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A number of point sources on the surface of an object 



Finest octree-style discretization of space 



The non-empty finest cells of interest 



This will be the cell we focus on in this example 
(as well as its parents) 



= “outer” signature function we need to calculate 
(field induced outside cell due to sources inside cell) 



compute outer signature function directly from sources in cell 



(repeat for all cells) 



we’re done with the point sources for now 



interpolate the outer signature functions 
for use at the next level  



jump to next level of hierarchy 



need to compute outer signature functions for these cells 



do this using an outer-to-outer translation, 
combining child values to get parent’s 



repeat for all cells 



(done with finest level for now) 



Interpolate signature functions for use at next level 



go to next level of hierarchy (the coarsest for this example) 



need to compute these outer signature functions 



again, do so using children 



repeat for all cells 



ignore middle level for now;  next we’ll start to compute 
inner signature functions (field inside cube due to stuff outside) 



compute inner signature functions using outer-to-inner translation 
= these cells are too close for the 
   transform to be valid (adjacent) 

= a contribution from one cell 
   to another (non-neighboring) 



repeat for all cells 



return to middle level; now we want to compute 
inner signature functions for these cells 



propagate parent inner values to children using 
inner-to-inner translation for starters… 



repeat for all children… 



filter resulting signature functions to be appropriate at this level 
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then use outer-to-inner translation to get contributions from cells whose 
parents were too close (but are not too close themselves) 



repeat for all cubes at this level 



we’re done with the coarse level 



now repeat for the finest level 



use inner-to-inner translation to propagate from parents to children 



repeat for all children 



filter inner signature functions to be appropriate at finest level 
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use outer-to-inner translation to take care of cells 
whose parents were previously too close 

This is effectively a 216- (or 
perhaps 190)-point stencil: 
 6 x 6 x 6 (- 3 x 3 x 3 + 1) 



repeat for all cells 



now we’re done with the FMM 
we have computed the inner expansion for all cells at the finest level 



Compute the far-field at the source points in each cell at the finest level  



Chapel (39) 

FMM Data Structures 
var OSgfn, ISgfn: [lvl in Levels] [SpsCubes[lvl]] [Sgfns[lvl]] [1..3] complex; 

1D array over levels 
of the hierarchy 

OSgfn(3) OSgfn(1) OSgfn(2) 
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1D array over levels 
of the hierarchy 

FMM Data Structures 
var OSgfn, ISgfn: [lvl in Levels] [SpsCubes[lvl]] [Sgfns[lvl]] [1..3] complex; 

…of 3D sparse 
arrays of cubes 
(per level) 

x + y·i 
…of 
complex 
values 

OSgfn(3) OSgfn(1) OSgfn(2) 

…of 2D discretizations 
of spherical functions, 
(sized by level) 

…of 1D vectors 



Chapel (41) 

Note that here, we 
want to parallelize over 
spatial arrays 

FMM Parallelism 

OSgfn(3) OSgfn(1) OSgfn(2) 

Whereas here, we want 
to parallelize over the 
signature functions 
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Distributing these is 
harder (recursive 
bisection technique?) 

FMM Distributions 

OSgfn(3) OSgfn(1) OSgfn(2) 

Distributing these is 
easy (Block works well) 
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FMM: Supporting Declarations 
var OSgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex; 
 

previous definitions: 
 
var n: int = …; 
var numLevels: int = …; 
 
var Levels: domain(1) = [1..numLevels]; 
 
var scale: [lvl in Levels] int = 2**(lvl-1); 
var SgFnSize: [lvl in Levels] int = computeSgFnSize(lvl); 
 
var LevelBox: [lvl in Levels] domain(3) = [(1,1,1)..(n,n,n)] by scale(lvl); 
var SpsCubes: [lvl in Levels] sparse subdomain(LevelBox) = …; 
 
var Sgfns: [lvl in Levels] domain(2) = [1..SgFnSize(lvl), 1..2*SgFnSize(lvl)]; 

OSgfn(3) OSgfn(1) OSgfn(2) 
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var OSgfn, ISgfn: [lvl in Levels] [SpsCubes(lvl)] [Sgfns(lvl)] [1..3] complex; 

FMM: Computation 
 

 
 
 
for lvl in 1..numLevels-1 by -1 { 
  … 
  forall cube in SpsCubes(lvl) { 
    forall sib in out2inSiblings(lvl, cube) { 
      const Trans = lookupXlateTab(cube, sib); 
 
      atomic ISgfn(lvl)(cube) += OSgfn(lvl)(sib) * Trans; 
    } 
  } 
  … 
} 

OSgfn(3) OSgfn(1) OSgfn(2) 

 

outer-to-inner translation: 
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Fast Multipole Method: Summary 
§  Chapel code captures structure of data and computation 

far better than sequential Fortran/C versions (to say 
nothing of the MPI versions) 

•  cleaner, more succinct, more informative 
•  rich domain/array support plays a big role in this 

§  Parallelism shifts at different levels of hierarchy  
•  Aided by global-view programming and nested parallelism 

§  Boeing FMM expert was able to find bugs in my 
implementation when seeing Chapel for the first time 

§  Yet, I’ve elided some non-trivial code (the distributions) 


