Parallel Performance

So far the focus has been on finding good ways to solve problems in a way that underconstrains the specification, and thus permits parallel execution. Now, consider the matter of how much performance is actually achieved.

Work reported is from the ZPL project: Brad Chamberlain, Sun-Eun Choi, E Chris Lewis, Calvin Lin, Derrick Weathersby.

The Goal
In parallel computing, performance is the only measure of success.

- In ZPL, and in any programming language intended for writing fast programs, the programmer needs to know approximately how the program will run in order to make decisions about alternate solutions.
- For machine independent languages, this means that only an estimate of performance is possible, but that has proved sufficient in sequential computing.

Recall The CTA Parallel Machine Model

- ZPL uses the CTA as its abstract execution engine.
- Relevant properties emphasize concurrency, locality.
 - P = number of processors.
 - \(\lambda = \) off processor latency, large.
 - Communication network = unspecified, fixed low degree.
 - “Thin” global communication capability.
- CTA is implemented by existing parallel machines.

Allocating Processors To a Computation

To understand how effective our programming is, it is necessary to consider how physical processors will be applied to the computation.

- For data parallel computations such as those expressible with ZPL’s dense arrays, the one-point-per-processor view, dubbed virtual processor view by Steele and Hillis, is popular.
- Think of a logical processor performing the task at each point in a parallel operation.
- 1Pt/Proc is very intuitive.

ZPL Assumes Many Pts/Proc

ZPL allocates arrays to processors so that many contiguous elements are assigned to each processor.

- The array allocation rules:
 - Union the regions, compute bounding region.
 - Accept processor number and arrangement from command line.
 - 1D and 2D processor grids are (presently) available.
 - Allocate the bounding region, inducing array allocation.

- nPt/Proc is just as natural as 1Pt/Proc.

Implications For Array Allocation

The rules imply arrays will have standard distributions.

- 1D arrays have contiguous range of indices allocated to each processor.
- 2D arrays are allocated as blocks, panels or strips.
- 3D and greater? Project to 2D and allocate as 2D arrays.
Fundamental Fact of ZPL Allocation

The ZPL allocation scheme has the property that for any arrays A, B defined on index i, \ldots, k, elements $A[i, \ldots, k], B[i, \ldots, k]$ are stored on the same processor.

Corollary: Operations like $[R] \ldots A + B \ldots$ do not require any communication.

1Pt/Proc vs nPt/Proc

- Obviously, 1Pt/Proc does not represent a realistic situation, but perhaps it is a good metaphor, promoting abundant parallelism.
 - 1Pt/Proc ignores grain size and locality.
 - Forces logical implementation when $n > 1$.
- nPt/Proc accurate for realistic processors.
 - Subsumes 1Pt/Proc when $n=1$ (extreme).
 - Programmers focus on grain size and locality.
 - Implies standard sequential compiler optimizations.

Knowing How ZPL Performs

- There is a simple rule for how each ZPL operation performs relative to the CTA.
- Such rules allow one to estimate approximate behavior of ZPL programs in a machine independent way.
 - $A + B$ -- Elementwise array operations.
 - No communication.
 - Work comparable to C.
 - Fully parallelizable.
- Total := $9.0 \times X^2 + 2.2 \times X \times Y - 3.2 \times Y^2 + 2 \times \sqrt{Z}$

Rules Of Operation II

$A@east \sim @$ references including wrap.
- Nearest neighbor communication with surface/to volume advantage.
- Local data motion, possibly.
- Reduce and scan.
 - Local computation.
 - Ladner/Fischer $O(\log P)$ accumulation.
 - Broadcast could be $O(\log P)$, but is really less.

Rules Of Operation III

$>> [1..n,k] A \sim$ Flood
- Multicast defining elements.

$<##[I1,I2] A \sim$ Permutation
- (Potential) All-to-all processors communication to distribute routing information implied by $I1, I2$.
- (Potential) All-to-all processors communication to route elements of A.

