CSEP 524: Assignment #7

(due prior to class, Tuesday March 5)

1) Reading:
a) A Brief Overview of Chapel, Sections 9.3.4-9.4 (pp. 15-18)

Submit 1 question in a textfile format for consideration in class discussions by Monday
evening, 9pm, Feb 25t

2) Multi-Locale Smith-Waterman in Chapel:

a)

b)

Starting from the file sw-framework.chpl, implement the Smith-Waterman
algorithm for distributed memory (multi-locale) execution in Chapel using the
following high-level strategy:

* The provided code reads in the two sequences in from input files specified by
configs seqlfile and seqZ2file;

* Distribute the seqllen x seq2len domain & matrix into a vertical panel per locale
using the Block distribution;

* Create a task per locale;

* When safe/signaled, have each task compute ‘rowsPerChunk’ (set via a config)
rows of its vertical panel at a time, serially;

* Use a Block-distributed (seqllen by rowsPerChunk) x numLocales array of sync
vars to have each locale signal to the next when it can start working on its
corresponding chunk.

Note that the provided framework provides a lot of code for you - the input, the

serial computation of a submatrix, the backtracing, and the output of the difference

between the sequences. It also supports a completely serial The goal is for you to
focus on the parts related to the multi-locale parallel execution: specifying the
distributions, task parallelism, and synchronization required to have the execution
fully pipelined once locale #0 has computed numLocales-1 chunks. A series of
TODO comments guide you to the places in the code that require modification.

Important Note: The framework is designed to support both a local/nondistributed
and parallel/distributed version of the algorithm at any given time, controlled via
the config param ‘computelnParallel’. Be sure to set this to true (via the compiler
flag -scomputelnParallel=true or by modifying the source code) when you’re ready
to start compiling and running your parallel framework.

In a paragraph or two of text, describe how the MPI implementation of the
algorithm in part (a) would be implemented. What communications would you use?
What aspects of the implementation would be more difficult? What aspects would
be easier?

c) Starting with your answer from part (a), create a second version of the program that
takes a similar, but slightly different approach: Rather than creating all of the tasks
a priori, when each task finishes a chunk, have it fire off a task on the next locale to
compute the same set of rows once it is legal to do so. For grading purposes, please
do this in the file sw-part2.c and comment your changes w.r.t. part (a) using
comments that start with “PART C: ”.

[Goal: get some experience with Chapel in a multi-locale setting; get some experience
with wavefront algorithms in distributed memory settings; compare and contrast
global-view PGAS-style programming with SPMD message passing]

Optional: See if you can obtain speedup with this approach on longer sequences using a
distributed memory architecture like the UW cluster.

Optional: Use tasking within each locale to parallelize the computeChunkSerially()
routine and take full advantage of the cores available to you.

Optional: Do something else cool with multilocale parallelism in Chapel.

3) Think of Final Lecture Questions One of my goals for my final lecture slot is to use it
as a “requests night” and come back around to any brushed-past topics or unanswered
questions—e.g., things you’ve wondered about from the class and never gotten a chance
to ask or discussion questions that you asked but we never got around to answering.
This would be a good week to start thinking about what you would personally like to
see covered in that slot.

4) That'sit! If you finish early, get a jumpstart on your final project.

