CSEP 524: Assignment #4

(due prior to class, Tuesday February 5™)

1) Reading:
* MapReduce: Simplified Data Processing on Large Clusters, Dean & Ghernawat,
2004.

* Lin & Snyder, Chapter 5 - stop at end of “The Reduce and Scan Abstractions”
(pp- 112-125) [NOTE: As stated in class, there is no need to become more
familiar with Peril-L than you care to be/need to be to understand the core
reduction/scan concepts described in this reading. Peril-L is defined in
Chapter 4 and you should probably find it reasonably intuitive, but there’s no
need to become deeply familiar with it for the sake of this course].

Submit 1 question per reading in a textfile format for consideration in class
discussions by Monday evening, 9pm, Feb 4t .

2) Impact of Load Imbalance: In class, we discussed how the imbalanced block strategy
defined by “give the first p-1 tasks floor(n/p) items; give the final task the remainder”
could lead to ~2% load imbalance by applying it to multiple dimensions of a 3D array
for a 16-core compute node. Defend or refute Brad’s speculation that using this
distribution to distribute to a larger machine could result in an even more significant
load imbalance between the most unfortunate task and the typical one. In particular,
distribute:

* a 3D array of 64-bit reals consuming 25-50% of the system’s physical memory
* across 18,688 compute nodes, each containing 32 GB of memory and 16 cores

You may either (a) distribute the array elements to the compute nodes themselves;
(b) distribute them across all the cores; or (c) use one block distribution to distribute
across the nodes and then a second to distribute across the cores (be sure to clearly
state which case you are pursuing). For fun, feel encouraged to play the role of
“adversary” by trying to find a pessimal/unluckiest problem size and use of the
distribution, with the goal of maximizing the load imbalance (note: you will not be
graded based on whether or not you find an absolute worst case; rather based on
whether your argument is reasonable, accurate, and consistent). Show the math that
backs up your argument, striving to be as clear as possible (“show your work”).

[Goal: analyze semi-realistic large-scale distribution/potential load imbalance case;
start thinking about distributed memory computation and distributions]

3) Proof of Deadlock-Freedom: In class, we asserted that taking and releasing locks in a
manner that respects a sorted order can prevent deadlock. Prove that this is the case



4)

5)

for two tasks using a proof by induction where P(n) = “Given n locks with a well-defined
ordering 1..n; and 2 tasks, each of which needs to take a (potentially overlapping)
subset of those locks; prove that if each task takes its locks in sorted order and releases
them in the reverse order, deadlock cannot occur.” Prove for alln > 0.

For those who need a refresher/tutorial on inductive proofs, I'll post a quick overview
of them that should be sufficient for this problem on the discussion board soon - in the
meantime, think intuitively about why this works (because you’ll need that intuition in
any case).

[Goal: formal reasoning about an important practical case]

User-Defined Global-View Reduction: Chapel supports the ability for users to create
their own reductions by providing a class that (1) stores and initializes the state type,
(2) accumulates input values into the state, (3) combines states, and (4) generates a
result as we discussed in lecture. Using the provided template, familiarize yourself with
how such reductions are created using the provided implementation of the min3
reduction (also described verbally in lecture). Then flesh out the template for a second
reduction (‘mostFrequent’) that computes the most frequently occurring value in an
array of integers. Show the output of your run for three problem sizes.

[Goal: experience with the components required to create a generalized reduction]

Implement a Collective Reduction: As mentioned in lecture, Chapel does not yet
support a general collective reduction feature (though it is planned for future work).
Using the provided code framework, manually implement your own collective sum
reduction routines using Chapel sync variables. In each case, each task will call into the
routine, providing its task ID and contribution via arguments; the reduction routine
should return the result in task 0 (other tasks can return a useful value or garbage as
you wish). See comments in the code for further details.

Provide the following variants:

a) Implement a trivial “all-to-one” collective reduction which is computed via
accumulation into a single variable in a coordinated manner;

b) Implement a binary tree based collective reduction similar to the one described in
lecture, assuming that the number of tasks participating is a power of 2;

c) Create a variant of (b) in which the number of tasks may be arbitrary;

d) Create a variant of (c) in which the tree’s degree is ‘d’ rather than ‘2’ /binary.



e) Supply sample output for your reductions for 3 different numbers of tasks (powers
of two and non-)

[Goal: gain experience with the reduction pattern; further experience with
interesting synchronization idioms]