Full information is given in Chapter 8 of the ZPL Programmer’s Guide.
Analyzing Jacobi Iteration

```fortran
program Jacobi;
config var n : integer = 512;
eps : float = 0.00001;
region R = [1..n, 1..n];
procedure Jacobi();
[R] begin
  A := 0.0;
  [N of R] A := 0.0; [W of R] A := 0.0;
  [E of R] A := 0.0; [S of R] A := 1.0;
  repeat
    Temp := (A@N + A@E + A@W + A@S)/4.0;
    err := max<< abs(Temp - A);
    A := Temp;
  until err < eps;
end;
end;
```

Analysis

```fortran
repeat
  Temp := (A@N + A@E + A@W + A@S)/4.0;
  err := max<< abs(Temp - A);
  A := Temp;
until err < eps;

• 4 instances of @-comm + local computation for
  Temp := (A@N+A@E+A@W+A@S)/4.0
• No communication for abs(Temp - A)
• O(log P) per aggregate step and broadcast
  step for err := max<<
• No communication for A := Temp
... per iteration
```

WYSIWYG Performance

Points to emphasize about the analysis --

• The performance information derives from the CTA and how the compiler maps ZPL programs onto it
• Performance is not precise, but given relatively
 • E.G. reduction is more expensive than flood
 • To be machine independent, performance could not be given in nanoseconds
• Cues indicate when communication is being performed (WYSIWYG):
 A := A + B; -- No communication
 A := A + B@e; -- Yes, communication

Reconsider Details of @ Communication

A@east -- @ references including wrap
 • Nearest neighbor communication with surface/to volume advantage
 • Local data motion, possibly

Comm In The CTA

• Charge λ time for data transmission thru ICN
• “Nearest neighbor” not necessarily true
• One charge suffices for all transmissions

Is This Simplistic Model Accurate?

It’s not even close ... but its good enough
 • Contention in the network makes times vary
 • On-processor time can dominate network time
 • Processors may not be adjacent, e.g. fat tree
 • Processors are not synchronized, so the interval of data transmission could expand
 • Transmission is not independent of the amount of data transmitted
 • A better model: α + βw
Contrary View: Model Accurately
“Communication is the most expensive aspect of parallel computing, structure the computation so it optimizes use of communication”
• Structuring a program to optimize comm embeds properties of a given computer into the source code
• Parallel machines are very different ==> source must be changed for each machine
• Wisdom: Do not try to be too accurate. Think of @-Comm as a small, but nonnegligible (fixed) cost, leave optimization to compilers

Analyzing The Bounding Box
• The bounding box uses four reduces:
  ```plaintext
  [R] begin
  rightedge := max<< X;
  topleft := max<< Y;
  leftedge := min<< X;
  bottomleft := min<< Y;
  end;
  ```
• Each reduction has form:
 • loop to find local max/min
 • aggregate using LF algorithm
 • broadcast result to all processors

Compiler Optimizations
• Reorder code to
 • Fuse loops
 • Combine aggregates
 • Combine broadcasts

Compiler Basics
• An array language gives the illusion of arrays as indivisible objects ... temps/temp removal
  ```plaintext
  Next := Next | (Im@w & Im@n & !Im);
  ```
• Processing arrays creates loops around each statement ... loop fusion/contraction
  ```plaintext
  Conn := Im@e | Im@se | Im@s;
  Conn := Im & !Next & !Conn;
  Count += Conn;
  Im := Next;
  smore := |<<Next;
  until !smore;
  ```

Recall The 8-Connected Components
WYSIWYG permits analysis by “inspection”
```plaintext
Count := 0;
repeat
Next := Im & (Im@n | Im@nw | Im@w);
Next := Next | (Im@w & Im@n & !Im);
Conn := Im@e | Im@se | Im@s;
Conn := Im & !Next & !Conn;
Count += Conn;
Im := Next;
smore := |<<Next;
until !smore;
...;
```
Revised Solution

```
Count := 0;
repeat
Next := Im & (Im & Imw | Imw);
Next := Next | (Imw & Im & !Im);
smore := |<<Next;
Conn := Im & !Next & !Conn;
Count += Conn;
Im := Next;
until !smore;
```

This optimization makes sense because the CTA assumes asynchronous communication allowing communication to overlap with computation. Other improvements?

