CSEP 527
Computational Biology

Gene Expression Analysis



Assaying Gene Expression



Microarrays

Control Cells Test Cells

fﬁi@

Isolate RMNA *

Label {

s
s

fix and Hybrldlze\/
/ Y / Quantitation
TR D D T and Analysis




RNAseq
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Goals of RNAseq

#1: Which genes are being expressed?

How? assemble reads (fragments of mRNAS) into
(nearly) full-length mRNAs and/or map them to a
reference genome

#2: How highly expressed are they?

How? count how many fragments come from each
gene—expect more highly expressed genes to yield
more reads, after correcting for biases like mRNA

length
#3: What’s same/diff between 2 samples
E.g., tumor/normal

#4: ...



Recall: splicing
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RNAseqg Data Analysis

De novo Assembly
mostly deBruijn-based, but likely to change with longer reads

more complex than genome assembly due to alt splicing,
wide diffs in expression levels; e.g. often multiple “k’s” used

pro: no ref needed (non-model orgs), novel discoveries
possible, e.g. very short exons

con: less sensitive to weakly-expressed genes

Reference-based (more later)
pro/con: basically the reverse

Both: subsequent bias correction, quantitation,
differential expression calls, fusion detection, etc.



BWA
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“TopHat” (Ref based example)

map reads to ref transcriptome (optional)
map reads to ref genome

unmapped reads remapped as 25mers
novel splices = 25mers anchored 2 sides
stitch original reads across these

Roughly: 10m reads/hr, 4Gbytes
(typical data set 100m—1b reads)



(1) Transcriptome alignment (optional)
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(3) Spliced alignment b
Readsare split L——1

into segments
| | g¢ Unmapped segment

(3-1) Segmentalignment to genome
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(2-2) Identification of splice sites
(including indels and fusion break points)

[3-3) Segments aligned to junction
flanking sequences

(3-4) Segment alighments stitched
togetherto form whole read alignments
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| Readare aligned against transcriptome.

’- Transcriptome index

Reads are aligned against genome.

Genome index

v
Reads are split into smaller segments
which are then aligned to the genome.

Genome index
e

Segmentmappings are used to find potential splice sites
usually when the distance between the mapped positions
of the left and the right segments are longer than the
length of the middle part of a read.

b

Sequencesflanking a splice site are concatenated

and segments are aligned to them.
. | —

Junction flanking index

jye/
Mapped segments against either genome or flanking

sequences are gathered to produce whole read alignments.

b

Genome mapped reads with alignments extendinga few
basesinto introns are re-aligned to exonsinstead.

Kim,et al. 2013. “TopHat2: Accurate Alignment of
Transcriptomes in the Presence of Insertions,
Deletions and Gene Fusions.” Genome Biology 14 (4)
(April 25): R36. doi:10.1186/gb-2013-14-4-r36.



RNAseq Example
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RNAseq protocol (approx)

Extract RNA (either polyA <> polyT or tot — rRNA)
Reverse-transcribe into DNA (“cDNA”)

Make double-stranded, maybe amplify

Cut into, say, ~300bp fragments

Add adaptors to each end

Sequence ~100-175bp from one or both ends

CAUTIONS: non-uniform sampling, sequence
(e.g. G+C), 5’-3’, and length biases
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RNAseq:
Bias Correction & Alt Splicing



“All High-Throughput
Technologies are Crap
— Initially”

Q. Morris
7-20-2015



RNA seq
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RNA - — Sequence — — Count

It’s so easy, what could possibly go wrong!?



What we expect:
Uniform Sampling

100 - Count reads starting at
each position, not those
covering each position

73 -
50 -

0 -
| |

| | |
0 50 100 150 200

Uniform sampling of 4000 “reads” across a 200 bp “exon.”
Average 20 * 4.7 per position, min = 9, max =33
l.e., as expected, we see = U £ 30 in 200 samples



What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are = +100 above mean

Count reads starting at

Uniform each position, not those
U i iy covering each position
200~ Actual

Unadjusted
Counts

N s bl

3’ exon
Apoa2 >——r——>——>——> 200 nucleotides |
| | | |
chr1 173,156,174 173,156,274 173,156,374 173,156,474

Mortazavi data



What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are = +100 above mean

Unadjusted

Counts

Count reads starting at

Uniform each position, not those
0 i covering each position
200~ Actual

0- LM.QMMJLLM

How to make it more uniform?
A: Math tricks like averaging/smoothing (e.g.“coverage”)

or transformations (“log”), ..., or

WE DO

B: Try to model (aspects of) causation = _



The Good News: we can (partially) correct the bias
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and platform/sample-dependent

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.



