
524 - Lecture 4
Map / Reduce

MPI retro
• Ran out of memory in Vagrant

• Debugging was hard

• Seg-fault

• should connect to wedged process after the fact by catching signal and spinning

• efficient algorithm for BFS?

• easier than GPUs

• MPI gather and scatter were hugely helpful

• Not everything has a C++ binding

• Broadcast can use a tree

• Buffer challenging was challenging

• Don’t send too much at once :)

The problem being solved
• Big cluster

• Distributed

• hardware is not fault tolerant

• nodes die

• big data

• more data than fits on a
single node

• Want to be used by a wide variety
of programmers

• Think people who are just
graduating from Excel macros

Map/Reduce
• Simple concept

• map: apply a function to each element of data

• reduce: summarize the result of a map operation

• With a twist:

• map should be side-effect free (purely functional)

• good reduce operators should be associative so
that a reduction tree can be formulated

In more CS speak
• Map/reduce is functional programming meets distributed systems

• Functional programming brings the side-effect freeness

• The framework brings attributes of distributed systems programming that are desirable:

• fault tolerance

• map operation died halfway through? No problem, just re-srtart the node (the
computation is side effect free!)

• Scalable

• map operations being side-effect free are easy to parallelize

• associative reduction operators can be distributed and made hierarchical

• You get these benefits for free if you buy into the marp/reduce framework

In even more CS geek speak
• map(in_key, in_value) -> (out_key, intermediate_value) list

• reduce(out_key, intermediate_value list) -> out_value list

• For example:

• Records of database (lets say SS# and name) are fed into a map function as (key,
value) pairs

• map produces one or more intermediate_value(s) along with an output key. For
example, { (first, “John”), (last, “Smith”) }

• Conceptually all resulting values from the map operation are squashed into a single
list

• reduce then processes this list. For example, counting up name frequency.
{ (first:John, 1), (last:Smith, 1) }

• Note how this reduction operator is associative.

input map temp reduce output

What’s the catch?
• Map/Reduce is a round hole and some times your problem is a square

peg.

• You’ll see this when you code BFS…

• In big distributed systems data distribution is work distribution.

• If your data isn’t distributed well or is distributed incorrectly for the problem
you need to solve, performance suffers.

• These systems are trying to solve a lot at once: distributed systems, fault
tolerance, distributed data storage, “ease of use”.

• You have to buy into framework you choose. It’s rarely something you can
do on the side.

• Choose wisely.

Which framework to use?
• Worthy read for the newbie: http://www.metistream.com/comparing-hadoop-mapreduce-spark-flink-

storm/

• Hadoop: your basic map/reduce framework. Most useful for HDFS (distributed file store) and YARN
(the job dispatcher)

• Spark: a module within the Hadoop ecosystem. Provides in-memory computation capabilities
(speed)

• Also provides a lot of pre-built useful modules for ML, Graphs, SQL, etc

• Flink & Storm: provides streaming continuous processing, where as Hadoop/Spark are batch
orientated.

• For this class, we’ll use either Spark or “disco”.

• http://discoproject.org

• http://spark.apache.org

• Both work in vagrant. disco is easier to install. Spark requires you to upgrade java to Oracle’s
java. And download Spark 2 from the website directly.

http://www.metistream.com/comparing-hadoop-mapreduce-spark-flink-storm/
http://www.metistream.com/comparing-hadoop-mapreduce-spark-flink-storm/
http://discoproject.org
http://spark.apache.org

Example (disco)
from	disco.core	import	Job,	result_iterator	

def	map(line,	params):	
				for	word	in	line.split():	
								yield	word,	1	

def	reduce(iter,	params):	
				from	disco.util	import	kvgroup	
				for	word,	counts	in	kvgroup(sorted(iter)):	
								yield	word,	sum(counts)	

if	__name__	==	'__main__':	
				job	=	Job().run(input=["http://discoproject.org/
media/text/chekhov.txt"],	
																				map=map,	
																				reduce=reduce)	
				for	word,	count	in	
result_iterator(job.wait(show=True)):	
								print(word,	count)

from __future__ import print_function

import sys
from random import random
from operator import add

from pyspark.sql import SparkSession

if __name__ == "__main__":
 """
 Usage: pi [partitions]
 """
 spark = SparkSession\
 .builder\
 .appName("PythonPi")\
 .getOrCreate()

 partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
 n = 100000 * partitions

 def f(_):
 x = random() * 2 - 1
 y = random() * 2 - 1
 return 1 if x ** 2 + y ** 2 < 1 else 0

 count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
 print("Pi is roughly %f" % (4.0 * count / n))

 spark.stop()

