CSEP 524: Assignment #2

(due prior to class, Tuesday January 22")

1) Reading:
a) Lin & Snyder, Ch 3 (pp. 61-85)
b) Lin & Snyder, Ch 6, POSIX Threads section thru Perf. Issues (pp. 145-173)

Submit 1-2 discussion questions per chapter for consideration in class
discussions.

2) Chapel Task Parallelism: Using the framework code provided on the course
webpage (treeSearch.chpl), modify the provided sequential tree search routine to
use task parallel features, making it a parallel tree search. Read the comments in
the code file for more details and step-by-step instructions. No performance
timings are required for this exercise (though we'll be curious to hear what you
find if you do any), just the prescribed code modifications.

3) Embarassingly Parallel Performance Study (continued):

a) Install Chapel if you haven’t already and make sure it works (see class
webpage).

b) Complete problem 4b from assignment 1.

c) Also complete problem 5 for Chapel; however, for brevity you only need to
implement and run the (ramp, factorial) case for the two distributions. Vary
numTasks and compare the results to that for C+Pthreads.

Notes:
* Once you have your Chapel program working correctly, remember to compile
it with --fast before doing performance runs (to turn off the runtime checks).

* [f comparing Chapel vs. C+Pthreads performance, be sure that you are using
the same size integers (most C compilers default to 32-bits while Chapel
defaults to 64-bits).

* Chapel has some built in timing capabilities provided in its standard ‘Time’
module. Add ‘use Time;' to the top of your program to import its symbols into
your program. See examples/primers/timers.chpl for a brief introduction.