(a) sample foreground sequences
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Formally...

A reasonable definition of unbiasedness:

Pr(read at i) = Pr(read at i|sequence at i)
From Bayes...

Pr(sequence at i|read at i) Pr(read at i)

Pr(read at i|sequence at i) = Pr( 6 1)
r(sequence a

So we might define bias as

Pr(sequence at i|read at 1)

bias at position 1 = ,
. Pr(sequence at 1)



Modeling Sequence Bias

Want a probability distribution over k-mers, k = 40?
Some obvious choices:

Full joint distribution: 4%-1 parameters

PWM (0-th order Markov): (4-1)*k parameters
Something intermediate:

Directed Bayes network



Form of the models:

Directed Bayes nets

One “node” per nucleotide,
+20 bp of read start
‘Filled node means that
position is biased
*Arrow i = j means letter at
position i modifies bias at |
*For both, numeric
parameters say how much

Wetterbom
(282 parameters)



NB:

*Not just initial
hexamer

*Span > |9

*All include
negative
positions

*All different,
even on same
platform

ABI

Wetterbom Katze
(282 parameters) (684 parameters)

lllumina

Bullard Mortazavi Trapnell
(696 parameters) (582 parameters) (360 parameters)



Result — Increased Uniformity

Kullback-Leibler Divergence
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Result — Increased Uniformity
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“First, do no harm”

Theorem: The probability of “false bias discovery,” i.e., of
learning a non-empty model from n reads sampled from

unbiased

10V =

A

data, declines exponentially with n.

Prob(non-empty model | unbiased data)

If > 10,000 reads are used, the probability
of a non-empty model < 0.0004

| | 10

10" 10 10°

Number of training reads



how different are two distributions?

Given: r-sided die, with probs pi...pr of each face. Roll it n=10,000 times; observed
frequencies = qy, ..., gqr, (the MLEs for the unknown gi’s). How close is p; to qi!

Kullback-Leibler divergence, also known as relative entropy, of Q with respect to P is defined as
Q| | P Z gi ln

where g; (p;) is the probability of observing the i event according to the distribution Q (resp.,
P), and the summation is taken over all events in the sample space (e.g., all k-mers). In some
sense, this is a measure of the dissimilarity between the distributions: if p; ~ g; everywhere,
their log ratios will be near zero and H will be small; as g; and p; diverge, their log ratios will

deviate from zero and H will increase.

Fancy name, simple idea: H(Q)||P) is just the expected per-sample contribution to
log-likelihood ratio test for “was X sampled from Ho: P vs H;: Q?”

So, assuming the null hypothesis is false, in order for it to be rejected with say, 1000 : 1
odds, one should choose m to be inversely proportional to H(Q||P):

mH(Q||P) > In 1000

_ In1000
~ HIIP)



Continuing the notation above, suppose P as an unknown distribution with parameters py, . . ., p,

S~ pi = 1 where r is the number of points in the sample space (e.g. r = 4¥ in the case of k-
mers). Given a random sample X1, X3, ..., X, of size n = . X; from P, it is well known that
the maximum likelihood estimators for the parameters are q; = % ~ p;. How good an estimate
for P is this distribution Q? The estimators are unbiased:
) [X] £ _m_,
n n n

and the standard deviation of each estimate is proportional to 1/4/n, so these estimates are in-
creasingly accurate as the sample size increases. A more quantitative assessment of the accuracy
of the estimator is obtained by evaluating the KL divergence:

H(Q||P) = Zq,ln Zq,ln <1+ pp,)