Example (Spark)

package org.apache.spark.examples;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.sql.SparkSession;

import java.util.ArrayList;
import java.util.List;

public final class JavaSparkPi {

 public static void main(String[] args) throws Exception {
 SparkSession spark = SparkSession
 .builder()
 .appName("JavaSparkPi")
 .getOrCreate();

 JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());

 int slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2;
 int n = 100000 * slices;
 List<Integer> l = new ArrayList<>(n);
 for (int i = 0; i < n; i++) {
 l.add(i);
 }

 JavaRDD<Integer> dataSet = jsc.parallelize(l, slices);

 int count = dataSet.map(new Function<Integer, Integer>() {
 @Override
 public Integer call(Integer integer) {
 double x = Math.random() * 2 - 1;
 double y = Math.random() * 2 - 1;
 return (x * x + y * y < 1) ? 1 : 0;
 }
 }).reduce(new Function2<Integer, Integer, Integer>() {
 @Override
 public Integer call(Integer integer, Integer integer2) {
 return integer + integer2;
 }
 });

 System.out.println("Pi is roughly " + 4.0 * count / n);

 spark.stop();
 }
}

Example (in C)

Installation
 sudo apt-get install python-software-properties
 sudo apt-add-repository ppa:webupd8team/java
 sudo apt-get update
 sudo apt-get install oracle-java8-installer
 sudo apt-get install oracle-java8-set-default
 wget http://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-hadoop2.7.tgz
 tar xfz spark-2.0.2-bin-hadoop2.7.tgz

cd spark-2.0.2-bin-hadoop2.7/
./bin/run-example SparkPi 10

apt-get install erlang
apt-get install git
git clone git://github.com/discoproject/disco.git disco
cd disco
make
export DISCO_HOME=/home/vagrant/disco
disco/bin/disco start

Spark

Disco

http://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-hadoop2.7.tgz

Beyond Map/Reduce
• GraphLab - vertex centric computation

• https://turi.com

• repeat { 
gather_from_edges 
process_at_vertex  
scatter_to_edges  
}

Beyond Map/Reduce

• TensorFlow - construct dataflow graph.

• https://www.tensorflow.org

• vertices = operations.

• Edges = flow of tensors (multidimensional arrays)

Beyond M/R

• Microsoft CNTK

• https://github.com/Microsoft/CNTK

• Don’t know much about it but looks awesome.
Works on Windows and Linux. Designed for NN
training on clusters of systems with CPU/GPUs.

https://github.com/Microsoft/CNTK

Beyond Map/Reduce
• NoSQL - e.g. MongoDB

• data stored as key:value or [key:value]

• Useful for data that isn’t well structured or where
the structure isn’t known ahead of time (“agile
development”)

• In my experience, very useful for simple things.
Very hard to use for complex ones. Updates
across key:value pairs…

Parting thoughts on M/R
• Should you use a map/reduce framework? Yes, if:

• you’re processing peta-byte scales of data

• you algorithm fits well within the paradigm

• your data is already in HDFS and not an a RDMS

• Informally, I’ve been told a lot of organizations use Hadoop for two things: HDFS and
YARN. (file storage and job-dispatch). The Map/Reduce aspect comes in handy on
occasion but isn’t the core of what they do.

• You tell me, is this true?

• What do I use? I don’t. For large scale graph analytics I use a PGAS framework we
wrote (Grappa) and for general analytics (of which I do a lot in the finance world) I use
SQL and C.

• My data is in the GB range not TB or PB range, however.

