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Schedule
• (10/3) Shared Memory Multiprocessing (threads & locks) 

• (10/10) Advanced SM: Transactions, Cilk, OpenMP, etc 

• 10/17 - No class (MICRO conference)

• 10/24 - GPUs: Vectors, OpenCL, C++Amp, CUDA 

• 10/31 - MPI 

• 11/7 - possibly no class, have to play it by ear for now 

• 11/14 - PGAS languages 

• 11/21 - Map/Reduce

• 11/28 - TBD (FPGAs? Cancel because of Thanksgiving++?) 

• 12/5 - TBD (DSL’s?)



Four assignments:
• Write: dense Matrix-Vector multiply, and breadth first search graph traversal on 

these four programming stacks: 

• threads/locks 

• GPU 

• MPI 

• Map/Reduce/Spark 

• You MUST do the threads, MPI and Map/Reduce/Spark assignments in the VM.  
You can do the GPU one on whatever platform you have. 

• You are graded on correctness and efficiency of implementation. 

• More details forthcoming.



In the book
• Note, there is no great book on this topic. 

• I tried to choose one that I thought would be relevant 
to most people in this class long after you left here. 

• We will cover a lot of ground in this class.  About 
3/4s of the material is not in any (one) or any book at 
all. 

• Read Chapters 1,3 & 6 quickly.  But read the rest at 
your leisure/need.



Your grade is based on your assignments AND your participation in class

There is no final exam in this class.

SPEAK! 



Who am I?!?



Who are you?
• Companies 

• 1/2 MSFT 

• 1/5 AMZN 

• 1/6 BOEING 

• 1 salesforce 

• 1 oracle 

• 1 Facebook 

• 1 GOOG 

• About 1/3 work on parallel code 

• Most all in non-scripting languages (C, C#, java) 

• 1/8 have used a map/reduce style framework 

• Handful MPI 

• 1/4 have used threads and locks 

• ~ 5 of us get up before 6am



What hardware/OS are you 
going to use for this class?

• Mostly window 

• And then Mac 

• handful run Linux



Why do we have more than 
one CPU?

• Only so many transistors 

• So we can be lazier programmers 

• So we can do more than one thing at a time 

• Heat 

• Cheaper to scale horizontally than vertically 

• Speeds of a single core stopped increasing 



Topics for today/next week
• Threads 

• Locks (Mutex) 

• Semaphore 

• Reader/Writer lock 

• Condition variables 

• Barrier 

• Monitors 

• Lock free  (“Live free or Die!”) 

• Consistency 

• User-mode threads 

• OpenMP 

• Transactions



What is a thread?
• Lightweight process 

• Stack + IP 

• Sequential execution of a list of instructions 

• Something you can map onto a processor 

• Hardware: IP, register set, misc context, address space 

• Language: (hopefully) a well defined execution context 

• OS: something you can schedule and run



Example



Common bugs with threads

• Failure to join 

• Race on start state 

• Failure to synchronize on library calls (POSIX 1 vs. 
POSIX 1c (1996)) 

• Using shared memory incorrectly (much more on 
this)



Common performance 
problems with threads

• Too fine 

• Too coarse 

• Too few 

• Too many 

• Move around too much (no affinity)



Stretch!



What is a lock?
• Mechanism to prevent other threads from using a 

resource 

• Piece of shared memory to achieve mutual exclusion 

• Meeting point for threads 

• data-structure to maintain ownership 

• Something that can be “owned” by only one thread 



A (broken) lock 
implementation

void lock(int *the_lock) { 
while (*the_lock == 1) 
; 

*the_lock = 1; 
}

void unlock(int *the_lock) { 
*the_lock = 0; 

}



How are locks 
implemented?

• Core necessity: Either a bit of private state per acquirer (Petersen 
lock), Or, an atomic read/write operation (how we tend to do it in 
SM systems) 

• Processors tend to support a variety of atomic operations useful for 
constructing locks: 

• LOCK XCHG # Exchange 

• Swap a register and memory location value 

• LOCK CMPXCHG # Compare and xchange 

• Write to memory a register value if and only if the memory is 
equal to a given value



A lock implementation
void lock(int *the_lock) { 
while (__sync_val_compare_and_swap(the_lock, 0, 1) 
== 1) 
; 

}

void unlock(int *the_lock) { 
*the_lock = 0; 

}



A slightly better 
implementation

void lock(int *the_lock) { 
while (__sync_val_compare_and_swap(the_lock, 0, 1) 
== 1)  
asm volatile ("pause"); 

