1ow s thatare not seen n a query
thatoughtto havebeen (orvice versa)

— Problem s if one tin is changing the setof 1ow s that
m eeta condition, while another txn is retrieving that set

Stale replicas

e Tnm any distrbuted processing situations, copies
of data are kept at several sites
- eg.talbw cheap/ffast bcal reading
e Tfupdates try to alterall replicas, they becom e
very slow and expensive (they need tw o-phase
comm i, and they’Tlabort if a rem ote site is
unavailkble!)
e Soallow replicas to be ocut-of-date
Lazy propagation of updates
- Elasﬂymanagedbyshjppjng&lebgaa:ossfmm tneto
tine

Reading stale r=plicas

e Tfa tn readsa local replica which isabit
stale, then the value read can be ocut-of-date,
and potentially inconsistentw ith otherdata
seen by the ttm

e Tm pact is essentially the ssme asREAD
COMM IT'TED

Snapshot Isolation

e M ostDBM S vendors use variants of the
sandard algorithm s
e H ow ever, one very m ajorvendoruses a
different approach: O racle
— Before version 7 3 itdid not support
BOLATON LEVEL SERIALIZABLE atall

- Now itallow sthe SQL comm and, butusesa
differentalgorithm called Snapshot Isolation

Snapshot Isolation

e Read of an item doesnotgive currentvalue
e Tnstead, use the recovery log to find value thathad
been m ost recently comm itted at the tim e the tkm
started
— Exoception: if the ttn hasm odified the item , use the
valie itw ote itself
e The transaction seesa “sapshot” of the database,
atan earliertine
- Tntuidon: this should be consistent, if the database w as
consistentbefore

Checks forconflict

o Tf tw 0 overlapping txns try to m odify the
sam e item , one w illbe aborted

e Tm plem ented w ith w rite Jocks on m odified
oW S

— NB one txn outof the conflicting pair is
aborted,, rather than delayed as In conventional
approach

14

Benefitsof ST

e N o cost forextra tim e-ravel versions
- They are n log anyw ay'!
® Reading isneverblocked
e Prevents the usual anom alies
- Nodirty read
- No lostupdate
- N o Inoconsistent read

Problem sw ih ST

e STdoesnotalw ays give serializable
executions
- despite O racle using Efor "ISOLATION
LEVEL SERIALIZABLE)
e Tiegrity C onstraints can be violated
- Even if every application isw ritten to be
consistent!

NB :sum uses ol value of row 1 and Product,
and self-changed value of row 2

Example - Skew W rite
pl |1 |30 pl |etc |32
pl |2 |35 2 |et |44

M gkeSale 1 51,26) M akeSale 1l 2 25)[p2 |s1 |60
U e oW 1:30->4
update 1ow 2:35->1 O er:em pty

find sum : 72 Thital sate of MStore, Product, O e
//Noneed to hsertow n O rdej

ete |etc |etc

etc |etc |etc

Skew W rites

® STbresks serializability w hen tnsm odify
different item s, each based on a previous state of
the irem the otherm odified

e This is fairly rare In practice

e Egthe TPC -C benchm ark nins correctly under ST

— when txns conflictdue to m odifying differentdata,
there isalso a shared iem they both m odify too (ke a
totalquantity) so SIw illabortone of them

pl | |4
Find sum :71 pl |etc |32
//Noneed to nsertrow 11 O rder pl |2 |10 2 et |44
coMM IT
p2 |sl |60
coMM T et |etc |etc
- — etc |etc |etc
mtsg@mnstramt:sﬁj&. O mer:em pty
Sum 546 .
Final state of hStore, Product, O der
In plications

e Forthe application program m er
- Think carefully aboutyour program s behavior
if reads are lnaccurate
- Ifpossible w ithout com prom isihg conectmess,
mn at low erisolation level to In prove
perform ance
e Forthe DBA

- W atch like a haw k for conuption of the data,
and have strong processes to conect it!

To lesammore

e CSEP 545 Transaction Processing
e Taughtby Prof PhilBemstein M icrosoft&
UW adjinct
— author of one of the bestbooks on the subject
(eand nventor of som e of the in portant ideas!)

15

