CSEP 524 – Parallel Computation
University of Washington

Lecture 4: Parallel Algorithms and Abstractions

Michael Ringenburg
Spring 2015
Announcement

• The class on Tuesday, May 19 has been rescheduled to Thursday, May 21.
 – Same time (6:30pm), same place (CSE 305, MS building 99)

• Next class: Guest lecture from Brad Chamberlain, Chapel lead.
 – Should be the most interesting lecture of the class – please don't miss it!

• No homework due next week.
 – Work on project!
 – May turn in Problem 3 of last homework next week.
Bitonic Sort: Setup

Let's walk through Figure 4.7 in text – should help with HW:

```plaintext
int t;  // Number of threads = 2^m
rec L[n];  // Records to be sorted
int size = n/t;  // Local size – assume t divides m
key BufK[t][size];  // Buffer for passing data to partners
bool free'[t] = false; ready'[t];  // synchronization variables
forall(index in(0..t-1) {  
  int i,d,p; bool stall;
  rec LocL[size] = localize(L[]);  // Local piece of L
  rec inputCopy[size];  // Simplifies copy at end
  key Kn[size]=localize(BufK[]);  // Local piece of BufK
  key K[size];
  for (i=0; i<size; i++) {
    K[i].x=LocL[i].x;  // Copy string to sort into work buffer
    K[i].home=localToGlobal(LocL,I,0);  // Remember global index
  }
```
Bitonic Sort: Data Movement

Let's walk through Figure 4.7 in text – should help with HW:

```c
alphabetizeInPlace(K[], bit(index, 0));  // Local sort, up or down based on bit 0
for (d=1; d<=m; d++) {  // Main loop, m phases
    for (p=d-1; p<0; p--) {  // Define p for each sub-phase
        stall=free'[neigh(index, p)];  // Stall till can give data
        for (i=0; i<size; i++) {  // Send my data to partner
            BufK[neigh(index, p)][i]=K[i];  // neigh() finds partner
        }
        ready'[neigh(index, p)]=true;  // Release neighbor to go
        stall=ready'[index];  // Stall till my data is ready
    }
    … Bitonic merge two buffers (mine in K, partner's in my local piece of BufK), I keep half, partner keeps other… Barrier
}
… Copy back into L (via inputCopy)
```
Agenda

• Discuss parallel algorithms
 – Huge topic, could spend an entire quarter (and more)

• We will just give some highlights
 – Re-conceptualizing computation – classic example of SUMMA matrix multiplication
 – Formulating algorithms as generalized reduces and scans
Recall From Lecture 1

• Matrix Multiplication on Processor Grid

- Matrices A and B producing $n \times n$ result C where $C_{rs} = \sum_{1 \leq k \leq n} A_{rk} \times B_{ks}$

- Need to copy partial row from A and partial column from B.
 - In this example, row from P_1, column from P_2
Applying Scalable Techniques

• Assume each processor stores block of **C, A, B**; assume “can’t” store all of any matrix

• To compute \(c_{rs} \) a processor needs all of row \(r \) of \(A \) and column \(s \) of \(B \)

• Consider strategies for minimizing data movement, because that is the greatest cost – what are they?

\[
P_0 = *_1 + *_2 + \ldots + *_n
\]
Grab All Rows/Columns At Once

- Send each processor all of rows and columns it needs at the beginning – rest is all local.

- If there was that much space, why aren’t we using bigger blocks?

- Network congestion – all threads doing this in parallel?
Process $t \times t$ Blocks

- What if, instead of processing entire $m \times m$ block we process smaller $t \times t$ chunks?

```java
for (r=0; r < t; r++)
    for (s=0; s < t; s++){
        c[r][s] = 0.0;
        for (k=0; k < n; k++)
            c[r][s] += a[r][k]*b[k][s];
    }
```
Process $t \times t$ Blocks

- What if, instead of processing entire $m \times m$ block we process smaller $t \times t$ chunks?

```plaintext
for (r=0; r < t; r++)
    for (s=0; s < t; s++){
        c[r][s] = 0.0;
        for (k=0; k < n; k++)
            c[r][s] += a[r][k]*b[k][s];
    }
```
Process $t \times t$ Blocks

