
524
GPUs

GPUs have enormous power
that is enormously difficult to use
• Nvidia GP100 - 5.3TFlops of double precision

• This is equivalent to the fastest super computer in the world
in 2001; put a single rack together of these and you would
be in the top 500 (you could get there for under $1MM)

• Gianormous: 600mm^2

• 3,840 CUDA cores

• 720GB/s die-stacked DRAM (16GB total)

• This is equivalent to about 11 DDR4 channels

CPU GPU

GPU
memDRAM

PCIe

DRAM
GPU
mem
GPU
mem
GPU
mem

- partitioned address space
- (although this is changing!)

- CPU dispatches work to GPU 
GPU is not a first class compute  
device
- ongoing research on this!

- It’s a process
- ~ 2001 first hints of programmability
- ~ mid 2000’s useful 32 bit math, sometime later 64 bit
- ~ 2013 unified virtual addressing

- ~ 2015/6 and products that don’t totally suck at it
- Active areas of research: GPU accesses to the filesystem 

network, etc.

Some terminology…
• MIMD = Multiple Instruction, Multiple Data

• Multicore

• SIMD = Single Instruction, Multiple Data

• Vector

• FGMT = Fine-Grained Multithreading

• VLIW = Very Long Instruction Word

• Vector = what you think it means from Mathematics

• Bandwidth

• Injection Rate or Packet Rate or Message Rate

• Peak Injection Rate = Peak Bandwidth / Smallest Packet Size

• Peak Bandwidth = Largest Packet Size X Injection Rate (usually not peak)

• Channel or Bus

• as in DDR3 channel, which for a typical rate has peak BW of ~18GB/s and Injection Rate of 280M Msg/S.

AMD / NVidia lingua franca
AMD NVidia Meaning

Workitem Thread a single task

Workgroup Thread-block / CTA a group of threads that can share data and
synchronize locally

Wavefront Warp unit of hardware SIMT scheduling

VGPR (64x32 bit) VGPR (32x32 bit) Vector general purpose register

SGPR (32 bit) N/A Scalar general purpose register

Global memory Global memory Globally shared memory across all workitems/
threads

Local memory
(LDS) Shared memory Software managed scratch-pad shared between

a workgroup or thread-block. Per SM/CU

Private memory Local memory Workitem/thread private memory

Mark Emily The person to ask…

A simplified perspective on
GPU architecture

Cache

C
oa

le
ss

er

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

main memory

A simplified perspective on
GPU architecture

Cache

C
oa

le
ss

er

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

must have lots of
threads

main memory

A simplified perspective on
GPU architecture

Cache

C
oa

le
ss

er

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

threads must not
branch diverge

main memory

A simplified perspective on
GPU architecture

Cache

C
oa

le
ss

er

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

Must explicitly copy memory to
LDS for good performance.

main memory

A simplified perspective on
GPU architecture

Cache

C
oa

le
ss

er

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

GPUs will try hard to use global memory

main memory

A simplified perspective on
GPU architecture

Cache

C
oa

le
ss

er

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

SIMD CU
workgroupworkgroupworkgroupworkgroup

LDSLDSLDSLDS

but they will fail at it when push comes to shove

main memory

Toolkit Zoo
• OpenCL

• C++AMP

• hcc

• CUDA

• HIP

• GCD

After much consternation I decided to focus
class lecture on OpenCL. This is because it is

supported by AMD, NVidia and Intel and
works on Mac OS X, Windows and Linux.

Personally, I like this. But it’s a work in
progress still and doesn’t work with NVidia.

To first order, no
one cares

 No one cares

Like C++Amp but
I don’t have time/

infrastructure

Core concepts

• Memory, Memory, Memory

• Memory hierarchy

• SIMD execution

• Threads for latency tolerance

Execution is free, data access is not

An important mindset

Memory Hierarchy

Let’s talk about caches….

Let’s talk about DRAM

LDS

Some core thoughts to keep
in mind

• every access to a cache or DRAM accesses a block.

• In front of the L2 on a GPU is a structure that
coalesces accesses to the same block.

• For good L2 performance it is key that you use this

• Easiest to use it by accessing the same block in
different work items.

• The L1 is fine-grained interleaved, but the net/net
conceptually is the same for you as a developer.

Thread scheduling
• There’s nothing to say. It is implementation

dependent

• Do not write code that assumes anything
being scheduled or completed across
workgroups.

• Within a workgroup:

• barrier(…)

Example

Some closing thoughts

• GPU’s are in a sweet-enough spot between
efficiency and pain

• FPGAs = more pain, CPUS = less efficient