Using the first two terms of the Taylor series for In(1 + x), this is
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The summation is the test statistic for the x? goodness-of-fit test for a multinomial distribution,
and as n — oo is known to follow a x? distribution with r — 1 degrees of freedom. Finally, the
expected value of such a random variable is r — 1, hence the expected KL divergence of the MLE

inferred distribution Q with respect to the true distribution P is

r—1
2n

EH(QIIP)] =

Relative Entropy, wrt Uniform, of Observed n balls in r bins

Each Circle is mean of 100 trials; Stars are theoretical estimates for n/r >= 1/4.
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... and after a modicum of algebra:
EIHQIIP)] =

... which empirically is a good approximation:

log2(relative entropy)

-10
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-20

LLR of error rises with
number of parameters r,
declines with size of
training set n

r—1
2N

Relative Entropy, wrt Uniform, of Observed n balls in r bins

Each Circle is mean of 100 trials; Stars are theoretical estimates for n/r >= 1/4.
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Median Goodness of Fit

... while accuracy and runtime rise with n (empirically)

858 sec.

2667 sec.

225 sec.
0.20-

0.15-
Training time:
0.10- 5 5
|04 reads in minutes;
10° reads in an hour
0.05-

0.00-

| 04 ' '
10*° 10°

10'3.5
Number of Reads

6549 sec.

Figure 8: Median R? is plotted against training set size. Each point is additionally labeled with

the run time of the training procedure.



does it matter?

Possible objection to the approach:

Typical expts compare gene A in sample | to itself in
sample 2. Gene A’s sequence is unchanged,“so the
bias is the same” & correction is useless/dangerous

Responses:

SNPs and/or alternative splicing might have a big effect, if
samples are genetically different and/or engender

changes in isoform usage

Atypical experiments, e.g., imprinting, allele specific
expression, xenografts, ribosome profiling, ChlPseq, RAPseq, ...

Bias is sample-dependent, to an unknown degree

Strong control of “false bias discovery” = little risk

24



Batch Effects? YES!

a

NVS 2
NVS 1
MAY 2
MAY 1
CNL2
CNL1
BGI 2
BGI1
AGR 2
AGR1

Salmon
o

Isolator

Kallisto

Isolator Sailfish eXpress

0.964
NVS 2 [ | r Proportionality
NVS 1 ‘ Correlation
n
. 1.00

075

eXpress
£

Cufflinks

0.50

- =

0.00

.
oo ’:’: :.:::::’o % %
.

BitSeq

-0.04 -0.02 0.00 0.02 0.04

Kallisto Change in correlation
0.761 due to bias correction

A: Pairwise proportionality correlation between technical replicates; | lane
of 2 flowcells each at 5 sites, all HiSeq 2000. B:The absolute change in

correlation induced by enabling bias correction (where available).
For clarity, BitSeq est. of "MAY 2”, excluded; bias correction was extremely detrimental there. 75



ORIGINAL PAPER

Vol. 28 no. 7 2012, pages 921-928
doi: 10.1093/bioinformatics/bts055

Gene expression Advance Access publication January 28, 2012

A new approach to bias correction in RNA-Seq

Daniel C. Jones':™;
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Availability

Bioconductor .

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Home » Bioconductor 2.12 » Software Packages » segbias

segbias

Estimation of per-position bias in high-throughput sequencing data

Bioconductor version: Release (2.12)

Download stats for Software package seqgbias

This package implements a model of per-pos This page was generated on 2015-06-01 06:29:02 -0700 (Mon, 01 Jun 2015).

using a simple Bayesian network, the structu

reads and a reference genome sequence. seqbias home page: release version, devel version