- What if, instead of processing entire $m \times m$ block we process smaller $t \times t$ chunks?

```java
for (r=0; r < t; r++)
    for (s=0; s < t; s++){
        c[r][s] = 0.0;
        for (k=0; k < n; k++)
            c[r][s] += a[r][k]*b[k][s];
    }
```

```
for (r=0; r < t; r++)
    for (s=0; s < t; s++){
        c[r][s] = 0.0;
        for (k=0; k < n; k++)
            c[r][s] += a[r][k]*b[k][s];
    }
```

Additional Notes:

- (or memory overhead)
Revisit The Formula

\[C_{rs} = \sum_{1 \leq k \leq n} A_{rk} \times B_{ks} \]

```c
// Assume c[][] initialized to 0s
for (r=0; r < n; r++) {
    for (s=0; s < n; s++) {
        for (k=0; k < n; k++) {
            c[r][s] += a[r][k] * b[k][s];
        }
    }
}
```
Revisit The Formula

\[C_{rs} = \sum_{1 \leq k \leq n} A_{rk} * B_{ks} \]

```c
// Assume c[][] initialized to 0s
for (r=0; r < n; r++) {
    for (s=0; s < n; s++) {
        for (k=0; k < n; k++) {
            c[r][s] += a[r][k]*b[k][s];
        }
    }
}
```

What if we lift the \(k\)-loop out of the nest?
Revisit The Formula

\[C_{rs} = \sum_{1 \leq k \leq n} A_{rk} * B_{ks} \]

// Assume c[][] initialized to 0s
for (k=0; k < n; k++){
 for (r=0; r < n; r++){
 for (s=0; s < n; s++){
 c[r][s] += a[r][k]*b[k][s];
 }
 }
}

Does this still compute the same values?
What have we done?
Revisit The Formula

\[C_{rs} = \sum_{1 \leq k \leq n} A_{rk} \times B_{ks} \]

```c
// Assume c[][] initialized to 0s
for (k=0; k < n; k++){
    for (r=0; r < n; r++){
        for (s=0; s < n; s++){
            c[r][s] += a[r][k]*b[k][s];
        }
    }
}
```

Computing C term-by-term rather than element-by-element (all 1st terms, all 2nd terms, etc.)
• Consider this $m \times m$ block – what do we need to compute 1^{st} terms?
• Consider this $m \times m$ block – what do we need to compute 1st terms?

Switch orientation -- by using a *column* of A and a *row* of B compute all 1st terms of the dot products
Consider this $m \times m$ block – what do we need to compute 1st t terms?

Need t columns of A and t rows of B ...
• Consider this $m \times m$ block – what do we need to compute arbitrary set of the same t terms?

Need different t columns of A and t rows of B ...
• Consider this $m \times m$ block – what do we need to compute arbitrary set of t terms?

• Key: each block only needs each value once, can compute all terms that depend on it

Need different t columns of A and t rows of B ...
• SUMMA communication: send my portion of row (or block of rows) to everyone in my column, my portion of column (or block of columns) to everyone in my row
• Followed by a step of computing next term(s) locally
• Repeat with next (block of) partial row(s)/column(s)…
SUMMA

• Scalable Universal Matrix Multiplication Algorithm
 – Invented by van de Geijn & Watts of UT Austin
 – Generally considered best machine independent Matrix Multiplication
 – Many linear algebra libraries implement variations of this

• Whereas MM is usually A row x B column, SUMMA is A column x B row because computation switches sense
 – Normal: Compute all terms of a dot product
 – SUMMA: Compute a term of all dot products

• Key: Don’t have to send data twice!
 – By computing term-by-term, and “flipping the sense”, each processor can do all computations from a received block at once.
Schwartz’s Algorithm

- Recall our observation earlier that it made sense to locally sum numbers before combining them in a tree.
- The generalized version of this is due to Jack Schwartz. Idea:
 - Can combine N items on $P= N$ threads/processors in $\log P \ (=\log N)$ time
 - If we first combine $O(\log N)$ values at each leaf, we end up with the same time complexity ($O(\log N)$), but $CN \log N$ values!
 - In practice, communication \gg local computation, so this is a big win regardless of C
• Generally P is not a variable, and $P \ll N$
• Use **Schwartz as heuristic**: Prefer to work at leaves (no matter how much bigger N is than P) rather than enlarge (make a deeper) tree, implying tree will have no more than $\log_2 P$ height