}



A slightly better 
implementation

#define MAX_BACK_OFF   (1<<12) 

void lock(int *the_lock) { 
int back_off = 1, i; 
while (__sync_val_compare_and_swap(the_lock, 0, 1) 
== 1) { 

for (i = 0; i < back_off; i++) 
  asm volatile ("pause"); 

if (back_off <= MAX_BACK_OFF)  
  back_off = back_off << 1; 

}



A slightly slightly  better 
implementation

#define MAX_BACK_OFF   (1<<12) 

void lock(int  *the_lock) { 
int back_off = 1, i; 
while (1) { 
 // TEST 
 while (*the_lock != 1) { 
 asm volatile (“pause"); // Tell the CPU we are spinning 
asm volatile ( ::: "memory"); // address expose 

 } 
 // TEST AND SET 
 if (__sync_val_compare_and_swap(the_lock, 0, 1) == 0) 
   return; 
// BACK OFF 
for (i = 0; j < back_off; i++) 
  asm volatile ("pause"); 
if (back_off <= MAX_BACK_OFF)  
  back_off = back_off << 1; 

}



An even slightly slightly better implementation
#define MAX_BACK_OFF   (1<<12) 
#define CACHE_LINE_SIZE (64) 

typedef union _lock { 
    int lock_state; 
    char padding[CACHE_LINE_SIZE]; 
} lock; 

void lock(lock *the_lock) { 
int back_off = 1, i; 
while (1) { 
while (the_lock->lock_state != 1) { 
 asm volatile ("pause"); 
asm volatile ( ::: “memory"); 

 } 
 if (__sync_val_compare_and_swap(the_lock->lock_state, 0, 1) == 0) 
  return; 
 for (i = 0; j < back_off; i++) 
   asm volatile ("pause"); 
 if (back_off <= MAX_BACK_OFF)  
   back_off = back_off << 1; 

}



Example



Common bugs with locks
• Failure to use one 

• Failure to initialize them 

• Failure to acquire all of them that you need 

• Failure to unlock 

• Releasing them too early 

• Failure to acquire in a consistent order (deadlock) 

• Acquiring them twice 

• Releasing them when a thread ends abnormally 

• Holding a lock over blocking I/O that may block “indefinitely”



You should never deadlock
• It’s possible to write a piece of code known as a “lock 

witness”. 

• Group locks into classes. 

• Classes can only be acquired in order 

• An acquisition of locks out of order, regardless of whether 
a deadlock occurred, is detectable and should be 
signaled to the developer. 

• Every large project needs a lock witness.  Go take it from 
FreeBSD.



Common performance 
issues with locks

• Holding them for too long a time 

• Holding them for too short a time 

• (acquiring/release the same lock in an inner loop) 

• Holding more of them than you actually need 

• Spinning when you should be queueing 

• Queuing when you should be spinning 

• Multiple locks in the same cache-line



Stretch!



Semaphores
• Generalization of locks  
 
typedef int semaphore_t; 
 
down(semaphore_t *x) {  
  while (1) {  
    atomic {  
       if ((*x) != 0) {  
           —(*x);  
          return; 
       }  
}  
 
up(semaphore_t *x) {  
   atomic { 
      ++(*x); 
   } 
} 
 



Your turn! 



Reader/Writer locks
• Basic idea: some data-structures support 

concurrent reads, but not concurrent writes. 

• hash-tables, trees, maps, whatev’s. 

• A reader/writer lock permits multiple readers but 
only one writer. 
pthread_rwlock_rdlock(pthread_rwlock_t *);  
pthread_rwlock_wrlock(pthread_rwlock_t *);  
pthread_rwlock_unlock(pthread_rwlock_t *);



Example



A good interview 
question…

Implement a fair reader/writer lock

Why is this a hard question? 
 
How would you solve it?



struct rw_lock { 
    lock    reader_lock; 
    lock    writer_lock; 
    int     readers; 
}; 

void lock_rd(struct rw_lock *rwl) { 
    lock(&rwl->reader_lock); 
    ++rwl->readers; 
    if (rwl->readers == 1) 
        lock(&rwl->writer_lock); 
    unlock(&rwl->reader_lock); 
} 

void unlock_rd(struct rw_lock *rwl) { 
    lock(&rwl->reader_lock); 
    --rwl->readers; 
    if (rwl->readers == 0) 
        unlock(&rwl->writer_lock); 
    unlock(&rwl->reader_lock); 
} 

void lock_wr(struct rw_lock *rwl) { 
    lock(&rwl->writer_lock); 
} 

void unlock_wr(struct rw_lock *rwl) { 
    unlock(&rwl->writer_lock); 
} 



Stretch!



