Computability Theory: Vocabulary Lesson

We call a set $S \subseteq \Sigma^*$ a language.

We say the language S is **decidable** or recursive if there is a program P such that:
- $P(x) = \text{yes}$, if $x \in S$
- $P(x) = \text{no}$, if $x \not\in S$

We already know: the halting set K is **undecidable**.

Decidable and Computable

Subset S of Σ^* \iff Function f_S

- $x \in S \iff f_S(x) = 1$
- $x \not\in S \iff f_S(x) = 0$

Set S is decidable \iff function f_S is computable

Sets are “decidable” (or undecidable), whereas functions are “computable” (or not).

Some Important Terminology

We say the language S is **recognizable** or recursively enumerable if there is a program P such that:
- $P(x) = \text{yes}$, if $x \in S$

Claim: The Halting Set K is recognizable.
- $K = \{ \text{TM } P | P(P) \text{ halts} \}$

Claim: $K^c = \{ \text{TM } P | P(P) \text{ doesn’t halt} \}$ is not recognizable.

Some Important Terminology

We say the language S is c.e. (computably enumerable) (or sometimes just enumerable) if there is a TM P such that, when started with a blank tape, lists all and only the strings in S (separated by blanks).

We call P an enumerator for S.

Theorem: A language is recognizable iff it is c.e.

Some Important Terminology

Theorem: A language is recognizable iff it is c.e.

Proof:

\Rightarrow

Suppose there is an enumerator E for L.
How would you build a recognizer for L using E?

Theorem: A language is recognizable iff it is c.e.

Proof:

\Rightarrow

Suppose that M recognizes L.
Let s_1, s_2, \ldots be a list of all strings in Σ^*.
Repeat the following for $i = 1, 2, 3, \ldots$

- Run M for i steps on each input s_1, s_2, \ldots, s_i.
- If any of the computations accept, output corresponding s_j.

More undecidable problems

We’ve shown the following undecidable:

- \(K = \{ <P> \mid P \text{ is TM and } P(P) \text{ halts} \} \)
- \(K_0 = \{ <P> \mid P \text{ is TM that takes no input and halts} \} \)
- Hello, Equal…

Let’s do a few more:

- \(A_{TM} = \{(P, w) \mid P \text{ accepts } w \} \) is undecidable.
- \(E_{TM} = \{(P) \mid L(P) \text{ is empty} \} \) is undecidable.
- \(REG_{TM} = \{ <P> \mid P \text{ is a TM and } L(P) \text{ is a regular language} \} \) is undecidable.

Reduction via computation histories (Sipser Section 5.2)

Post Correspondence Problem (PCP)

Input: collection of dominos

Output: yes, if there is a list of these dominos (with repetition) so that the string on top = string on bottom.

Theorem: PCP is undecidable

Computation history

Let \(M \) be a Turing machine and \(w \) an input string.

The computation history of \(M \) on \(w \) is the sequence of configurations the machine goes through as it processes the input.

It is a complete record of the computation.

Undecidability of PCP

For any \((P, w) \), we’ll construct a PCP instance such that there is a match iff \(P(w) \) accepts.

Idea: put together a set of dominos that will correspond to a computation history.

Proof on board.

Reducibility (formally)

A function \(f: \Sigma^* \rightarrow \Sigma^* \) is a computable function if there is a TM that, on every input \(w \), halts with \(f(w) \) on its output tape.

Language \(A \) is mapping reducible (write \(A \leq B \)) to language \(B \) if there is a computable function \(f: \Sigma^* \rightarrow \Sigma^* \) where for every \(w, w \in A \) iff \(f(w) \in B \).
Reducibility (formally)

Language A is mapping reducible (write $A \leq B$) to language B if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ where for every w, $w \in A$ iff $f(w) \in B$

$A \leq B$ and B is decidable $\implies A$ is decidable.

$A \leq B$ and A is undecidable $\implies B$ is undecidable.

$A \leq B$ and B is recognizable $\implies A$ is recognizable.

$A \leq B$ and A is not recognizable $\implies B$ is not recognizable.

Rado's Busy Beaver

We can classify Turing machines by how many rules they have in the tape head.

Of the ones with n rules, some halt and others run forever when started on a blank tape.

What's the maximum number of steps $S(n)$ that any machine with n rules takes before it halts?

Call this number $S(n) = n$th "Busy Beaver" number.

$S(n)$: finds the busiest beaver with n rules, albeit not infinitely busy.

<table>
<thead>
<tr>
<th>n</th>
<th>$S(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>$> 47,176,870$</td>
</tr>
<tr>
<td>6</td>
<td>$> 8,690,333,381,690,951$</td>
</tr>
</tbody>
</table>

In fact, they grow so fast that we can prove:

Theorem: $S(n)$ is not computable.

Some of the big ideas we've seen so far

• The Turing Machine model and the Church-Turing thesis
• Universality via duality
• Undecidability.
• Diagonalization and the different types of infinity
• Notion of reduction.

Next up: Complexity

We focus next on efficiency of computation.

Let $T: \mathbb{N} \rightarrow \mathbb{N}$

$\text{DTIME}(T(n))$ is the set of Boolean functions that are computable in $O(T(n))$ time.

Our notion of efficiently solvable: polynomial time computable,

$$P = \cup_n \text{DTIME}(n^c)$$
Circuit Complexity

Question:

• Given a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$, what is the size of the smallest circuit that computes it? (how many gates?)
• Warmup: XOR of n inputs given 2-input XOR gates. How many do we need?

Shannon's Counting Argument

Is there a Boolean function with n inputs that requires a circuit of exponential size in n?

Yes, in fact, most functions.

Very complex functions exist, but this argument doesn't give us a single example!!!
Called nonconstructive.

Hartmanis–Stearns

The QuickHalt Problem:
Given as input a TM P, int n, does $P(P)$ halt in $\leq n^3$ steps?

Claim: Any TM to solve this problem needs at least n^3 steps.

THEOREM: There is no program to solve the QuickHalt problem in $< n^3$ steps.

Suppose a program QHALT existed that solved the quick halting problem in say $n^{2.99}$.

\[QHALT(P,n) = \begin{cases}
 \text{yes, if } P(P) \text{ halts in } n^3 \\
 \text{no, otherwise.}
\end{cases} \]

We will call QHALT as a subroutine in a new program called CONFUSE.

CONFUSE

CONFUSE(P)
{ if (QHALT(P,n))
 then loop forever;
 // i.e., $P(<P>)$ halts in n^3 steps
 else exit; // in this case, Confuse halts in $\leq n^{2.99}$ steps.
}

What happens with CONFUSE(CONFUSE)?

CONFUSE

CONFUSE(P)
{ if (QHALT(P,n))
 then loop forever;
 // i.e., $P(<P>)$ halts in n^3 steps
 else exit; // in this case, Confuse halts in $\leq n^{2.99}$ steps.
}

Suppose CONFUSE(CONFUSE) halts in $\leq n^3$ steps:
then QHALT(CONFUSE,n) = TRUE
= CONFUSE(CONFUSE) will loop forever
Suppose CONFUSE(CONFUSE) doesn’t halt in $\leq n^3$
then QHALT(CONFUSE,n) = FALSE
= CONFUSE(CONFUSE) will halt in $< n^3$

CONTRADICTION
Theorems we skipped from Arora/Barak Chap 1

Robustness of TM definition (alphabet size, number of work tapes, bidirectional tapes)

Efficient Universal Turing Machine

Many others in Sipser Chapters 3-5.

Extra Problems if there is time

Rice’s Theorem

Problems from homework