• Also, consider higher degree tree – especially if communication can be overlapped (multiple outstanding fetches/receives)
Recall Parallel Prefix Algorithm – Canonical Scan

Compute sum going up: reduce
Compute prefixes going down

Introduce a virtual parent, the sum of values to tree’s left: 0
Recall Parallel Prefix Algorithm – Canonical Scan

Compute sum going up: reduce
Compute prefixes going down

Invariant: Parent sends sum of elements to left of child’s subtree
Recall Parallel Prefix Algorithm – Canonical Scan

Compute sum going up: reduce
Compute prefixes going down

Invariant: Parent sends sum of elements to left of child’s subtree
Recall Parallel Prefix Algorithm – Canonical Scan

Compute sum going up: reduce
Compute prefixes going down

Invariant: Parent sends sum of elements to left of child’s subtree
Recall Parallel Prefix Algorithm – Canonical Scan

Each prefix is computed in $2\log n$ time, if $P = n$
Generalized Reduce and Scan

• We’ve seen the notions of tree-based reduce and scan pop up repeatedly
 – Reduce aggregates elements into a single result (e.g., sum)
 – Scan also computes all “partial results” (e.g., prefix sum)

• Language-level support for +, *, min, max, &&, || is common

• Turns out that many algorithms can be formulated (and parallelized) as generalized reduces or scans

• If so, can practically apply to “recipe” to achieve efficient tree-based (Schwartz) parallelization

• Note: Scans can be inclusive (output[0] = input[0]) or exclusive (output[0] = identity, output[1] = input[0])
 – Exclusive is more flexible, as we will see...
Examples

• Reduce examples
 – Second smallest value (≠ smallest): send two smallest to parent, parent combines by keeping two smallest across children.
 – Length of longest run of 1’s: compute longest in each leaf, take max at parent. Requires edge cases to track/handle 1s that cross child boundaries
 – Histogram, counts items in k buckets: how would you?
 – Index of first occurrence of x: how would you?
Examples

• Scan examples
 – Team standings at every point from list of game results:
 • Instead of prefix sum of scalar, do a prefix sum of vector \(v \), where \(v_i \) is number of wins of team \(i \).
 • Treat each game element as a vector with a 1 in the winning team’s position.
 – Index of most recent occurrence of a character:
 • Locally compute \(last \) occurrence of each character in term of global indices.
 • Combine at parents by taking max for each character
 • On the way down, we will receive the last occurrence to the left of our leaf – use to initialize local rescan
• Begin by applying Schwartz idea to problem
 – Local accumulate at leaves
• Begin by applying Schwartz idea to problem
 – Local computation
 – Combine leaf results at parents
• Begin by applying Schwartz idea to problem
 – Local computation
 – Combine leaf results at parents
 – If scan: send down “values to left”, apply at leaves
Generalizing R & S

• Goal: come up with a recipe for parallel reduces and scans.
• Attempt to define in terms of four *sequential* functions:
 – `init()` initialize data structures
 – `accum()` perform local computation
 – `combine()` perform tree combining
 – `x_gen()` produce the final result(s)
 • `x = reduce`
 • `x = scan`
• `init()`: Initialize tally at each leaf
• `accum()`: Aggregate each array value into tally
• `combine()`: Combine child tallys at each parent
• `reduceGen()`: Return root
tally nodeval'[P]; // Global full/empty variables
tally result; // tally represents result datatype
forall(index in (0..P-1)) {
 int myData[size] = localize(dataarray[]); // Local portion
tally tal;
 int stride = 1;
tal = init(); // Initialization
 for (int i = 0; i < size; i++)
 tally = accum(tally, myData[i]); // Local accumulation
 while(stride < P) {
 if(index % (2*stride) == 0) {
 tally = combine(tally, nodeval'[index+stride]);
 stride = 2 * stride;
 } else {
 nodeval'[index] = tally; // Done: fill for parent
 break;
 }
 }
}
result = reduceGen(nodeval'[0]); // Generate final result
typedef int tally;

tally init() {
 tally tal = new tally;
 tal=0;
 return tal;
}

tally accum(int op_val, tally tal) {
 tal += op_val;
 return tal;
}

tally combine(tally left, tally right) {
 return left + right;
}

int reduce_gen(tally ans) {
 return ans;
}
More Involved Case

• Consider Second Smallest – find second smallest unique value
• `tally` tracks smallest and next smallest found so far:

```c
struct tally {
    float sm; // smallest
    float nsm; // next smallest
};

tally init() {
    pair = new tally;
    pair.sm = maxFloat;
    pair.nsm = maxFloat;
    return pair;
}
```
Second Smallest (Continued)