Condition Variables
• Probably the least understood but most important 

synchronization primitive there is. 

• pthread_cond_wait(pthread_cond_t *cond, 
pthread_mutex_t *lock); 

• Thread must hold the specified lock.  The thread 
releases the lock and is blocked until the condition is 
signaled. 

• pthread_cond_signal(pthread_cond_t *cond); 

• pthread_cond_broadcast(pthread_cond_t *cond);



Condition variables
• Condition variables are important because they all you to 

synchronize without spinning, and hence wasting resources. 

• Condition variables can be extremely challenging for 
programmers to use but if you follow two simple rules then you 
will be fine: 

• 1) A signal before wait is lost.  Always acquire the mutex 
the wait will wait on, and then signal. 

• 2) When you are signaled, you are not necessarily assured 
the condition you really want to be true is true; it depends 
on the condition, the number of waits, what they do, etc.



Example



Barriers
• Barriers synchronize a group of threads. 

• Threads are stopped until all threads that should 
enter the barrier have done so. 

• pthread_barrier_init(pthread_barrier_t *barrier, attr, 
unsigned int count); 

• pthread_barrier_wait(barrier);



Your turn!

barrier_init(struct barrier *barrier, int waiters) { }  
 
 
barrier_wait(struct barrier *barrier) { }



Barriers, continued

• Should barriers support a barrier_signal or 
barrier_broadcast, “early release” mechanism? 

• Should barriers support a time-out?



Common bugs/issues with 
barriers

• A wayward thread never enters 

• Perhaps it’s waiting on a lock or data to be produced 
from a thread that has already entered the barrier! 

• Advice: Barriers are useful at the mesoscale of your code. 

• If you enter the barrier from different points in your 
code, think hard, but it still might be ok 

• If you enter a barrier after executing a giant section of 
code, think hard, but it still might be ok.



Monitors
• When I write data-structures for parallel systems I 

leave the locks out; I make no promises to the rest 
of the code about the safety of concurrent use. 

• But others may disagree… 

• A Monitor is (essentially) one big lock around a class 
that is implicitly acquired/released on invocation of a 
function of that class. 

• Sounds simple right?



What makes monitors hard 
to implement & use…

• Class functions call other class functions: 
monitor_class A { 
 int my_function1() { B.my_function3(); } 
  int my_function2(…) { my_function1(); } 
… 

• Class functions call functions from other classes that may use functions 
of the given class: 
monitor_class B { 
   int my_function3() { A.my_function2(); } 

• Synchronization within the monitor 
monitor_class C { 
  int add(item p) { stack.push(); } 
  item remove() { while (stack.empty()) ; 
     return stack.pop(); }



Lock-Free Algorithms
• There is an important concept in parallel programing, or 

rather, a concept some people think is important, known 
as lock-free algorithms 

• Lock-free does not mean synchronization free  

• Lock-free generally means a data-structure is designed 
such that synchronization becomes inherent in the 
manipulation of the data. 

• I’m pushing 1MM lines+ in my lifetime so far.  I do not write 
lock-free data-structures.  I do write “lock free” flags now 
and then but less so as I get older and hopefully wiser.



Example



Lock-free issues
• Just being lock-free does not make you fast 

• Lock-free is very challenging to get correct.  Think of it as the 
extreme end of super-fine-grained locking 

• Lock-freedom does not mean wait-freedom.  Wait-free algorithms 
(which are necessarily lock-free) do exist for some things 

• People still write papers that appear in top places on lock free 
algorithms.  Frankly I think they are bit like doing algorithmic 
research on quantum computing.  Hard, and maybe relevant 
some day, but not so much now.  (But then again, I’m starting to 
get back into QC…)



Stretch!



How programmers want to 
see the world

CPU CPU CPU CPU

Memory



How programmers need to 
see the world

CPU CPU CPU CPU

Memory

Cache Cache Cache Cache



Consistency
• Unfortunately for you, hardware doesn’t behave like you think. 

• Up until now, we’ve been writing code that will execute correctly on x86, ARM, etc. 

• Broadly speaking, there are four consistency models in the world: 

• sequential, how you think concurrency works until you’re told it’s not so 

• processor, how x86 works, except for where it doesn’t 

• release, how ARM works and a few other esoteric ISAs 

• scope (used for GPUs). 