Author: Daniel Jones <dcjones at cs.washing

Maintainer: Daniel Jones <dcjones at cs.wasl

To install this package, start R and enter: 1000 E ! ! ! ! ! ! E
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 50 ]
source("http://bioconductor.org/ i Month _ Nb of downloads
biocLite("seqgbias") Jul/2014 _ 252
g | Aug/2014 [INE36 360
To cite this package in a publica | Sep/2014 _ 360
,,,,,,,,,,,,,,,,,,,,,,,,,,, ; Oct/2014 [ENNNS7 292
] Nov/2014 [NET7 209
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 Dec/2014 [iEE 311
| Jan/2015 [HEs a71
Docur Feb/2015 [EE 270
& Assessing and Adjusting 10 E Mar/2015 _ 327
2 “& Reference Manual ] Apr/2015 IEIINH70 264
5 ] May/2015 [IE3 220
i Jun/2015 G 0
2 | All months [IH648 3326
1 [ Nb of distinct IPs
1 Nb of downloads
0

Sep/2014 Dec/2014 Mar/2015 Jun/éOlS
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Alternate Splicing
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Day 20

1 Year
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Is Isoform Quantification Hard?

Sequencing depth per-isoform is lower
Many reads ambiguously mapped to multiple isoforms
Isoform proportions and total expression may both vary

All the previously-mentioned bias issues, including batch
effects, affect all measurements

Differences among isoforms may be only a small fraction
of nucleotides in transcript, potentially exacerbating bias

32



DiffSplice

Cuftdiff

Liu, et al. BMC
Bioinformatics
15.1 (2014): 364

DEXS il 33



In Progress

Isolator
Soon to be the world’s best isoform quantitation tool

Bayesian hierarchical model + fast MCMC sampler
give mean and uncertainty in estimates

Can handle dozens of RNAseq samples per hour

When data is lacking, estimates are shrunk towards each other,
supressing suprious changes.

Experiment Experiment
’\ . .
/Dam /1 Year Conditions
1 2 3 1 2 3 Replicates

1 read vs. 2 reads is probably not a 2-fold change in transcription!

34



Why a Hierarchical Bayesian Model?

In a nutshell:

A natural assumption is that “nothing has changed,”
unless refuted by data. (Most genes don’t change.)

Hierarchical model allows estimation of baseline
expression/isoform usage/variability across all samples

This helps compensate for lower per-isoform coverage

35



Why MCMC?

In a nutshell: posterior means are more stable than MLEs

Likelihood surface max often a broad plateau, not a sharp peak

Toy example:
Isoform |, length ki ———————
Isoform 2, length 2k:

For simple likelihood But one read
model, one read here here gives zero
yields MLE expression as MLE for Isol!

of Isol twice that of Iso2

OTOMH, posterior mean is not zero in either case

36



Some Benchmarks

“Sequencing Quality Consortium” (SEQC)

4 RNA samples with spike-ins

They ran RNAseq
They did extensive PCR for “gold standard”

We ran multiple tools (on common alignment)

Evaluated “Proportionality correlation”
(2°covariance/sum-of-variances, log-scale; usual -1 ... | range)



Method A B C D
Isolator 0.878 0.866 0.839 0.852
Cufflinks 0.870 0.856 0.799 0.841]
eXpress 0.870 0.855 0.829 0.840
Salmon 0.866 0.852 0.826 0.836
RSEM/ML 0.865 0.851 0.825 0.835
BitSeq 0.840 0.821 0.802 0.813
Kallisto 0.858 0.840 0.817 0.826
Sailfish 0.844 0.814 0.797 0.802
RSEM/PM  0.840 0.822 0.803 0.811

Table 2: Proportionality correlation between gene-level quantification
of 18353 genes using PrimePCR gPCR and RNA-Seq quantification.



Method A B C D
Isolator 0.979 0.978 0.981 0.982
Salmon 0.976 0.975 0.978 0.979
Kallisto 0.972 0.972 0.973 0.976
Sailfish 0.970 0.969 0.969 0.972
Cufflinks 0.967 0.969 0.972 0.974
RSEM/PM 0.943 0.949 0.944 0.949
RSEM/ML 0941 0948 0945 0.951
BitSeq 0.940 0.949 0.943 0.946
eXpress 0931 0.939 0.935 0.942

Table 3: Proportionality correlation between known
proportions of 92 ERCC spike-in controls and RNA-

Seq quantification.



