
GPU postmortem
• Big cost of moving data to / from GPU

• 80% on M*V

• 80% on BFS

• 90% top down, 10% bottom up

• Bottom up, work item per directed edge, ~ 30% faster than
faster, ignoring initialization, S16

• Ran out of local memory

• Top down then bottom up, beamer’s algorithm

524 - Lecture 3
MPI

The problem MPI is trying to solve

• Given a bunch of machines, each with:

• memory, compute, network

• operating system, user land programs

• How do you:

• start a process on each machine

• have those processes communicate
with each other

• work on a variety of hardware and
software

• …and be reasonably fast at it.

MPI
• MPI is a standard. There are multiple

implementations: openmpi, mpich2, etc.

• Pick your poison. They are mostly compatible.

• Basic MPI mechanisms:

• Spawn a bunch of processes

• Send/receive messages

• Barrier processes

MPI Continued.
• MPI is an example of a message passing framework.

• Key ideas for you as a developer:

• Each process in the group has its own private address space.

• You must explicitly send/receive messages to move data around

• You must be synchronize across processes when necessary

• Communication is synchronization

• MPI is derived from a long history in the supercomputing space.

• As such, it’s terminology is stupid. Sorry, makes sense if you are a physicist.

• It’s API is overly complicated at times. But that’s life.

Starting MPI
 int my_process, processes;

//// Initial the MPI subsystem. Yes, this modifies the arguments
 MPI_Init(&argc, &argv);

 //// find out my process ID
 MPI_Comm_rank(MPI_COMM_WORLD, &my_process);

 //// Find out how many processes there are
 MPI_Comm_size(MPI_COMM_WORLD, &processes);

Sending data
int MPI_Send(void *buf,
int count,
MPI_Datatype datatype,
int dest,
int tag,

 MPI_Comm comm)

MPI_Send(&my_pid, sizeof(int), MPI_BYTE,
process, 0, MPI_COMM_WORLD);

Receiving data
int MPI_Recv(void *buf,
int count,
MPI_Datatype datatype,
int source,
int tag,
 MPI_Comm comm,
 MPI_Status *status)

MPI_Recv(&other_pid, sizeof(int), MPI_BYTE,
process, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

Building and running
• MPI programs require a header file and library.

• Typically you compile MPI programs with mpicc or
mpic++ which sets the include path and links the
correct library

• Not necessary. mpicc is just a wrapper around your
C compiler

• MPI programs are typically run with the “mpirun”
command.

• While also not strictly necessary, it’s very hard not to.

MPI Example

Useful MPI Stuff (in my opinion)

• MPI_Barrier

• MPI_Bcast —- broadcast

• MPI_Isend, MPI_Irecv — non-blocking send and
receive

• MPI_Alloc_Mem —- allocate receive buffers

• It’s important for performance to post receive
buffers before sends occur.

Stuff I avoid
• Partitioning my communication world, I always use MPI_COMM_WORLD and forget

about anything else

• Tags. I always use 0 or MPI_ANY_TAG. There is talk about greater use of tags for
GPU communication and such. But generally this is unused.

• MPI data types. Complete waste of time. Just use MPI_BYTE and send/receive the
exact number of bytes.

• MPI threading. I’ve never come across an MPI multithreaded implementation that
wasn’t broken. Just use the single threaded one and lock around it.

• The file I/O. This looks useful, but for cluster file I/O we use HDFS.

• The remote op and reduction operators. I’ve always just implemented this manually.

• The All to All and SendRecv functions. Maybe these are useful on really large
systems, but I never found it worth the time to bother.

Common MPI bugs
• Receive without Send

• Or more generally, mismatched send/receives

• Some but not all nodes sending

• Messing up the arguments to Send/Recv

• That’s why I always use MPI_BYTE, tag=0 and MPI_COMM_WORLD

• Deadlock on blocking send/receive

• Performance bug:

• You must send/receive in big chunks.

• Hard to balance work well.

• Subtle bug: Address space randomization means function pointers passed across machines
are not valid.

Why you should use MPI  
(in scientific computing)

• Your fellow programmers will know what you are talking
about. It is the standard for this thing.

• There are vendor-optimized and supported versions (Cray,
IBM, Intel, …)

• It is the thing other subsystems plug into. For example, we
use a user-mode RDMA library for our infiniband
interconnect.

• Despite trying, my students could not beat the
performance of this when talking to the infiniband verbs
layer directly…

Why you (probably) shouldn’t
use MPI in a commercial setting

• You have to buy the whole enchilada.

• Do you really think your program can start with MPI_Init(argc, argv)?
Seriously?

• MPI comes from the scientific computing world. It didn’t come from the
universe of plugging together hundreds of software packages across
dozens of systems and standards.

• In my experience, commercial software has harder robustness constraints.

• MPI doesn’t understand what it means for a node to go down.

• In the commercial world, you have to build around crashing.

• Despite this, understanding message passing as a fundamental concept is
important. Even if you end up having to use some other library.

Final thoughts
• You can mix and match

• MPI + pthreads

• MPI + openmp

• MPI + openmp + openCL

• Active Messages

• GASNet

• PGAS, Partitioned Global Address Space

• Grappa