• The consistency model presented to the programmer is a function of the language.  It is more or less 
easy to implement that consistency model on different hardware. 

• Easy for an academic to say.  In practice, it’s the wild west out there and you have to know what 
you are working with. 

• C11 and C++11 are what is known as SC for DRF programs; or sequentially consistent for “data race 
free” programs.



Say what?
int a = 1; 
int b = 2; 

thread1() { 
a = 3; 
b = 4; 

} 

thread 2 { 
printf(“%d”, b); 
printf(“%d”, a); 

}

What are the possible outputs?



Sequential Consistency
A: Wr x,1
A: Wr y,2
A: Wr z,3

B: Wr x,4
B: Wr y,5
B: Wr z,6

C: Wr x,7
C: Wr y,8
C: Wr z,9

tim
e

A: Wr x,1
A: Wr y,2

A: Wr z,3

B: Wr x,4
B: Wr y,5

B: Wr z,6

C: Wr x,7
C: Wr y,8

C: Wr z,9
All processors see all 

writes in the same order

This is just one possible SC order.



Processor Consistency
A: Wr x,1
A: Wr y,2
A: Wr z,3

B: Wr x,4
B: Wr y,5
B: Wr z,6

C: Wr x,7
C: Wr y,8
C: Wr z,9

tim
e

A: Wr x,1
A: Wr y,2

A: Wr z,3

B: Wr x,4
B: Wr y,5

B: Wr z,6

C: Wr x,7
C: Wr y,8

C: Wr z,9

A processor sees all writes from another processor 
in the order that processor performs them

How A can 
see the world

A: Wr x,1

A: Wr y,2

A: Wr z,3

B: Wr x,4

B: Wr y,5

B: Wr z,6

C: Wr x,7

C: Wr y,8
C: Wr z,9

How B can 
see the world



Release Consistency
A: Wr x,1
A: Wr y,2
A: Wr z,3

B: Wr x,4
B: Wr y,5
B: Wr z,6

C: Wr x,7
C: Wr y,8
C: Wr z,9

tim
e

A: Wr x,1
A: Wr y,2

A: Wr z,3

B: Wr x,4
B: Wr y,5

B: Wr z,6

C: Wr x,7
C: Wr y,8

C: Wr z,9

More or less, release consistency promises nothing 
without a fence

How A can 
see the world

A: Wr x,1

A: Wr y,2
A: Wr z,3
B: Wr x,4

B: Wr y,5

B: Wr z,6
C: Wr x,7

C: Wr y,8
C: Wr z,9

How B can 
see the world



What would Brian Boitano do?

• Don’t write code that synchronizes outside of existing 
synchronization primitives

• Or if you must, wrap your shared memory accesses with 
fences: MFENCE (fence it all), LFENCE (load fence), or 
SFENCE (store-fence). 

• In my experience, this kind of stuff will not make your code run 
fast.  The problems that hinder parallel code bases are always 
much bigger than the micro-scale synchronization that is used. 

• Go for maintainability and don’t check in nor allow anyone 
else to check in code that uses subtle synchronization.



Wrap-up



Some practical advice
• Use synchronization, don’t try and go lock-free; Write DRF code, don’t bother with so much as a flag 

• Co-architect the way you will parallelize your code with the way that code is synchronized; it’s not 
just that it’s parallel, it has to work. 

• Clean up after yourself.  Nobody likes an application that leaks, and that sloppiness is a sign of poor 
design, leading to more bugs. 

• Be very careful about having memory allocated in one thread, de-allocated in another.  Can you 
re-architect the code? 

• #define volatile _do_not_compile_this_volatile  
You want that compiler error so you don’t checkin code with volatile in it.  Have explicit read() and 
write() operations that use the address expose primitive. 

• Don’t prematurely optimize your locking/threading, etc.  Keep it simple (sequential) until you have to, 
and then take only baby steps into parallelization. 

• Think of the children. 

• Violate the rule above if you have to, and there will be times when you have to.  Some code is 
fundamentally parallel.



Stretch!



User mode threads
• “Threads” as we have been discussing them are: 

• pre-emptive 

• their state is more or less equivalent to a processor state (register set, 
IP, stack, address space, etc) 

• co-managed by a user-space runtime system and the operating system 

• User mode threads are (generally): 

• co-operatively multitasked (yield()) 

• Their state can be squeezed quite small 

• Can be entirely managed by a user mode runtime



Threading packages
• Windows has built in support for user mode threads, namely 

in the form of “user mode scheduling”, and “fibers”. 