Method

cvs 0.75a + 0.250 dvs 0.25a + 0.75b

Isolator 0.975 0.975
BitSeq 0.967 0.967
RSEM/PM 0.968 0.967
Sailfish 0.932 0.925
RSEM/ML 0.922 0.919
Salmon 0.916 0.914
Kallisto 0.907 0.902
eXpress 0.903 0.899
Cufflinks 0.870 0.916

Table 4: Proportionality correlation betweer
transcript-level estimates for the mixed samples
C and D and weighted averages of estimates for A
and B, corresponding to the mixture proportions
for C and D.
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Method Correlation

[solator 0.919
Kallisto 0.887

Salmon 0.886
RSEM/ML  0.881
Cufflinks  0.881
eXpress 0.825
Sailfish 0.816
RSEM/PM  0.806
BitSeq 0.796

Table 5: Proportionality correlation between
sround truth and estimates produced by each
method on simulated RNA-Seq.




0.9

Method

/ M Isolator
0.8 | Cufflinks
RSEM/ML
BitSeq
Salmon
0.7 exXpress
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M Kallisto

RSEM/PM: < 0.6
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Number of Reads

Figure 2: Proportionality correlation between esti-
mates from 4.5 million 300nt MiSeq reads and pro-
sressively larger numbers of HiSeq 2000 reads. (100x2)
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Batch Effects? YES!

a

NVS 2
NVS 1
MAY 2
MAY 1
CNL2
CNL1
BGI 2
BGI1
AGR 2
AGR1

Salmon
o

Isolator

Kallisto

Isolator Sailfish eXpress

0.964
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n
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.
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Kallisto Change in correlation
0.761 due to bias correction

A: Pairwise proportionality correlation between technical replicates; | lane
of 2 flowcells each at 5 sites, all HiSeq 2000. B:The absolute change in

correlation induced by enabling bias correction (where available).
For clarity, BitSeq est. of "MAY 2”, excluded; bias correction was extremely detrimental there. 43



25

Time

20

15

m Execution Time
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Figure 1: Run time needed to process the SEQC data presented in the Results
sections. All methods were run a Google Compute Engine instance backed by
four Intel Xeon cores and 52GB of a memory.
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Let-7 family of microRNA is required for maturation
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cell-derived cardiomyocytes
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background

It is possible to grow cardiomyocytes (heart muscle
cells) from human embryonic stem cells (hESC-CMes)

Can grow billions of them

Can transplant them into animals after heart attack
Cells integrate/heart function improves (after a few weeks)
BUT — arrhythmias, at least in the early stages

Why? Probably because hESC-CMs were immature.

This will be tried in humans within a few years; ability to
lab-culture mature hESC-CMs will greatly improve
chances for success. Growing them quickly will greatly
improve the economics. How can we do that!?
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step 1: find molecular biomarkers for maturity
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step 1 (cont.): find miRNA biomarkers for maturity, too
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step2a: let-7 is driver, not passenger — it’s necessary
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step2b: let-7 is driver, not passenger — it’s sufficient
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step3: characterization

Pathways

Physiology

Etc.
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Back to Story 1: differential splicing speaks, too
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summary

RNAseq data shows strong technical biases
Of course, compare to appropriate control samples
But that’s not enough, due to:

batch effects, SNPs/genetic heterogeneity, alt splicing,

all of which tend to differently bias sample/control

BUT careful modeling can help.
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summary

Alternative splicing changes are very hard to quantify:
lower coverage, ambiguous mapping, bias, ...

BUT careful modeling can help:

Bayesian hierarchical model borrows power across all
samples

Sampling/posterior mean estimation is more robust
than MLE

Sampling allows novel questions to be addressed, e.g.,
“is isoform shift probably monotonic in time”

It doesn’t have to be slow

AND 90% of genes undergo alt splicing for a reason;
you can’t see what it is if you don’t look
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summary

Amazing progress in stem cell technology

Ability to study and control cellular developmental
pathways is one of the frontiers of modern biology

Multi-faceted, multi-disciplinary problems with rich data

In this study, microRNA let-7 identified as a key driver
of cardiomyocyte maturation

Differential splicing of many transcripts clearly
implicated; their exact roles remain to be determined.
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