Tale Of Two Multiplies

```
It was the best of times” that we wanted from our parallel MM programs, but which of the hall of fame algorithms, Cannon’s or SUMMA, gets the best times?

Analytically, which one is better?

Recall the schema of each program:

<table>
<thead>
<tr>
<th>Cannon's</th>
<th>SUMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skew A</td>
<td>loop thru n</td>
</tr>
<tr>
<td>Skew B</td>
<td>flood A[k]</td>
</tr>
<tr>
<td>loop thru n</td>
<td>flood B[k]</td>
</tr>
<tr>
<td>C=A*B</td>
<td>C=A*B</td>
</tr>
<tr>
<td>rotate A,B</td>
<td></td>
</tr>
</tbody>
</table>
```

Consider The Product Loops

What does ZPL’s performance model tell us?

Cannon:

```
[Res] C := 0.0;        -- Initialize C
for k := 1 to n do         -- Thru common dim
  [Res] C := C + A*B ;   -- Product & accumulate
[*, ] Col := >>[k] A; -- Shift left col
[*, ] Row := >>[k] B; -- Shift top row
C := C+Col*Row;-- Accumulate product
end;
```

SUMMA:

```
[Res] C := 0.0;        -- Initialize C
for k := 1 to n do
  [*, ] Col := >>[k] A; -- Flood kth col of A
  [*, ] Row := >>[k] B; -- Flood kth row of B
  C := C+Col*Row;-- Accumulate product
end;
```

Conclusions From Analysis ...

```
One estimates how a ZPL program performs by using the behavior of the CTA and the WYSIWYG rules of performance

Programming in ZPL is like any language ... it’s possible to write good and bad programs

There is a knack to writing quality ZPL code ... this is in (a small) part due to differences between array and scalar languages, and in (large) part due to the paradigm shift needed for developing parallel algorithms
```

Preparing For Algorithm Design

```
Partial reductions aggregate along subarrays, e.g. add rows of array

Dual of flooding ... also requires 2 regions
```

```
Let var A: [1..n,1..n] float;
    Colsum: [1..n,1] float;
    Rowsum: [1,1..n] float;
[1..n, 1] Colsum := <<[1..n,1..n] A;
[ 1..n] Rowsum := <<[1,1..n] A;
```

Flooding Is A Powerful Abstraction

```
Consider the mode of a set of numbers
```

```
most := 0; count := 0;
for i := 1 to n do
  [i] trial := ++<<S;      --Select ith elem
  [i] count := ++<<D = trial;--Occurrences
  if count > most then     --Have a winner?
    most := count;
    mode := trial;
end;
```

```
Is this a high performance solution?

Embellishment ...
  Don’t go to end: for i := 1 to n-count do
  What about the reduction?
```
Improvement I
Remove the reduction from the loop
• Assume positive elements for simplicity...
 Count := 0; -- Initialize
 for i := 1 to n do -- Sweep thru all S
 Count += S = >>[i]S; -- Record Occurrences
 end;
 most := max<< S; -- Figure the best?
 mode := max<<((most = Count)*S); -- Isolate the mode

• Performance...
 • n single element broadcasts + local; no early exit
 • 2 reductions + local

Improvement II
Promote the problem to a 2D computation
\[1..n\] begin
 ST := <## [Index2,Index1] S; -- Construct Transpose of S
 Count :=
 ++[1..n,1..n] S = >>[1..n,1]ST;
 -- Compare n^2 items, reduce
 most := max<< S; -- Figure the best?
 mode := max<<((most = Count)*S); -- Isolate the mode

• Costs: 1 permute, 2 floods, 1 partial reduction,
 2 full reductions, local computation

Performance of Modes

<table>
<thead>
<tr>
<th>Processors</th>
<th>P-Speedup (Scalar Broadcast)</th>
<th>P-Speedup (2D Flood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Performance of Modes:

P-Speedup: Time for best sequential solution on 1 proc
over time of parallel solution on P processors: \(T_s / T_P\)

A General Idea
Problem space promotion (PSP) is a parallel programming technique in which d-dimensional data is processed by solving the problem in a higher dimension d’ > d
• Flooding (logically) replicates the data
• Intermediate data structures need not be built, i.e.
 PSP is space efficient
• Greater parallelism than the control flow solution
• Less synchronous solution

Applying PSP to MM...
The idea of flooding for MM generalizes ...
\[1..n\] begin
 ST := <## [Index2,Index1] S;
 -- Construct Transpose of S
 Count :=
 ++[1..n,1..n] S = >>[1..n,1]ST;
 -- Compare n^2 items, reduce
 most := max<< S; -- Figure the best?
 mode := max<<((most = Count)*S); -- Isolate the mode