• Accumulate

tally accum(float op_val, tally tal) {
 // Check if op_val less than smallest
 if (op_val < tal.sm) {
 tal.nsm = tal.sm;
 tal.sm = op_val;
 } else {
 // Otherwise, check if op_val between
 // smallest and second smallest
 if (op_val > tal.sm && op_val < tal.nsm) {
 tal.nsm = op_val;
 }
 }
 return tal;
}
Second Smallest (Continued)

• Combining children

```c

tally combine(tally left, tally right) {
    return accum(left.nsm, accum(left.sm, right));
}
```

• Generating final result

```c

int reduce_gen(tally ans){
    return ans.nsm;
}
```
Recall Parallel Prefix Algorithm – Canonical Scan

Compute sum going up: reduce
Compute prefixes going down

Invariant: Parent sends sum of elements to left of child’s subtree
Generalized scan

• See textbook errata for full code.
 – In combining loop, track left tally – store it with sibling that will need to add it to parent tally on downsweep:

```java
while(stride < P) {
    if(index % (2*stride) == 0) {
        ltally[index + stride] = tally;
        tally = combine(tally, nodeval'[index+stride]);
        stride = 2 * stride;
    } else {
        nodeval'[index] = tally;  // Done: fill for parent
        break;
    }
}
```
Generalized scan

- See textbook errata for full code.
 - Then, add downsweep after upsweep. Ensures leaves have combined value of everything to their left. Recompute local accumulation using total to left to initialize.

```c
if (index == 0) {
    dummy = nodeval'[0]; nodeval'[0] = init();
}
for(stride = P/2; stride >= 1; stride = stride/2)
    if(index % (2*stride) == 0) {
        ptally = nodeval'[index];
        nodeval'[index] = ptally;  // Left child gets parent tally,
        nodeval'[index+stride] =   // right gets parent + left tally
            combine(ptally, ltally[index+stride]);
    }
ptally = nodeval'[index]
for(int i = 0; i < size i++) {
    // Re-accumulate using tally of data to left, apply to data
    myResult[i] = scanGen(ptally, myData[i],
                          localToGlobal(myData, i, 0));
    ptally = accum(ptally, myData[i], localToGlobal(myData,i,0));
}
Example: Prefix Sum

typedef int tally;
tally ltally[P]

tally init() {
   return 0;
}

tally accum(tally t, int elem, int i) {
   return t + elem;
}

tally combine(tally left, tally right) {
   return left + right;
}

// Already computed prefix
// sum into t when applying
// parent tally to elements
int scan_gen(tally t, int elem, int i) {
   // + elem makes inclusive
   return t + elem;
}
Example: Last Occurrence

```java
//S = # of possible symbols
typedef int[S] tally;
tally ltally[P]

tally init() {
 t = new tally;
 for(int i=0; i<S; i++)
 t[i] = -1;
 return t;
}

tally accum(tally t, int sym, int i) {
 t[sym] = i;
 return t;
}

tally combine(tally left, tally right) {
 for(int i=0; i<S; i++)
 max(left[i],right[i])
}

// Passed in tally will have
// index of last occurrence of
// each symbol to left of elem
// This is why we prefer
// exclusive ordering in
// recipe - can’t undo tally
// updates if non-invertable
int scan_gen(tally t, int sym, int i) {
 return t[sym];
}
```

Illustration
Illustration
Illustration
What’s the idea?

- Many computations can be reformulated as reduces or scans
- You can then apply these techniques + Schwartz’s algorithm as a recipe for solving them in parallel
- Some high-level parallel languages have built-in support for this concept – e.g., Chapel
  - Still valuable to understand how it could be done
Discussion Session

• What did you think of the paper, and the MapReduce paradigm?
  – Flexibility? Can you implement everything you’d want to?
  – Ease of use?
  – Robustness?
• We’ve reached the midpoint of the class, and will be switching gears, to cover languages and more “applied” topics.
  – Anything specifically you want to see covered (no promises, but I’m open to suggestions)
  – Any thoughts about what we’ve learned, and the papers you’ve read?