GPU postmortem

Big cost of moving data to / from GPU
80% on M*V

80% on BFS

¢ 90% top down, 10% bottom up

Bottom up, work item per directed edge, ~ 30% faster than
faster, ignoring initialization, S16

Ran out of local memory

Top down then bottom up, beamer’s algorithm



524 - Lecture 3

MP]



The problem MPI is trying to solve

:P'.",v‘;: " i

* Given a bunch of machines, each with: R

P ‘ e , y e -'f’//.': n

* memory, compute, network Teiia ) T T BT
| Iy T Wl e -

. s ™ ‘ it = ' 4 . ¢ W#I‘ '
* operating system, user land programs == g a e = e -

s

 How do you:

|
1™

4 .
—
‘I
.
-19
i
s ign
B
it
=

* start a process on each machine

EE
.

\ \\
add

* have those processes communicate
with each other

) 2\

* work on a variety of hardware and
software

\

TRTATA A ALARUALA A L4}

...and be reasonably fast at it.

\



MPI

MPI Is a standard. There are multiple
implementations: openmpi, mpich?2, etc.

* Pick your poison. They are mostly compatible.
Basic MPl mechanisms:

e Spawn a bunch of processes

e Send/receive messages

e Barrier processes



MPI| Continued.

 MPIl is an example of a message passing framework.
« Key ideas for you as a developer:
e Each process in the group has its own private address space.
e You must explicitly send/receive messages to move data around
* You must be synchronize across processes when necessary
« Communication is synchronization
 MPI is derived from a long history in the supercomputing space.
* As such, it's terminology is stupid. Sorry, makes sense if you are a physicist.

* It's APl is overly complicated at times. But that’s life.



Starting MP

INt My_process, processes;
///] Initial the MPI subsystem. Yes, this modifies the arguments
MPI_Init(&argc, &argv);

//// find out my process ID
MPI_Comm_rank(MPI_COMM_WORLD, &my_process);

//// Find out how many processes there are
MPI_Comm_size(MPI_COMM_WORLD, &processes);



Sending data

int MPI Send(void *buf,
int count,

MPI Datatype datatype,
int dest,

int tag,

MPI Comm comm)

MPI_Send(&my_pid, sizeof(int), MPI_BYTE,
orocess, 0, MPI_COMM_WORLD);



Recelving data

int MPI Recv(void *buf,
int count,

MPI Datatype datatype,
int source,

int tag,

MPI Comm comm,

MPI Status *status)

MPI_Recv(&other_pid, sizeof(int), MPI_BYTE,
orocess, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);



Bullding and running

 MPI programs require a header file and library.
* Jypically you compile MP| programs with mpicc or
mpic++ which sets the include path and links the
correct library

 Not necessary. mpicc Is just a wrapper around your
C compiler

* MPI programs are typically run with the "mpirun”
command.

* While also not strictly necessary, it's very hard not to.



MPI Example



Useful MPI Stuff (in my opinion)

e MPI Barrier
e MPI| Bcast —- broadcast

* MPI_lsend, MPI_Irecv — non-blocking send and
receive

 MPI| Alloc Mem —- allocate receive buffers

* |t's important for performance to post receive
buffers before sends occur.



Stuff | avoid

Partitioning my communication world, | always use MPI_COMM_WORLD and forget
about anything else

Tags. | always use 0 or MPI_ANY_TAG. There is talk about greater use of tags for
GPU communication and such. But generally this is unused.

MPI data types. Complete waste of time. Just use MPI_BYTE and send/receive the
exact number of bytes.

MPI threading. I've never come across an MPI multithreaded implementation that
wasn't broken. Just use the single threaded one and lock around it.

The file 1/0. This looks useful, but for cluster file |/O we use HDFS.
The remote op and reduction operators. I've always just implemented this manually.

The All to All and SendRecyv functions. Maybe these are useful on really large
systems, but | never found it worth the time to bother.



Common MPI bugs

Receive without Send
* Or more generally, mismatched send/receives
* Some but not all nodes sending
Messing up the arguments to Send/Recv
e That’s why | always use MPI_BYTE, tag=0 and MPI_COMM_WORLD
Deadlock on blocking send/receive
Performance bug:
* You must send/receive in big chunks.
* Hard to balance work well.

Subtle bug: Address space randomization means function pointers passed across machines
are not valid.



Wny you should use MP|
(In scientific computing)

e Your fellow programmers will know what you are talking
about. It is the standard for this thing.

e There are vendor-optimized and supported versions (Cray,
IBM, Intel, ...)

* |tis the thing other subsystems plug into. For example, we
use a user-mode RDMA library tor our infiniband
iInterconnect.

* Despite trying, my students could not beat the
performance of this when talking to the infiniband verbs

ayer directly...




Why you (probably) shouldn't
use MPIl iIn a commercial setting

e You have to buy the whole enchilada.

e Do you really think your program can start with MPI_Init(argc, argv)?
Seriously?

 MPI comes from the scientific computing world. It didn’t come from the
universe of plugging together hundreds of software packages across
dozens of systems and standards.
* In my experience, commercial software has harder robustness constraints.
 MPI doesn't understand what it means for a node to go down.

* Inthe commercial world, you have to build around crashing.

e Despite this, understanding message passing as a fundamental concept is
important. Even if you end up having to use some other library.



-Final thoughts

e You can mix and match
« MPI + pthreads
« MPI + openmp
 MPI + openmp + openCL
e Active Messages
o GASNet
« PGAS, Partitioned Global Address Space

o Grappa