• Costs: 1 permute, 2 floods, 1 partial reduction,
 2 full reductions, local computation

Applying PSP to MM...
The idea of flooding for MM generalizes ...

\[1..n\] begin
 ST := <## [Index2,Index1] S;
 -- Construct Transpose of S
 Count :=
 ++[1..n,1..n] S = >>[1..n,1]ST;
 -- Compare n^2 items, reduce
 most := max<< S; -- Figure the best?
 mode := max<<((most = Count)*S); -- Isolate the mode

• Costs: 1 permute, 2 floods, 1 partial reduction,
 2 full reductions, local computation

A General Idea
Problem space promotion (PSP) is a parallel programming technique in which d-dimensional data is processed by solving the problem in a higher dimension d’ > d
• Flooding (logically) replicates the data
• Intermediate data structures need not be built, i.e.
 PSP is space efficient
• Greater parallelism than the control flow solution
• Less synchronous solution

Applying PSP to MM...
The idea of flooding for MM generalizes ...

\[1..n\] begin
 ST := <## [Index2,Index1] S;
 -- Construct Transpose of S
 Count :=
 ++[1..n,1..n] S = >>[1..n,1]ST;
 -- Compare n^2 items, reduce
 most := max<< S; -- Figure the best?
 mode := max<<((most = Count)*S); -- Isolate the mode

• Costs: 1 permute, 2 floods, 1 partial reduction,
 2 full reductions, local computation

Improvement I
Remove the reduction from the loop
• Assume positive elements for simplicity...
 Count := 0; -- Initialize
 for i := 1 to n do -- Sweep thru all S
 Count += S = >>[i]S; -- Record Occurrences
 end;
 most := max<< S; -- Figure the best?
 mode := max<<((most = Count)*S); -- Isolate the mode

• Performance...
 • n single element broadcasts + local; no early exit
 • 2 reductions + local

Improvement II
Promote the problem to a 2D computation
\[1..n\] begin
 ST := <## [Index2,Index1] S;
 -- Construct Transpose of S
 Count :=
 ++[1..n,1..n] S = >>[1..n,1]ST;
 -- Compare n^2 items, reduce
 most := max<< S; -- Figure the best?
 mode := max<<((most = Count)*S); -- Isolate the mode

• Costs: 1 permute, 2 floods, 1 partial reduction,
 2 full reductions, local computation

Performance of Modes

<table>
<thead>
<tr>
<th>Processors</th>
<th>P-Speedup (Scalar Broadcast)</th>
<th>P-Speedup (2D Flood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Performance of Modes:

P-Speedup: Time for best sequential solution on 1 proc
over time of parallel solution on P processors: \(T_s / T_P\)
Matrix Multiplication Performance

Recall VQ Compression Loop

Very Parallel VQ Solution

Compiling A Portable/Efficient Language

Msg Passing: Lowest Common Denominator

Ironman: Compiler Comm Interface
HW Customize: Binding Ironman Calls

With what and when specified by the 4 Ironman calls, the communication is implemented by linking in a library with the specific mechanisms.

P\textsubscript{i} code

A:=1;
SR(A);
SV(A);

P\textsubscript{i+1} code

DN(A');
D := ...
A'
...

C := ...
A'
...

DR(A');

Ironman Summary ...

- Dumps message passing as compiler communication
- Replace w/ 4 calls saying what/when, but not how
 - DR(I), SR(I), DN(I), SV(I)
- Strategy derives from CTA's abstract specification
- No memory organization stated
- Bindings customize to hardware's mechanism
- Versatility covers commercial & prototype machines
- Message passing (all forms), shmem, shared, differential, ...
- Ironman concepts extended to other cases
- Collective communication

ZPL In Serious Computations

It is easy to analyze small programs, but what about substantial applications?

Targeted Platforms

- IBM SP-2
- Intel Paragon
- Cray T3D, T3E
- Clusters
- SMPs, Workstations, ...
- SGI Power Challenge, Origin

Result: performance with portability

Summary

ZPL's use of CTA permits analysis of programs

- The WYSIWYG rules allow the programmer to focus on the expensive communication usage
- Programming to achieve good results requires some thinking, but techniques like Problem Space Promotion (PSP) assist
- The ZPL compiler performs extensive optimizations and uses the Ironman interface for communication