• UMS threads have a complete context, and if blocked in 
the kernel another UMS thread can run 

• fibers are more like user mode threads on Linux 

• With Linux systems you must first choose a package 

• “unfortunately”, writing a user mode threading package is 
a common undergraduate OS assignment.  So you have 
to sift through a lot of crap on the internet on the topic.



This is why we professors use 
this as a homework assignment

// void switch_stacks(u_int64_t *old_context, u_int64_t *new_context); 
switch_stacks: 
        push    %rbx            # save the registers on the stack 
        push    %rbp 
        push    %r12 
        push    %r13 
        push    %r14 
        push    %r15 
        push    %rdx 
        push    %rcx 
        push    %rdi 
        push    %rsi 

        mov     %rsp, (%rdi)    # save old stack 

        mov     (%rsi), %rsp    # load new stack 

        pop     %rsi            # pop our saved values off the stack 
        pop     %rdi 
        pop     %rcx 
        pop     %rdx 
        pop     %r15 
        pop     %r14 
        pop     %r13 
        pop     %r12 
        pop     %rbp 
        pop     %rbx 
        ret 

Or call get/set context :)



A complete user mode 
thread package offers:

• create, join, 

• void yield();

• possibly yield_to(thread_t); 

• lock, unlock 

• cond_wait, cond_signal, cond_broadcast 

• possibly, although it is highly desirable if they do, 
some form of I/O



Why should you care?
• pthread_create /join are NOT fast. 

• Even context switching pthreads is not fast ~ 750ns 

• Suppose you want to specify your work as millions of tiny work 
units (tasks if you will) and then dynamically bind them to 
threads (stacks) for execution. 

• Useful technique because it can allow code to be performant 
in the face of a variety of machine architectures. 

• Or suppose you want to overlap I/O.  Your life will be easier with 
pthreads but UMS on Windows or a rich library on Linux can 
help.



Stretch!



OpenMP
• An extension to C/C++ that gives you a parallel for 

loop (and a lot more). 

• Cross-platform and widely supported 

• Bit of a grotesque syntax, but it can get the job done 

• http://bisqwit.iki.fi/story/howto/openmp/ 

• http://openmp.org/mp-documents/omp-hands-on-
SC08.pdf

http://bisqwit.iki.fi/story/howto/openmp/
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf


Why do you want a parallel 
for loop?

• Recall the simple code we had before:  
 
for (i = 0; i < n; i++) 
    a[i] = rand() % 10; 
for (i = 0; i < n; i++) 
    sum += a[i]; 

• …and remember how that became 120 lines of 
code



OpenMP version of sum fits on a slide

• #include <omp.h> 
#include <stdio.h> 
 
int main(int argc, char *argv[]) { 
    int     *array; 
    int     i, sum = 0;     
    int     array_size = atoi(argv[1]); 
 
    array = malloc(sizeof(*array) * array_size); 
 
    #pragma omp parallel for private(i) 
    for (i = 0; i < array_size; i++) { 
        int r; 
    #pragma omg critical 
        r = rand(); 
        array[i] = r % 10; 
    } 
     
    #pragma omp parallel for reduction(+:sum) private(i) 
    for (i = 0; i < array_size; i++) 
        sum += array[i]; 
 
    printf("Sum=%d\n", sum); 
    return 0; 
}



OpenMP version of sum fits on a slide

• #include <omp.h> 
#include <stdio.h> 
 
int main(int argc, char *argv[]) { 
    int     *array; 
    int     i, sum = 0;     
    int     array_size = atoi(argv[1]); 
 
    array = malloc(sizeof(*array) * array_size); 
 
    #pragma omp parallel for private(i) 
    for (i = 0; i < array_size; i++) { 
        int r; 
    #pragma omg critical 
        r = rand(); 
        array[i] = r % 10; 
    } 
     
    #pragma omp parallel for reduction(+:sum) private(i) 
    for (i = 0; i < array_size; i++) 
        sum += array[i]; 
 
    printf("Sum=%d\n", sum); 
    return 0; 
}

….but runs 75x slower than sequential :)



Example



OpenMP has grown 
substantially over time

• parallel for 

• Lots of ways to control the schedule of iterations 

• reduction 

• SIMD 

• For use with MMX, etc 

• generalized tasks 

• partitioned address spaces 

• For accelerator offload


