
The Fast Multipole Method in Pictures

Brad Chamberlain, Cray Inc.

A number of point sources on the surface of an object

Finest octree-style discretization of space

The non-empty finest cells of interest

This will be the cell we focus on in this example
(as well as its parents)

= “outer” signature function we need to calculate
(field induced outside cell due to sources inside cell)

compute outer signature function directly from sources in cell

(repeat for all cells)

we’re done with the point sources for now

interpolate the outer signature functions
for use at the next level

jump to next level of hierarchy

need to compute outer signature functions for these cells

do this using an outer-to-outer translation,
combining child values to get parent’s

repeat for all cells

(done with finest level for now)

Interpolate signature functions for use at next level

go to next level of hierarchy (the coarsest for this example)

need to compute these outer signature functions

again, do so using children

repeat for all cells

ignore middle level for now; next we’ll start to compute
inner signature functions (field inside cube due to stuff outside)

compute inner signature functions using outer-to-inner translation
= these cells are too close for the
 transform to be valid (adjacent)

= a contribution from one cell
 to another (non-neighboring)

repeat for all cells

return to middle level; now we want to compute
inner signature functions for these cells

propagate parent inner values to children using
inner-to-inner translation for starters…

repeat for all children…

filter resulting signature functions to be appropriate at this level

P

P

P

then use outer-to-inner translation to get contributions from cells whose
parents were too close (but are not too close themselves)

repeat for all cubes at this level

we’re done with the coarse level

now repeat for the finest level

use inner-to-inner translation to propagate from parents to children

repeat for all children

filter inner signature functions to be appropriate at finest level

P

P

P

P

P

P

P

P

P P P

P

P

P

P

P

P

use outer-to-inner translation to take care of cells
whose parents were previously too close

This is effectively a 216- (or
perhaps 190)-point stencil:
 6 x 6 x 6 (- 3 x 3 x 3 + 1)

repeat for all cells

now we’re done with the FMM
we have computed the inner expansion for all cells at the finest level

Compute the far-field at the source points in each cell at the finest level

Chapel (39)

FMM Data Structures
var OSgfn, ISgfn: [lvl in Levels] [SpsCubes[lvl]] [Sgfns[lvl]] [1..3] complex;

1D array over levels
of the hierarchy

OSgfn(3) OSgfn(1) OSgfn(2)

Chapel (40)

1D array over levels
of the hierarchy

FMM Data Structures
var OSgfn, ISgfn: [lvl in Levels] [SpsCubes[lvl]] [Sgfns[lvl]] [1..3] complex;

…of 3D sparse
arrays of cubes
(per level)

x + y·i
…of
complex
values

OSgfn(3) OSgfn(1) OSgfn(2)

…of 2D discretizations
of spherical functions,
(sized by level)

…of 1D vectors

Chapel (41)

Note that here, we
want to parallelize over
spatial arrays

FMM Parallelism

OSgfn(3) OSgfn(1) OSgfn(2)

Whereas here, we want
to parallelize over the
signature functions

Chapel (42)

Distributing these is
harder (recursive
bisection technique?)

FMM Distributions

OSgfn(3) OSgfn(1) OSgfn(2)

Distributing these is
easy (Block works well)

Chapel (43)

FMM: Supporting Declarations
var OSgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex;

previous definitions:

var n: int = …;
var numLevels: int = …;

var Levels: domain(1) = [1..numLevels];

var scale: [lvl in Levels] int = 2**(lvl-1);
var SgFnSize: [lvl in Levels] int = computeSgFnSize(lvl);

var LevelBox: [lvl in Levels] domain(3) = [(1,1,1)..(n,n,n)] by scale(lvl);
var SpsCubes: [lvl in Levels] sparse subdomain(LevelBox) = …;

var Sgfns: [lvl in Levels] domain(2) = [1..SgFnSize(lvl), 1..2*SgFnSize(lvl)];

OSgfn(3) OSgfn(1) OSgfn(2)

Chapel (44)

var OSgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex;

FMM: Computation

for lvl in 1..numLevels-1 by -1 {
 …
 forall cube in SpsCubes(lvl) {
 forall sib in out2inSiblings(lvl, cube) {
 const Trans = lookupXlateTab(cube, sib);

 atomic ISgfn(lvl)(cube) += OSgfn(lvl)(sib) * Trans;
 }
 }
 …
}

OSgfn(3) OSgfn(1) OSgfn(2)

outer-to-inner translation:

Chapel (45)

Fast Multipole Method: Summary
§  Chapel code captures structure of data and computation

far better than sequential Fortran/C versions (to say
nothing of the MPI versions)

•  cleaner, more succinct, more informative
•  rich domain/array support plays a big role in this

§  Parallelism shifts at different levels of hierarchy
•  Aided by global-view programming and nested parallelism

§  Boeing FMM expert was able to find bugs in my
implementation when seeing Chapel for the first time

§  Yet, I’ve elided some non-trivial code (the distributions)

